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Abstract
Microservice architectures backed by container technology have
been widely used in many real-world cloud-native applications. By
enabling customers to manage their services and configurations in
the cloud in a centralized, externalized, and dynamic manner, effi-
cient service and configuration management plays a fundamental
role in building cloud-native service-centric applications. The num-
ber of containers in cloud data centers continues to increase. For
example, in the Alibaba Cloud, the number of containers reached
hundreds of thousands by 2023 and is expected to reach several
million soon. At this scale, existing service and configuration man-
agement solutions have limited efficiency, scalability and robust-
ness. Other related approaches, such as message bus systems and
publish/subscribe (pub/sub for short) systems, also do not work
well for large-scale service and configuration management in the
cloud, as their designs are more general purpose directed. To over-
come these limitations, we design a system, called Ripple, that
uniquely combines several existing and some novel features such
as consistent hashing-based workload distribution, dynamic desti-
nation list-based and client-assisted message delivery, incremental
update, and adaptive load balancing. Approaches exhibiting these
features have not been well investigated in the domain of service
and configuration management. We compare our proposed solution
with existing academic and industrial approaches. The experiments
show that our solution greatly outperforms its counterparts. For
example, for the same workload, when Ripple is used, the average
message delivery latency and network bandwidth consumption can
be reduced by up to 77% and 93%, respectively.
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1 Introduction
Cloud computing [28, 43], microservice architectures [29] and con-
tainer technology [4, 40] have been widely used in many real-world
applications. Moreover, a new trend is to combine these technolo-
gies, i.e., to deploy many containers in the cloud to build numerous
distributed microservice applications. This new deployment model
has become very popular. For example, in the Alibaba Cloud, the
number of deployed containers reached hundreds of thousands by
20231 and is expected to reach millions soon.

To manage this large number of containers, an efficient, scal-
able and robust service and configuration management system is
needed, which would enable customers to manage their services
and configurations in the cloud in a logically centralized, exter-
nalized, and dynamic manner. Typical service management tasks
include service registration, discovery, and health checks. Configu-
ration management permits administrators to dynamically change
the configurations of their services online and helps quickly deliver
the latest configurations to the corresponding containers. Different
services can have different configurations, such as different cache
sizes, database endpoints, and client white lists.

The increasing numbers of services and containers, as well as the
diversity of configurations, pose new challenges for the underlying
service and configuration management system. For example, in the

1https://www.alibabacloud.com/blog/4-step-method-for-large-scale-container-
deployment_596928
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Alibaba Cloud, the Nacos system [17] is used as the underlying
service and configuration management system. During “Double 11”
day2, because of the high request load, even when the number of
servers in Nacos is increased to several hundred, the system can
still become overloaded, and fail to meet the message delivery QoS
requirements. Moreover, the system cannot easily support more
containers through the simple addition of more servers, which
means that its scalability is limited. In addition, as we show in the
following sections, other existing solutions also have different types
of limitations in meeting the efficiency, scalability and robustness
requirements for this use case. As a result, a new approach is needed.

Before presenting our solution, we carefully review the typical
workflow of service and configuration management, determine
the detailed technical requirements, and analyze the limitations of
directly applying existing methods to solve this problem.

Configuration
Management Server

Cluster

Admin1 of App1

Update

Admin1 of App2

Admin2 of App1

C2-2 C1-3

C2-3

Data Center 2

C1-1 C2-1

C1-2

Data Center 1
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Figure 1: Configuration Management Example

Fig. 1 shows an example of configuration management. In this
example, two applications are deployed in the cloud. The first appli-
cation has three containers: c1-1, c1-2, and c1-3. The second applica-
tion also has three containers: c2-1, c2-2, and c2-3. These containers
are distributed in two data centers. There are three administrative
clients for these two applications. An administrative client can
query a configuration and make updates to the configuration. The
server cluster is in charge of delivering the latest configurations
to the interested containers. Containers of one application may be
interested in the configurations of another application, such as its
available servers’ IP list. This usually occurs when two different
applications have a dependency relationship.

