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Abstract—Knob tuning is important to improve the perfor-
mance of database management system. However, the traditional
manual tuning method by DBA is time-consuming and error-
prone, and can not meet the requirements of different database
instances. In recent years, the research on automatic knob tuning
using machine learning algorithm has gradually sprung up, but
most of them only support workload-level knob tuning, and
the studies on query-level tuning is still in the initial stage.
Furthermore, few works are focus on the knob tuning for
distributed database. In this paper, we propose a query-level
tuning system for distribute database with the machine learning
method. This system can efficiently recommend knobs according
to the feature of the query. We deployed our techniques onto
CockroachDB, a distribute database, and experimental results
show that our system achieves higher performance under typical
OLAP workload. For all categories of queries, our system reduces
the latency by 9.2% on average, and for some categories of
queries, this system reduces the latency by more than 60%.

Index Terms—query-level, knob tuning, distributed database,
machine learning

I. INTRODUCTION

With the development of cloud computing and big data,
the scenario of joint-cloud is gradually popularized. Its uses
include Geo-Partition, separation of hot and cold data, etc,
and can be applied to various fields, such as financial analy-
sis, intelligent transportation. Obviously, traditional relational
databases are not suitable for this distributed scenario. In
this background, native distributed databases emerge as the
times require. Native distributed database means that the
architecture design, underlying storage and query processing
are all oriented to the needs of distributed data management,
and the database cluster as a whole provides services to the
outside world [1]. CockroachDB [22] is one of the most
successful cases. It has scalability, strong consistency, and
high availability. Its partition function can well solve the above
scenario with both OLTP and OLAP characteristics.

In order to get better performance, database knob tuning
is is a basic work. However, tuning hundreds of database
knobs(or parameters) has become increasingly complex as the
database grows. The industry is more and more inclined to
use machine learning tuning methods instead of manual labor
[4]. At present, there are many successful cases in this field
[8, 10, 12, 13]. However, there are still some deficiencies.

First, most of the existing mature knob tuning methods are
coarse-grained. These methods are suitable for OLTP scenarios
only. For OLAP scenarios, it is necessary to design more
fine-grained tuning methods. Second, distributed databases
have more knobs than traditional relational databases, but few
tuning works can be directly migrated to distributed database
scenarios.

Tuning distributed database for OLAP scenarios mainly has
the following challenges: first, how to recommend different
configurations according to the feature of different query
statements; second, how to select effective knobs to tune
among the massive knobs of the distributed database; third,
how to associate query statement features, database knob
configurations and tuning performance to achieve automatic
knob recommendation.

To address these problems, we propose a query-level knob
tuning system with machine learning , which can efficiently
tune the distribute databases under OLAP workload. Our
tuning process is mainly divided into three steps: the first we
analyze the key operations that are critical to performance in a
given query; then, we select the knobs in the database that have
an important impact on key operations, and further analyze the
relationship between the values of these knobs and the latency;
finally, according to the relationship between the knobs and the
latency, recommend configuration for the query to improve its
runtime performance.

The main contributions of this paper can be summarized as
follows:

(1) We propose a query-level tuning system for distributed
databases, which can automatically recommend configuration
for each query.

(2) We propose a QVEN model, which is used to compress
the query feature vector into a more compact compressed
vector without losing key features.

(3) We propose a QPPN model, a knob-aware query per-
formance prediction model based on neural network, which is
used to model the functional relationship between configura-
tions, query features and execution latency.

(4) We conducted experiments on typical OLAP workload
(TPC-H) and CockroachDB. Experimental results showed that
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our system achieved higher performance than default or ran-
dom configurations and other workload-level tuning system.

The remainder of this paper is organized as follows. We
explain the motivation to design a query-level tuning system
for distributed database and OLAP scenarios in section II.
We then provide an overview of our approach in section III,
followed by a description of our techniques for query feature
extraction in section IV, selecting the knobs that have the most
impact in section V, performance prediction in section VI and
configuration recommendation in section VII. In section VIII,
we present our experimental evaluation. Lastly, we conclude
with related work in section IX.

