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ABSTRACT
1
 

Stream processing system (SPS) faces the problem of node failure 

when running over a long period of time. In addition, “exactly 

once” precise semantic guarantee is more and more important for 

SPS in some scenarios. In general, the approaches to achieve 

precise semantic is by using global snapshot, which should store 

state and records to external reliable storage or rely on 

transactions. However, these approaches suffer from high 

recovery latency, because of large I/O disk overhead. In order to 

reduce excessive latency in failure recovery, we save the 

intermediate results which are produced during the stream 

processing, and propose an algorithm DCAS which 

asynchronously snapshots state to implements precise recovery. In 

addition, we use in-memory distributed cache to provide the 

storage of intermediate results and snapshots to reduce recovery 

latency. We evaluate our failure recovery approach in recovery 

latency and runtime overhead. The experimental results show that 

our approach is 2 to 6 times faster than other conventional failure 

recovery approaches, and induces a 6% runtime overhead. 

CCS CONCEPTS 

• Information systems ➝ Complex Event Processing and Data 

Streams • Computing methodologies ➝ Distributed and Grid 
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1 INTRODUCTION 

Due to the big data [1] becomes one type of the most popular 

technology in our era, big data processing applications are 

springing up in modern high-tech world. These application 

scenarios are now widely used in stream processing system (SPS) 

[4-5]. However, as the scale of SPS cluster increases, the 

probability of node failure becomes high.  

According to the semantic guarantee, failure recovery in SPS 

can be split to the following three categories [3]: 1) “at-most-

once”, “at-least-once” and “exactly once”. Nowadays, there are 

more urgent needs for “exactly once” semantic in the key business 

fields, such as finance and transportation. In order to ensure the 

higher precision of semantic guarantee, SPS needs to do more 

operations for state and records, which is difficult to make 

tradeoffs among runtime overhead, recovery latency and system 

resource costs in the current SPS. In view of the importance of 

system performance, we focus on lower runtime overhead and 

lower recovery latency. However, the existing failure recovery 

approaches which guarantee “exactly once” semantic can provide 

low runtime overhead but ignore the recovery latency, such as 

Apache Flink [9,10, 21]. The reasons of high recovery latency are 

as follows. First, it generates excessive overhead of disk I/O 

because of retrieving the latest snapshot from the external reliable 

storage. Second, it produces high recovery latency, especially 
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with a mass of operators, because it should take out records from 

data source.  

In this work, we focus on reducing the recovery latency for 

“exactly once” semantic guarantee. We save intermediate results 

to support upstream backup, and it can provide operator level 

recovery. Then we propose DCAS, an asynchronous snapshot 

algorithm based on distributed cache, to provide information 

which recovery needed during the stream processing. Furthermore, 

we choose distributed cache to store this useful information, 

namely intermediate results and asynchronous snapshot. After 

failure node is restarted, DCAS regains state of each operator in 

cluster, and uses the offset to determine the start position of 

replaying in distributed cache. Furthermore, if the node which 

receives input stream from data source failed, it can retrieve input 

stream from distributed cache instead of external persistent 

storage. More importantly, only the failed node should be 

restarted and other nodes can operate normally. 

We have applied distributed cache to stream processing engine 

and establish a detailed set of experiments to illustrate the 

effectiveness of our proposed approach. Experimental results 

show that, our approach achieves 2-6x faster recovery than other 

conventional failure recovery approaches which can also 

guarantee “exactly once” semantic. In addition, the impact of 

runtime overhead is no more than 6%. In summary, this paper 

makes the following contributions: 

1) We offer storage of intermediate results to provide the 

upstream backup for failure recovery in operator level.  

2) We propose an asynchronous snapshot algorithm based on 

distributed cache which guarantees “exactly once” semantic and 

accelerates the recovery speed of state and records significantly. 

3) We provide a data storage strategy based on in-memory 

distributed cache to support the storage of intermediate results and 

asynchronous snapshot to implement the fast recovery. 

The rest of this paper is organized as follows: In Section 2, we 

introduce the background. Section 3 describes data storage 

strategy. Section 4 describes the details of our DCAS algorithm 

followed by Section 5 which gives our recovery scheme. In 

Section 6, we depict our evaluation. Then, Section 7 gives related 

work and we finish with conclusion in Section 8. 