The service and configuration management solutions need to
meet the following requirements:

• Data Consistency: The system needs to provide both dis-
tributed storage and distributed message delivery functions.
Moreover, the system needs to ensure that servers and clients
always maintain the same configuration version and that
configuration update conflicts can be correctly handled.

• High Throughput: The system should be able to support
hundreds of thousands of containers and process thousands
of updates per second. Moreover, by adding more servers,
the system should be able to support more services and
containers easily.

2From 2009, Alibaba began to use the “Double 11” day (November 11th) as a shopping
festival lasting for 24 hours.

• Low Latency: The latest configurations need to be delivered
to interested containers with low latency. For example, some
applications have the service level agreement (SLA) require-
ment that a new version of the configuration be delivered to
all interested containers within 3 seconds.

• Fault Tolerance: The system should be robust and needs to
ensure that a new version of the configuration can always
be successfully delivered to all its interested containers even
in cases of failure.

Existing solutions in both industrial and academic communities
have limitations in meeting these requirements. For example, for
the current Nacos system [17] used in the Alibaba Cloud, a con-
figuration update needs to be broadcast to all the servers in the
system, and the servers need to directly deliver a message to each
interested client. As a result, servers easily become bottlenecks and
the system is not scalable. The Google Thialfi system [2] sends only
a version number to clients and coalesces many updates into the
most recent update. Then, the clients, which belong to different
applications, connect to their corresponding servers to fetch the
updates. This mechanism has high latency. Additionally, it is not ap-
propriate for our scenario since the message delivery tasks cannot
be offloaded to other servers. Another approaches are to directly
utilize existing pub/sub systems. Although they often show good
flexibility, they do not work well for our problem. They mainly
provide best-effort, at-most-once delivery guarantee, which means
additionally mechanism is needed to guarantee eventually or se-
quential data consistency. Also, they cannot meet all requirements
for configuration management in large-scale clusters.

To meet all the above requirements and overcome the limitations
of existing solutions, we first analyze the characteristics of service
and configuration management. Then, on the basis of this analysis,
we propose our solution called Ripple, which includes several new
features and optimizations to improve performance, scalability and
robustness. The key technical design components of Ripple are
summarized as follows:

• Workload Distribution: According to the independence
of applications, the range of update delivery will usually
be limited inside an application, so we can use a small set
of servers to handle requests for separate applications. We
use a consistent hashing-based mechanism to distribute the
workload to different servers. In this way, a single server
needs to process only a portion of the messages in the system.

• Message Delivery: To achieve high flexibility, we use a
dynamic destination list to route messages. On the basis of
the relative stability of containers’ interests, we reduce the
cost of destination list management by using a destination
list signature and a caching mechanism. Moreover, according
to whether the containers belong to the same application and
data center, we propose a client-assisted message delivery
mechanism to reduce the workload on servers and improve
the performance of message delivery.

• Incremental Update: The entire configuration of cloud ser-
vices could be large, up to hundreds of megabytes. However,
most updates change only a small part of the configuration.
This means that bandwidth is often wasted in delivering the
unchanged part of the configuration. On the basis of this
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observation, we reduce the bandwidth consumption via an
incremental update mechanism. This design also helps us
achieve sequential consistency for incremental updates.

• Adaptive Load Balancing: We design a decentralized algo-
rithm for dynamically balancing the workload on the servers
and containers. The algorithm achieves low cost and high
flexibility by utilizing our proposed workload distribution
and message delivery mechanism.

The main contributions of this paper are the characteristic analy-
sis of service and configuration management and the integration of
different new features and optimizations of existing techniques to
construct an overall efficient solution. The remainder of this paper
is organized as follows. We first review related work in Section 2. In
Section 3, we apply the pub/sub paradigm to the problem of service
and configuration management. We then describe the design of
Ripple. In Section 4, we describe Ripple’s implementation in detail.
We evaluate the performance of Ripple in Section 5 and conclude
the paper in Section 6.