II. MOTIVATION

CockroachDB [22] is an open source native distributed
relational database. Its original design goal is to achieve
scalability, strong consistency and high availability, and to
support standard SQL interface externally. With its detailed
documentation, active community and excellent performance,
CockroachDB is used in all walks of life, and has an excellent
reputation among Internet companies at home and abroad.
Baidu, eBay, SPACEX, and DOORDASH all use Cockroac-
ShDB to build their infrastructure. Red Hat, VMware, and
DAPTURE have all established good cooperative relations
with the CockroachDB RD team. As an excellent open source
project, CockroachDB is also a pioneer in the field of dis-
tributed database systems. Many later distributed database
systems refer to its design concept and system architecture.

workload-
level

query-
level

distributed 
database

relational 
database

Ottertune
 

CDBtune

Qtune

AutoTIKV

Fig. 1. Comparison of existing tuning systems

Our previous work is to extend Ottertune to CockroachDB.
The experimental results show that under OLTP work-
load(including TPC-C, YCSB), Ottertune has a better improve-
ment effect than the default configuration. But under OLAP
workload(TPC-H), the effect is not very significant. As the
Figure 1 shows, most existing tuning work are workload-
level tuning, whose tuning goal is to improve the performance
of the database system running for a period of time, and
recommend the same configurations for all queries. In contrast,
the tuning goal of the query-level knob tuning system is to
improve the performance of each query within a period of time

when the database system is running, that is, to recommend
configuration for each query before it is executed.

Therefore, it is representative and meaningful to design
a query-level tuning system and conduct experiments on
CockroachDB.

III. SYSTEM OVERVIEW

In this section, we present the system overview of our
tuning work. Figure 2 shows the architecture of our System,
which contains four main components according to functions.
Figure 3 shows the workflow. The controller is used to interact
with the target database (such as executing queries, applying
configurations and importing data, etc.) and processing user
requests (such as generating training data requests, configu-
ration recommendation requests). The parser is used to parse
the response of the query, which includes the query vector,
execution plan and latency. The configuration generator is
used to generate configurations, including the knob sampling
method and the recommendation method, which is called by
the controller. The trainer is used for data persistence and
neural network training. The data that needs to be persisted
includes the training data and the weights of the neural
network model.
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Fig. 2. Architecture of the system

The process of this system is divided into a training process
and a recommendation process. Therefore, we next explain
how each part of the system interacts through the training
data generation process and the configuration recommendation
process.

A. QVEN Model Training Data Generation Process

The training data of the QVEN model is the feature vector
obtained by parsing the query statement and execution plan.
First, the user initiates a QVEN model training data acquisition
request to the controller. The controller then interacts with the
target database, initializes the workload, and inputs the query
statement and execution plan returned by the database into the
parser. Finally, the parser parses, vectorizes, and preprocesses
the input, outputs the feature vector of the query, and saves it
on disk for training the QVEN model.
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B. QPPN Model Training Data Generation Process

The training data of the QPPN model is a set of tuples con-
sisting of query vectors, knob vectors, and latency. First, the
user initiates a QPPN model training data acquisition request
to the controller. Then the controller calls the knob sampling
method in the knob configuration generator to obtain the knob
vector, and obtains the delay after applying the configuration
to the database, and executing the query statement. Then call
the parser to obtain the feature vector and input it into the
trained QVEN model. Save the output query vector and the
obtained knob vector and latency, that is, the QPPN model
training set.

C. Configuration Recommendation Process

After the training is completed, the user initiates a knob
tuning request of the specified query to the controller. Then the
controller invokes the configuration recommendation method
in the configuration generator to generate several candidate
knob vectors, which are input into the QPPN model together
with the query vector. Finally, the candidate knob vector is
updated according to the output value of QPPN. After running
several rounds, the recommended configuration is returned to
the controller, and the controller applies the knob configuration
on the target database, executes the query, and obtains the
latency.