2 BACKGROUND 

2.1 Stream Processing Model 

Stream Processing Model (SPM) [2] is used to handle 

continuous data stream in a certain period of time, and it includes 

processing units and data streams to be processed. Wherein the 

data stream is a sequence of tuples which are unbounded in time, 

and it can be expressed as (a1, a2, ..., an, t) where the ai denotes a 

record and the t denotes time; A processing unit is a logic operator 

for data stream, and their processing steps are as follows: each 

operator 1) obtains input data from the respective input queue, 2) 

uses its state to do calculations with the input data and return the 

results, 3) transmits the calculation results to the output queue.  

SPM execution model is based on the existing SPS, such as 

Apache Spark Streaming [12,13,20], Apache Flink [9]. The 

execution model uses delayed processing to deal with stream, and 

data window, which can be denoted as {d1, d2, ... dn} driven by 

data, to execute aggregation operations. Each host (a physical 

machine or a virtual machine) can perform multiple concurrent 

tasks through multi-thread, and each task instance can contain one 

or more operators, meanwhile there are correlations between 

upstream and downstream task instance. 

2.2  Failure recovery Model 

In failure recovery model, we make the following assumptions: 

1) we only consider the failures such as software bugs, hardware 

errors, node failures which make task nodes to not work; 2) after 

the failure of task node, it cannot consume its upstream records, or 

output results to downstream task nodes, and its state also cannot 

be accessed. 

The existing failure recovery method has ABS algorithm 

which is proposed by Apache Flink [10]. It adds barriers to data 

source and blocks input channels until all barriers are received, 

and then triggers snapshot to record state. When a node is failure, 

ABS algorithm needs to retrieve the latest snapshot from the 

external reliable storage, and replays records from the data source. 

In SPS, there are higher priority requirements on low runtime 

overhead and low recovery latency [2]. However, ABS algorithm 

does not make sure low recovery latency. We improve it by 

distributed cache to achieve low recovery latency with low 

runtime overhead.  

3  DATA STORAGE STRATEGY 

We provide a data storage strategy that using in-memory 

distributed cache to provide an efficient and reliable storage for 

fast failure recovery. In-memory distributed cache allows the 

cache to span multiple servers so that it can grow in size and in 

transactional capacity [22]. The biggest advantage of in-memory 

distributed cache is the ability to quickly read and write data. In 

the cluster of distributed cache, each node has data partition and 

stores only part of the data. In addition, it also provides a number 

of data backup of other nodes. Considering the advantages of 

distributed cache, we store intermediate results and data source to 

specific distributed cache for different data structure. 
1） Cache intermediate results  

Due to the need of records sequence, we use distributed in-

memory list to guarantee data sequence and reliability of records. 

In order to cache them, we provide listener mechanism to listen 

the upstream records. First, operators will store records to the 

distributed in-memory list, when they obtain records from the 

upstream operator. Then, operators process these records with 

specific function. Finally, the new intermediate results will be 

transmitted to the downstream operator. With the help of backup 

mechanism, distributed in-memory list can offer the repeated 

consumption in the operator layer instead of from the data source, 

which can reduce the failure recovery time. 

2）  Cache data source 

Most SPSs use Apache Kafka [14], a distributed message 

queues, which provides high throughput to provide reliable 

guarantee for data source. Considering in-memory distributed  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cache has the ability of quickly fetching data,  we use a mixture of 

Kafka and in-memory distributed cache storage policy.  

We still use Kafka message queue as a reliable storage for data 

source, and distributed cache catch records from Kafka. When 

recovering from a failure, we can use the backup in distributed in-

memory queue to regain original records quickly.  

4  DISTRIBUTED CACHE ASYNCHRONOUS 

SNAPSHOT 

4.1 Problem Definition 

We define our asynchronous snapshot as S = {offset*, states*}. 

The offset* denotes offsets which are used to mark the position in 

distributed cache. The states* represents all information for 

failure recovery, including the operator state (OS) and user-

defined state (US). At the same time, we define the concept of 

micro-window, which determines the size of a snapshot interval 

and the overhead costs in failure recovery during runtime. In 

addition, it also determines the number of replaying events and 

recovery latency.  

4.2 DCAS Algorithm 

Based on the above definition, DCAS algorithm provides 

operator level failure recovery by means of asynchronous 

snapshot. Distributed cache helps DCAS to guarantee “exactly 

once” semantic and achieves fast failure recovery. The core idea 

of our algorithm is when we maintain continuous data processing, 

we trigger checkpoint in a snapshot interval; we store state in 

distributed in-memory key-value structure, and provide “exactly 

once” semantic by the offset in distributed in-memory list. 