2 Related Work
In this section, we first review existing service and configuration
management systems. Then, we discuss related distributed stor-
age and message bus systems. Finally, we review existing pub/sub
systems and consider why they do not work well if they are used
directly for our problem.

2.1 Existing Service and Configuration
Management Systems

There are several existing service and configuration management
systems, such as Thialfi [2], Wormhole [39], Consul [20], etcd [16],
Eureka [30] and Nacos [17]. However, these systems are either
designed for specific business requirements or have scalability limi-
tations for large-scale applications in the cloud. For example, Consul
and etcd are based on the Raft [31] protocol, and their recommended
number of servers is only three to seven. As a result, they do not
work well for our large-scale scenario. Here, we select a few exam-
ples for illustration.

Thialfi [2] is Google’s cloud notification service that enables
applications to register their interest in a set of shared objects and
receive notifications when those objects change. Thialfi is geo-
graphically distributed and highly reliable, even in cases of long
disconnections. However, its clients are applications running in
browsers or on end-users’ mobile phones, laptops, and desktops,
not applications within Google itself. Thialfi sends only the version
number of the data to subscribers, and coalesces many updates into
the most recent update. Then, the browser clients connect to the
servers of different applications to fetch the updates. This means
that Thialfi requires each application to have its own servers to
store the latest configurations. This mechanism does not work for
our scenario.

Wormhole [39] is Facebook’s notification service developed for
the scenario of geographically replicated datacenters. It is used to
identify updates in different storage systems and transmit notifi-
cations to interested applications. Wormhole does not maintain

brokers for buffering updates. Instead, it relies on data stores to
provide reliable logs in the form of transaction logs. This is not
appropriate for our use case, where the configuration updates are
mainly from administrators. Moreover, Wormhole may suffer from
high delivery latencies, such as latencies of several minutes. This is
unacceptable for the scenario of service and configuration manage-
ment.

Nacos [17] is Alibaba’s service and configuration management
system, which is specifically designed for container-based applica-
tions in the Alibaba Cloud. It has supported hundreds of thousands
of containers. However, when the system scale increases, Nacos
has limitations. First, every configuration update message needs to
be broadcast to all the servers in the system. Second, the servers
need to deliver each message directly to each interested client. As
a result, servers easily become the bottleneck of the system.

2.2 Distributed Storage and Message Bus
Systems

Distributed storage and message delivery are the two core func-
tions for large-scale service and configuration management. In
these two areas, there are many related works, such as Chord [41],
DynamoDB [14], Pastry [37], Tapestry [44], and CAN [35] for dis-
tributed storage and TIBCO Rendezvous [21], AWS SQS [38], Rab-
bitMQ [34], and Kafka [26] for message buses. Owing to space
limitations, we select Chord, DynamoDB and Kafka to as represen-
tative illustrations.

Chord is a structured P2P system. It uses a distributed hash table
(DHT) to construct the overlay network and provides efficient key-
to-node lookups. Consistent hashing is utilized for the mapping. In
an 𝑁 -node system, each node maintains information about only
𝑂 (log𝑁 ) other nodes and resolves all lookups via 𝑂 (log𝑁 ) mes-
sages to other nodes. As a result, Chord is efficient and can support
frequent node arrivals and departures. DynamoDB is Amazon’s
highly available and scalable distributed key-value data store. In
DynamoDB, data are partitioned and replicated by consistent hash-
ing, and consistency is facilitated by object versioning. DynamoDB
employs a gossip-based distributed failure detection and member-
ship protocol. Both Chord and DynamoDB are efficient distributed
storage systems. Our proposed solution shares a similar design in
terms of workload distribution. The difference is that our proposed
solution focuses more on efficient message delivery. For example,
we rely on clients to know all the servers and resolve lookups via a
single message.