IV. QUERY FEATURE EXTRACTION

The purpose of query-level knob tuning is to recommend
configurations according to the feature of the query itself, so
effective query feature extraction is the basis for solving the
problem of query-level knob tuning. Query feature extraction
mainly faces the following problems. The first is how to parse
the features in the query statement. The second is how to
resolve performance-related features of query execution. The
third is how to reduce the dimension of the feature vector.
Next we discuss how to deal with these information in the
following sections.

A. Query Statement Parsing

The query statement contains query type (such as SELECT,
INSERT, UPDATE, DELETE) information, data table infor-
mation, and operation information (such as JOIN, ORDER BY,
GROUP BY, LIMIT). Among them, the query type encoding

method is a one-hot vector of SELECT, INSERT, UPDATE,
DELETE. That is, if it is a SELECT statement, the position
is 1. The part of the data table information involved in the
query is related to the specific workload. For example, the
TPC-C workload contains 9 data tables, Then use at least 9
bits to encode it, and for new workloads, you need to import
all data table names. The encoding method is that if a certain
data table appears in the query, it will represent the position
1 of the table. The operation information part corresponds to
keywords (such as SUM, SORT, ORDER BY). We count the
occurrences of each keyword in the query statement and use
it as the value of the corresponding bit of the keyword.

B. Execution Plan Parsing

In the database, user can execute a specific statement
such as EXPLAIN to view a query’s execution plan. The
execution plan is a tree structure composed of nodes. Each
node corresponds to a step in the database processing the
query, which contains several attributes, such as the number of
data rows, the estimated cost, and the use of indexes. In this
paper we chooses to encode three node attributes (estimated
number of rows, data table, estimated cost), and an additional
attribute is added to calculate the number of occurrences of the
same type of node. For nodes of the same type, their attributes
are merged, numeric type attributes (such as estimated cost)
are summed, and collection types (such as data tables) are
unioned.

C. Query Feature Vector Dimension Reduction

The query statement and the execution plan respectively
contain the static and runtime features of the query. However,
the query feature vector obtained at present has the character-
istics of high-dimensional sparseness. Sparse feature vectors
often mean that a large number of high-quality data samples
are required for model fitting. Therefore, in order to learn the
relevant patterns of query features, configurations and latency
from the data, it is also necessary to solve the problem of high-
dimensional sparseness of query feature vectors. To address
the above problem, we propose a Query Vector Embedding
Network (QVEN).

1) QVEN Model:
The input is the feature vector parsed from the query

statement and execution plan. The output is a compressed
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vector which is as compact as possible. Finally we use the
compressed query vector (hereinafter referred to as query
vector) to represent query features.

2) Training QVEN:
Train Data. The QVEN training set is a set of v, v is a

floating-point vector representing query features obtained after
parsing the query statement and its execution plan. In order
to obtain training data, given a certain workload W , W is
a set of query statements q. For each q, obtain its execution
plan p on the target database, and then input q and p into the
parser respectively. The statement parser and the execution
plan parser concatenate the two encoded vectors to obtain a
floating-point vector v representing the query feature, that is, a
piece of QVEN training data. Process all the query statements
in the above way, and then the initial data set of QVEN on
the workload can be obtained.