In our algorithm (depicted in Algorithm 1), firstly, we should 

initial input stream IQ, output stream OQ and the function F 

which is used to process records. In addition, we register listeners 

which listen to the end of a snapshot interval and trigger 

checkpoints. A snapshot of different operators is taken 

independently, and the snapshot information is continuously  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

updated which wouldn’t generate too much space overhead. The 

snapshot contains operator state S_o, user-defined state S_u of an 

operator OO and the offset OF of records R. At the same time, 

they are taken by the function snapshot(S_o,S_u,OF) to 

distributed in-memory Map M. In addition, there is a function 

listener(OO) which is used to trigger snapshot and cache the 

processed records R by distributed in-memory list L. The concrete 

execution of DCAS algorithm is as follows (depicted in Fig. 1). 

 

Algorithm 1: Asynchronous Snapshot based on Distributed 

Cache  
 

1.  function initial (function, size, input, output)  
2.      F ← function;  

3.      IQ ← input;  

4.      OQ ← output;  

5.  function process (R ← IQ )  

6.      OQ ← (F, R)  

7.  function listener (OO)  

8.      L ← L ᴜ R;  

9.      if L is full then  

10.         trigger (OO);  

11.         L ← Ø;  

12.  function trigger (OO)  

13.      (S_o,S_u) ←OO;  

14.      OF ← L;  

15.      snapshot (S_o,S_u,OF);  

16.  function snapshot (S_o,S_u,OF)  

17.      M ← (S_o,S_u,OF) ;  
 

 

1) after the task node starts, every input stream in operators 

will be assigned to a distributed in-memory list. This list is used to 

cache the record in snapshot interval. In addition, it will also be 

allocated a distributed in-memory key-value structure to provide 

storage of snapshot. 2) As shown in Fig.1-a), the operator 

computes records from all input streams, and caches them to the 

distributed in-memory list as a repeated consumption of original 

Snapshot

Source-1

Source-2 Operator

Operator Sink-1

Sink-2

Pre records source-1

Pre records source-2

Post records

End of snapshot interval

Source-1

Source-2 Operator

Operator Sink-1

Sink-2

Key Value
Key Value

Key Value
Key Value

Distributed cache cluster

Cache

Distributed
 in-memory 
list&queue

Distributed 
in-memory 

key-value structure

Intermediate  
resultsa) b)

 
Figure 1. Distributed cache asynchronous snapshot 

 



  

 

 

 

records. 3) As shown in Fig.1-b), when the operator has processed 

records in a snapshot interval, its listener will trigger a checkpoint 

to store the state (e.g. operator state, user-defined state and record 

offset) as key-value pairs to the distributed in-memory key-value 

structure. At the same time, operator can continue to receive 

records and cache them. 4) After the completion of the snapshot, 

it will clear the distributed in-memory list which has been 

processed completely. 

4.3 Distributed Storage Strategy 

In DCAS algorithm, we also need to optimize the storage 

management of snapshot, in order to provide fast and precise 

recovery. We use in-memory distributed cache to implement the 

reliable storage and fast recovery.  

Snapshot contains state and offset in a snapshot interval. If 

they are stored in local memory, data loss would occur after task 

node failure; if they are stored in disk or remote database, the cost 

of failure recovery time will increase. Therefore, we offer a 

distributed in-memory key-value structure which is provided by 

distributed cache to store them. In this way, we can guarantee the 

reliability of them by the backup mechanism.  

5 FAILURE RECOVERY 

After restarting failed task node, our failure recovery approach 

will take the following steps: 1) the distributed in-memory queue, 

list and key-value structure will regain the record backups from 

cluster. 2) Task node performs restore() method, and then the 

state of each operator will be initialized to the information in the 

latest snapshot. Through the offset in the latest snapshot, we can 

find the first position which operator should replay in the 

distributed in-memory list, and then deal with them. In addition, 

the source operation should get source records from Kafka, with 

the offset stored in distributed in-memory map. 3) Operator 

continues to compute data. 

Fig. 2 shows an example of a failure recovery instance. In the 

task execution flow, other task nodes in the cluster without failure 

can still work normally. The failed task node can only replay 

records in part of distributed in-memory list L with the help of 

offset OF. This offset is stored in distributed in-memory key-

value structure M. Through (S_o,S_u) in M, it can obtain state of 

OO and implement “exactly once” semantic guarantee. Then, they 

can continue to process R by process(R). There will be lower 

recovery latency, due to the failure recovery does not need to 

replay data from data source and restart the entire processing. 