Kafka [26] is LinkedIn’s message bus. It is an open-source system
maintained by Apache. It is specifically designed for collecting and
delivering high volumes of log data with low latency. It persists log
data on disks and uses ZooKeeper [22] to keep track of the numbers
of log messages that particular subscribers have consumed. Kafka
can lose messages in the case of broker failure. Thus, additional
fault tolerant mechanism is needed to guarantee data consistency
when broker fails. Moreover, Kafka utilizes a pull model rather
than a push model. As a result, messages may not be delivered to
clients in time, which is not suitable for our scenario. Finally, Kafka
maintains a message stream for each client without aggregation,
which is inefficient for our scenario with a very large number of
clients, i.e., containers.
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2.3 Pub/Sub Systems
Pub/sub is a popular data delivery paradigm that has been widely
used in many applications [18, 23]. Existing pub/sub solutions could
be applied to solve the problem of efficient message delivery for
service and configurationmanagement. However, as wewill present
later, this method does not work well because of various limitations.

Fig. 2 shows the typical architecture of the pub/sub paradigm,
which is widely adopted by pub/sub systems, such as SIENA [8],
Gryphon [3], JEDI [13], Herald [5], and PADRES [24]. As shown in
this figure, the pub/sub paradigm has three roles: broker, subscriber
and publisher. Numerous brokers comprise a broker network to
provide message delivery services. A subscriber can issue a sub-
scription message to the broker cluster through an access point
to express interest. When a publisher issues an event, the broker
cluster delivers that event to all the interested subscribers.

Publisher Subscriber

Advertisement

Event

Subscription

Brokers

Broker Cluster

Access Point

Figure 2: Pub/Sub Paradigm

The existing message routing protocols in pub/sub can be catego-
rized into five classes: event flooding (EF) [11, 12], multicast-based
routing (MBR) [1, 15, 32, 36, 42], filter-based routing (FBR) [8, 13, 24,
27], destination-based routing (DBR) [3, 6, 7, 25], and DHT-based
routing [9, 10, 19, 33]. As we show individually, these message
delivery methods do not work directly for the scenario of large-
scale service and configuration management in the cloud owing to
various limitations.

Event Flooding: In EF, each event originating at a publisher
is first routed to all brokers and then delivered to interested sub-
scribers. This routing protocol is simple and stateless. However, it
has the shortcoming that a broker receives all the incoming events.
The throughput of the whole system is limited by the power of a sin-
gle machine and is thus not scalable. The current Nacos system [17]
utilizes this type of routing mechanism.

Multicast-Based Event Routing: InMBR, the event space is
partitioned into many disjoint multicast groups, for each of which
a multicast tree is built. When an event is issued, it is first mapped
to an appropriate group and then multicast on the corresponding
spanning tree. MBR does not require a broker to receive all the
events, and the routing accuracy is improved. However, this solution
requires many groups in the scenario of large-scale service and
configuration management in the cloud. The group maintenance
cost could be too high.

Filter-Based Routing: FBR requires a publisher to broadcast
an advertisement message before issuing a stream of events. The ad-
vertisement message indicates the legal content space of the events.
Subscriptions are delivered to the advertisement source broker in

the reverse direction to construct a routing tree. This mechanism
does not work for the scenario of service and configuration man-
agement. This is because an administrator, i.e., publisher, is usually
not statically connected to a broker and often issues only a few con-
figuration updates after it connects to the cluster. If we introduce an
extra advertisement message, a high cost will be incurred because
subscriptions will be routed in reverse to the publisher’s connected
broker. Moreover, routing information is stored by brokers. When a
broker crashes, it is difficult to guarantee robust message delivery.

Destination-Based Routing: In DBR, events are first evaluated
against subscriptions to obtain the list of destination subscribers
and then routed on the basis of the destination lists. This method is
flexible and robust. However, it introduces the extra cost of obtain-
ing the destination list for every event. TheDRP [7] andMERC [25]
algorithms aim alleviate this extra cost by either using a fixed-sized
bit vector or dividing the broker overlay into separate clusters.
However, these methods either limit the scale of the server clus-
ter or isolate the servers; thus, they are not appropriate for our
application in the cloud scenario.