Training. As Figure 4 shows, The encoder consists of a
three-layer network, and the purpose of the encoder is to
compress the original input. First, map the input between
0 and 1 through standard deviation normalization and max-
min normalization to prevent gradient explosion and speed up
the convergence of the model. The normalized feature vector
is input into the first layer of neural network, and the first
compressed feature vector is output through a linear layer and
activation function Tanh. The second layer is also composed
of a linear layer and activation function, and outputs the
feature vector after the second compression. Finally, through
the linear layer of the third layer of neural network, the feature
vector after the third compression is output as the compression
result of the input vector by the encoder. The decoder is also
composed of a three-layer network. The purpose of the decoder
is to restore the feature vector compressed by the original
encoder. Therefore, the input vector is expanded once after
each layer of the network, and the Tanh activation function
is used in the first two layers of the decoder, the purpose of
which is also to introduce nonlinearity. The last layer uses the
Sigmod activation function, which outputs a value between 0
and 1, and its purpose is to map the output to the same range
of values as the input.

The weights of the QVEN model are initialized using the
standard normal distribution. Given a training set {v1,v2...,vn}
whose training objective is to minimize the mean squared error
L:

L =
1

n

∑n
i=1 ||oi − vi|| (1)

where oi represents the output of the decoder, i.e. the
reconstruction result of the feature vector for the query vi. In
this paper, the Adam optimizer is used to update the gradient,
and the equal interval strategy (StepLR) is used to update the
learning rate. The pseudocode of the training process is shown
in Algorithm 1.

After the training of the QVEN model is completed, for
the input query statement and the corresponding execution
plan, the query vectorization method parses and reduces the

dimension to obtain a compressed query vector. The pseudo-
code of the query vectorization process is shown in Algorithm
2.

Algorithm 1 QVEN Model Training
Input: W : The weight of QVEN; S: The training set; epoch:

The training epoch
1: Initiate W by standard normal distribution;
2: for i for 0 to epoch do
3: for each batch V in S do
4: Generate the output O of V ;
5: Calculate the backward propagation error:
6: L = 1

n

∑n
i=1 ||oi − vi||

7: Calculate gradient ▽(E), update W ;
8: end for
9: Update learning rate;

10: end for

Algorithm 2 Query Vectorization
Input: Q: The queries; P : Plan of the queries; E: The QVEN

model encoder
1: Parse query and plan:
2: V = Parse(P ,Q);
3: Compress query vector:
4: C = E(V );
5: return C;

V. IMPORTANT KNOB SELECTION AND SAMPLING

In this section, we present the principles of knobs selection
in database and knobs’ sampling method. The knob selection is
a sub-issue of database knob tuning, which means to selecting
important knobs from all optional knobs firstly. Then the
following knob tuning is to select appropriate values for these
selected knobs to improve database performance. Therefore,
the basic principle of knob selection is that these knobs have
an impact on performance, and modifying them will not cause
database service exceptions. According to the above princi-
ples, we selects 23 cluster parameters on CockroachDBV21.1
(modifications take effect immediately without restarting the
database service) as the set of knobs to be tuned.

Knobs to be tuned can be divided into numeric types (float-
ing point numbers, integers) and enumeration types (boolean
values, enumeration values). For numeric types, the sample
space is generated according to the default value set for it by
the database. Assuming that the default value of the knob is
d, the sampling space is the interval [α ∗ d, β ∗ d], where α
and β are the proportional coefficients between the minimum
and maximum values of the sampling space and the default
values. These coefficients can be set according to the tuning
duration, but need to satisfy α < 1 and β > 1. For an
enumeration type, its sample space is all its values. Given
the knob sampling space, this paper uses Latin Hypercube
Sampling (LHS) to generate knob samples. LHS can make
the distribution sufficiently uniform even when the number of
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Fig. 4. Query vector embedding network(QVEN)

samples is small, so that the probability of the tuning algorithm
to explore a more reasonable knobs combination is increased.

VI. KNOB-AWARE PERFORMANCE PREDICTION

This section introduces how to use query feature extraction
technology, knob selection and sampling technology to con-
struct a knob-aware query performance prediction model, the
goal of which is to predict the performance of a query running
under a certain knob configuration.

A. QPPN Model

For an input query and knob configuration, the goal of the
Query Performance Predict Network (QPPN) is to predict the
time it takes to execute the query after applying the knob
configuration on the target database.