Meanwhile, we can provide efficient data access with the help of 

distributed cache.  

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Failure recovery  
 

1. function restore(OO)  

2.     (S_o,S_u,OF) ← M;  

3.     OO ← S_o,S_u;  

4.     R ← (OF+1) in L;  

5.     process(R ) ;  

6. function process (R )  

7.     OQ ← (F, R);  

8. function sourceRecover()  

9.     OF ← M ;  

10.    R ← OF in Kafka ;  

11.    IQ ← R ;  
  

6 EVALUATION 

On the basis of the above implementation, we also validate the 

ABS algorithm of Flink on the same platform. The goal of this 

experiment is to contrast and analyze the recovery latency and 

runtime overhead between DCAS algorithm and ABS algorithm. 

6.1 Experiment Setup 

Experimental setup includes a plurality of virtual machines 

(8G in-memory and 4-core CPU), and Gigabit Ethernet network 

environment. In our experiment, each virtual machine can support 

a certain number of task nodes. We offer several operators for 

logical operations, such as map, filter, and aggregation and so on. 

We send the data source through multi-thread to Kafka message 

queue, and after the records are executed completely, the final 

results will be sent to Kafka ultimately. 

6.2 Recovery latency analysis 

6.2.1 Impact of number of simultaneous failures 

We build a cluster with 8 nodes, and use 200 snapshot 

intervals. During the runtime of system, we stop different number 

of task nodes, and measure the recovery latency. Fig. 3 shows 

results averaged over 5 runs for different number of simultaneous 

failures. By comparing the failure recovery latency between 

DCAS algorithm and ABS algorithm, we can observe the 

following:  

First, DCAS achieves much faster recovery than ABS in 

different number of simultaneous failures. Experimental results 

show that, DCAS algorithm can achieve 6x faster recovery than 

ABS in the best case and 2x faster recovery even in the worst case. 

The reasons can be summarized as follows: 1) ABS needs to 

obtain state from external storage such as HDFS [18] and obtain 

records from data source like Apache Kafka [14] to replay records. 

These can generate excessive overhead of disk I/O. Different from 

ABS, DCAS can obtain state from distributed in-memory key-

value structure and records from distributed in-memory list, which 

can recover rapidly from failure because of the fast speed of 

distributed cache. 2) When node failure occurs, ABS algorithm 

needs to restart the whole previous nodes in the execution flow. 

Especially, when there are amount of operators, or the failed node  

Running Task

Failed Task

Recovery Task

 
 

Figure 2. Recovery scheme 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is far from the data source, ABS algorithm has high recovery 

latency. On the contrary, DCAS just needs to restart the failure 

node, and other nodes can operate normally.  

6.2.2 Impact of certain node failures 

We build a cluster with 6 nodes and use 200 snapshot intervals. 

As shown in Fig. 4, rectangles denote virtual machines (VMs) 

namely task nodes; the circles represent operators; In addition, the 

line between two operators represents data stream. We use this 

execution flow to study the impact of certain node failures. 

In Fig. 5, the abscissa represents the mark of failure node, and 

the ordinate represents recovery time. The experimental results 

show us that if the failure node is much further away from data 

source, the recovery latency of ABS algorithm is higher than that 

in DCAS algorithm. These results are cause by replaying records 

from data source and restarting all nodes which are in front of the 

failure node in ABS algorithm. For example, if node 4 failed, the 

whole nodes from 1 to 4 needs to recalculate records after the 

latest snapshot, that can obviously increase recovery latency.  

Particularly, if the failed node is close to the end of the 

execution flow, there will be longer process of reproduction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DCAS can only restart the failed node and the other nodes will not 

be affected. In the above example, DCAS can simply obtain the 

latest snapshot of the node 4, and recover to normal operator 

quickly with the help of distributed cache.  

6.2.3 Impact of snapshot interval 

Fig. 6 shows the recovery latency of DCAS and ABS for 

different snapshot interval in a cluster with 8 nodes. Recovery 

latency increases with larger snapshot interval because there are 

more records should be replayed in a snapshot interval. Of course, 

DCAS still has lower recovery latency than ABS because of the 

fast recovery from distributed in-memory structures. 