B. Training QPPN

Train Data. The training data is a set of tuples(c,k,t), where
c represents the query vector, encoding the feature information
of the query; k represents the knob vector, encoding the current
knob information; t represents the latency in executing the
query under the current knob configuration. The training goal
of the performance prediction network is to make the output
o of the network get closer and closer to t for any input c and
k.

The steps to obtain QPPN training data are as follows:
(1) Given a workload W={q1,q2...,q3} and a knob space
K={K1,K2...,Km}, K has m dimension, which means that
there are m knobs to be tuned, and Km represents the
sampling space of the mth knob. E represents the encoder
of the QVEN model trained on the same type of load. (2)
Run a round of workload on the target database with query
granularity, and process q1, q2..., qi in turn. (3) For the query
qi, obtain the execution plan pi on the target database, input
qi, pi and the encoder E into the query vectorization method
, and obtain the query vector ci. (4) Sampling in the knob
space K by the knob sampling method to obtain a knob vector
Ki of length m, and decode the knob vector Ki to obtain
the corresponding knob configuration. (5) After applying the
knob configuration on the target database, execute the query
qi, wait for the response from the target database, and obtain
the latency ti. Since then, a piece of training data (ci, ki, ti)
is obtained. (6) After the end of this round, get a piece of
training data, go back to step (2), and perform the next round
of training data acquisition. For a workload W containing n

query statements, run S rounds according to the above method,
and obtain S ∗ n pieces of QPPN training data.

Training. QPPN consists of a three-layer neural network
whose structure is shown in the Figure 5. Before training the
model, the input query vector and knob vector are normalized.
The normalized input is passed through two consecutive neural
network layers, each of which in turn consists of a linear layer,
a BatchNorm layer, and the activation function ReLU. Among
them, the purpose of the linear layer is to combine the input
features, the purpose of the BatchNorm layer is to normalize
the vector to prevent overfitting, and the purpose of the ReLU
activation function is to introduce nonlinearity and avoid the
neural network only learning simple linear transformations.
After the output of the penultimate layer is subjected to the
linear transformation of the last layer and the ReLU activation
function, the output vector is compressed to one dimension
by the SUM function and then output. The last layer uses the
ReLU activation function because the purpose of the model is
to predict query latency, which is always a value greater than
zero.

The weights of the QPPN model are initialized us-
ing a standard normal distribution. Given a training set
{(c1,k1,t1),(c2,k2,t2)...,(cn,kn,tn)}, the training objective is
to minimize the mean squared error L, which is defined as
Equation 2.

L =
1

n

∑n
i=1 ||oi − log2(ti)|| (2)

where Oi represents the output of QPPN, which is used to
predict the logarithm of query latency. Because the latencys
of different queries may differ by several orders of magnitude,
the logarithm is taken, which is more convenient for the
optimization of the neural network. Like QVEN, QPPN uses
the Adam optimizer to update the gradients and uses the equal
interval strategy (StepLR) to update the learning rate. The
pseudo-code of the process is shown in Algorithm 3.

VII. KNOB CONFIGURATIONS RECOMMENDATION

This section will introduce how to use query feature ex-
traction methods and query performance prediction models
for configuration recommendation. After the training phase,
the performance prediction model predicts the latency of the
query under the given knob configuration according to the
query feature. On this basis, the gradient-based algorithm or
the non-gradient-based algorithm can be used to search for
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Fig. 5. Query performance prediction network(QPPN)

Algorithm 3 Query Performance Prediction
Input: c: The compressed vector of a query; K: The vectors

of knob; M : The QPPN model
1: Calculate QPPN model output:
2: O = M (c,K);
3: Calculate latency predict:
4: L = 2O;
5: return L;

the optimal configuration of the given query. In this paper
we choose genetic algorithm to avoid the problem of gradient
descent falling into a local minimum, thereby obtaining sub-
optimal knob configuration.

The workflow of configuration recommendation using ge-
netic algorithm is shown in Algorithm 4. The user initiates a
tuning request, gives a query q and obtains its execution plan
p. q and p are inputed into the query vectorization method,
and output the compressed query vector c. First, we initialize
the current population as P , and for each iteration, encode
the individuals in the current population as the corresponding
knob vector K. The the knob vector k and the query vector c
are input into the query performance prediction method, and
the fitness function is calculated. After that, the population is
selected according to the fitness function, and the excellent
individuals are preserved. Then we crossover and mutate the
individuals in the population, explore new individuals, obtain
the next generation population P ′ and update the current
population to P ′. After T rounds of iterations, the knob vector
corresponding to the best individual is decoded and configured
as a recommended configuration.

VIII. EXPERIMENTAL EVALUATION

The target database used in this paper is Cock-
roachDBV21.1. The environment for running the database
service consists of four physical machines, three physical
machines form a CockroachDB cluster, and one physical
machine acts as a load balancer. Among them, each phys-
ical machine is configured with CentOS8 operating system,
128GB memory, 7TB solid state drive, and 2.50GHz CPU.
The machine running the knob tuning system is configured
with Ubuntu 18.04 operating system, 8GB memory, 250GB
solid state drive, and 2.50GHz CPU. The load balancer is
used to send query requests on behalf of users and distribute

Algorithm 4 Configuration Recommendation
Input: q: The query; M : The QPPN model; E: The QEVN

model encoder; T : Total generation;
1: Initiate the first generate population P by discrete uniform

distribution;
2: Initiate generation count t = 0;
3: Get plan p of query q;
4: Extract query feature from p and q:
5: c = QueryVectorize(q,p,E);
6: while !converged and t < T do
7: Encode population to knob vectors:
8: K = Binary2Digit(P );
9: Predict query latency by QPPN model:

10: L = LatencyPredict(c,K,M );
11: Calculate fitness values:
12: V = 1 / L;
13: Rank individuals by V :
14: R = P [ArgSort(V )];
15: Generate next generation by V :
16: P ′ = Select(P ,V );
17: Cross(P ′);
18: Mutation(P ′);
19: P = P ′;
20: end while
21: return R[0];

the pressure on the nodes in the cluster, while the database
cluster provides services to the outside world as a whole. This
paper uses the load balancing open source software HAProxy
officially recommended by CockroachDB.

A. Workload.

The evaluation workload used in our experiments is TPC-
H, and the data size is 10GB. The TPC-H benchmark test
is modeled according to the real production running environ-
ment, which contains 22 kinds of queries (Q1-Q22). The main
evaluation metric is the latency of each query, that is, the time
from submitting the query to getting the response.

B. Training Data Collection

We generated 98,366 query statements and execution plans
on TPC-H for the QVEN model, parsed them into query
feature vectors through the parser, and saved them as initial
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Fig. 6. Comparison of execution latency

data. The initial data was divided into training set and test
according to the ratio of 9 to 1. set. For the QPPN model, we
regenerated 765 query statements on TPC-H. Before executing
a query, we used the knob sampling method to generate a
new random knob configuration and applied it to the target
database. The parameters of the LHS sampling algorithm were
100, and a total of 25 rounds were executed. , each round takes
about 8 hours to obtain 19125 initial data. Similarly, the initial
data is divided by a ratio of 9 to 1 as a training set and a test
set. In order to verify the overall effect of the knob tuning tool,
we generated 269 new queries on TPC-H, and these queries to
be tuned have no intersection with the above training model
queries.