6.3 Runtime overhead analysis 

6.3.1 Impact of snapshot interval 

We use four virtual machines (VMs) to observe the impact of 

snapshot interval. Data sources generate ten million records which 

are firstly sent to Kafka, and then we receive records from Kafka. 

Fig. 7 shows the runtime impact of DCAS and ABS in different 

snapshot interval. The lines labeled “DCAS”, “ABS” and 

“Baseline” present the runtime latency caused by DCAS 

algorithm, ABS algorithm and none failure recovery mechanism. 

These performance results can be summarized as follows:  

The snapshot interval can affect the performance of system in 

runtime. The results show that as the snapshot interval is 

increasing, the runtime overhead decreases rapidly and gradually 

stabilized to the “Baseline”. The reason for this phenomenon is as 

follows. In smaller snapshot interval, ABS blocks input stream 
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Figure 4. Example of failure recovery 
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Figure 7. Runtime for different  
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Figure 8. Tradeoff between runtime  

overhead and recovery latency 

Figure 9. Runtime for different  

cluster size 
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frequently to ensure “exactly once” semantic guarantee, while 

DCAS has to record offset in distributed in-memory list 

frequently, which also generates more overhead in runtime. In 

addition, DCAS has a slight high impact on the performance than 

ABS. DCAS should spend more time in doing backup remotely, 

so there may be higher network latency in runtime. However, the 

average impact of runtime overhead in DCAS compared to ABS 

is no more than 8%.  

6.3.2 Tradeoff between recovery and runtime overhead 

In Fig. 8, we demonstrate there are tradeoffs between recovery 

latency and runtime overhead for different snapshot intervals. We 

can observe from the chart that the larger the snapshot intervals, 

the lower the impact on records processing, but the recovery 

latency will be higher. So the snapshot interval should be chosen 

based on the suitable tradeoff between recovery latency and 

runtime overhead. When the snapshot interval is near to 400, there 

is a better balance between recovery and runtime overhead.  

6.3.3 Impact of cluster size 

In this experiment, the snapshot interval is fixed as 400 which is a 

good choice for balancing recovery and runtime overhead. 

Meanwhile, data sources send ten million records to Kafka. We 

increase cluster size from 2 to 16, and we can find the following 

conclusions as shown in Fig. 9. First, as the growth of the cluster 

size, the runtime overhead is reduced gradually. Especially when 

the cluster size is from 2 to 4, the runtime overhead decreases by 

25%. Second, DCAS has no more than 6% runtime overhead than 

ABS in average and as the growth of cluster size, the gap of 

runtime overhead between DCAS and ABS is almost close to zero.  

7 RELATED WORK 

According to our research, the existing stream processing 

system (SPS) has supported failure recovery method to provide 

“exactly once” semantic guarantee, such as Apache Spark 

Streaming [12-13,20], Storm Trident [7], Google Cloud Dataflow 

[8,15], Apache Flink [9-10] and so on.  

A very popular way Chandy and Lamport [17] has proposed 

asynchronous snapshot and simultaneously do upstream backup 

long before; and it also presented a global state detection 

algorithm, which can achieve the consistent storage of state and 

operator. However, this way still suffers from higher recovery 

latency. Apache Flink makes some improvements on the basis of 

the above approach. It uses the checkpoint [16] in neighboring 

barrier interval to take a snapshot of the global state, and store it 

in external reliable storage such as HDFS [18] or RocksDB [19]. 

At the same time, it provides the reliability of state, and replays 

records using data which is retrieved in Apache Kafka. After the 

node failed, it needs to retrieve the latest snapshot from the 

external reliable storage, which will generate excessive disk IO 

overhead; in addition, taking out records from the data source to 

restart the entire computing processing can produce high recovery 

latency when there are a large number of operators.  

8  CONCLUSION 

We put forward a failure recovery approach with high 

efficiency, low recovery latency and “exactly once” semantic 

guarantee. In this recovery approach, we recover records from 

intermediate results instead of data source; in addition, we 

propose DCAS algorithm which asynchronously snapshot state. 

Most importantly, DCAS use in-memory distributed cache to 

provide records and snapshots backup. Based on the above, SPS 

can quickly regain intermediate results and lost state from in-

memory distributed cache. The experimental results show that this 

approach achieves 2-6x faster recovery than ABS algorithm in 

Flink and the runtime overhead is no more than 6% compared to 

the ABS algorithm. 
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