C. Evaluation on Tuning Performance

we verified the superiority of this method by comparing and
analyzing the query latency under the knob configuration gen-
erated by other methods. Including the default configuration
of CockroachDB V21.1, randomly generated configurrtion,
and our previous work of extend-Ottertune method. Figure
6 shows the results and we can see the following points:
(1)Using the knob configuration recommended by our tuning
system, its query performance is significantly better than the
default configuration or random configuration, and the average
reduction ratio of all types of query latency relative to the
default configuration is 9.2%; (2) Among all kinds of queries,
Q1 type queries have the most obvious latency under our
recommended configuration, which is 63%; Q1, Q2, Q3 and
Q13 have the latency reduction of more than 10%; a few types
of queries have slightly increased latency (no more than 2%),
such as Q9 and Q19; (3) Compared with the workload-level
tuning method, the average reduction ratio of all types of query
latency relative to the default configuration is 6.5%, which is
lower than 9.2% of our system. In addition, among all 22 types
of queries, extend-Ottertune can only improve the performance
of 7 types, which is far lower than the 18 types of our method.

For all kinds of queries, our system recommends a config-
uration with an overhead between 106 and 230ms.

IX. RELATED WORK

A. Knob Tuning System

Database knob tuning has been a difficult task since
databases often provide hundreds of knobs to control various
modules in the system [9]. Traditional DBAs often spend
a lot of manpower and time on tuning [10], and cannot
satisfy increasingly complex databases. Therefore, experts are
increasingly inclined to use machine learning methods to deal
with this difficult task [6, 7]. The first to appear is the knob
tuning method based on experience and heuristic algorithm.
For example, IBM provides performance monitoring tools
for its database DB2 [2], Oracle develops similar perfor-
mance monitoring tools for its databases [3], and Microsoft
develops tools for SQL Server databases [4]. However, the
above experience-based knob tuning methods have obvious
limitations, cannot be adapted to other databases and are not
automated enough. To solve this problem, the research on ap-
plying machine learning methods to knob tuning has attracted
more and more attention. Ottertune [10] is the first large-
scale automated knob tuning system using machine learning
methods proposed by Carnegie Mellon University, and sup-
ports a variety of traditional relational databases, including
PostgreSQL, MySQL, and Oracle. CDBTune [5, 12] is an
end-to-end DBMS configuration automatic adjustment system
proposed by Tencent, which uses deep reinforcement learning
for database knob tuning and can recommend better knob
configurations in complex cloud environments. On the basis of
CDBTune, Tsinghua University and Huawei proposed QTune
[11]. QTune also uses the deep reinforcement learning method,
but unlike CDBTune, it supports three granularity knob tuning
of query-level, cluster-level and workload-level. The above
work has strong generalization ability, but it is mainly aimed
at knob tuning tasks in traditional relational database scenarios
under workload level. Among them, although QTune supports
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query level, it still has two shortcomings: the number of
encoded query features is small; it does not support knob
tuning for distributed databases.

B. Query Performance Prediction

The ability to estimate query execution time is crucial for
many tasks in database systems. From a technical perspective,
query performance prediction is mainly divided into methods
based on statistical machine learning [13–17] and methods
based on deep neural networks [18, 21]. Archana Ganapathi
et al. proposed a method for predicting multiple indicators
during query execution using a clustering model [14]. The
performance indicators of the target query were calculated
using the performance indicator information of the nearest
neighbors. Li et al. proposed a robust resource estimation
method, whose statistical model [17] is used to replace the
labor cost model used in the query optimizer. Ryan Marcus
et al. proposed a neural network-based method [18], which
introduced a new neural network structure specifically to
solve the query performance prediction problem. However, the
above methods do not fully consider the impact of hardware
configuration and knob changes on query latency, so they
cannot be applied to our query-level knob tuning work.

X. CONCLUSION

We propose a query-level knob tuning system for distributed
database, which can recommend different knob configurations
for different queries. Experimental results show our system
reduces latency by an average of 9.2% under TPC-H workload
and perform better than other tuning systems. We believe it
lays the foundation for future joint-cloud tuning scenarios. We
will adapt more databases to our system, and optimization
work of tuning performance is under way.
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