DHT-Based Routing DHT-based pub/sub systems, such as
Scribe [10], SplitStream [9], Meghdoot [19] and Hermes [33], rely
on existing DHT solutions, such as Chord [41], Pastry [37] and
CAN [35], to map subscriptions and events to brokers. As a result,
they inherit the characteristics of DHT. In the scenario of a large-
scale service and configuration manager, the servers are usually
stable, whereas the clients often change dynamically. Therefore,
DHT-based routing is not the most suitable method for our sce-
nario. Moreover, DHT relies on servers to send messages directly
to all clients, which is also not as efficient as our designed message
delivery mechanism.

3 System Design
The pub/sub paradigm has been studied for decades, but investiga-
tions in the area of service and configuration management have
been limited. To exploit the techniques of pub/sub, we first map
the service and configuration management application into the
semantics of pub/sub. Then, we analyze the characteristics of this
problem in the cloud environment. Finally, we describe our system
design, which includes consistent hashing-based workload distri-
bution, dynamic destination list-based and client-assisted message
delivery, incremental update, and adaptive load balancing.

Table 1: Mapping for Configuration Management

Component Role Operation Message
Container Subscriber Container Interest Subscription

Administrator Publisher Config Update Event
Config Server Broker Container Leave Un-Sub

3.1 Semantic Mapping
There are three roles in the pub/sub paradigm: publisher, subscriber
and broker. There are three types of messages: subscription, event
and unsubscription. To adopt the pub/sub paradigm, we first map
the components and operations in the service and configuration
management system into the roles and messages of pub/sub.

357



Ripple: Large-Scale Service and Configuration Management in the Cloud MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Table 1 shows our designed pub/sub semantic mapping for con-
figuration management. We map containers to subscribers. A con-
tainer might be interested in different configurations. The interests
of a container are mapped to subscription messages. A container
can express its interests to the configuration server cluster. A con-
figuration server assumes the broker role in the pub/sub paradigm.
The server cluster provides configuration management for many
applications. Each application has many containers in the cloud,
which work together to provide different types of cloud services to
end users or other applications. Each application often has many
configurations. The configurations of an application are managed
manually by administrators. Therefore, administrative clients can
bemapped to publishers. A configuration updatemessage ismapped
to an event. The server cluster is in charge of delivering each mes-
sage to all its interested containers in the system.

We also map service management into the semantics of the
pub/sub paradigm: the service registry is mapped to publisher cre-
ation; monitoring clients are mapped to subscribers; containers are
mapped to publishers; and container status updates are mapped to
events. For simplicity, in the following sections, we use configura-
tion management to explain our system design.

3.2 Characteristic Analysis
Directly applying existing pub/sub solutions to the service and con-
figuration management problem does not work well. One important
reason is that the characteristics of the service and configuration
problem as well as the cloud environment are not considered. For
example, a large-scale cloud application may have thousands of con-
tainers, i.e., clients. Containers of different applications often have
diverse interests. Therefore, it could be inefficient to permit a client
to connect with any server and then rely on the selected server to
deliver all the messages that the client is interested in. Here, we
analyze the characteristics of large-scale service and configuration
management in the cloud environment to guide the design of our
solution:

• Inter-application Isolation: Each application has its own
containers, configurations and administrators. Unless two
applications have dependency relationships, containers of
different applications are often not aware of each other and
do not share configuration interests.

• Intra-application Connection: Containers of the same
application are usually deployed in a single data center or
a few data centers for robustness. Containers of the same
application are usually aware of each other, share similar
interests and can efficiently communicate with each other.

• Container Stability: The distributions of containers and
their interests are relatively stable. Most of the containers
of an application are not dynamically added or removed.
Update destinations of a configuration, i.e., containers that
are interested in it, usually do not change frequently.

• Content Duplication: The configurations of an application
usually change slightly. There could be much content du-
plication between two continuous configuration versions,
which means that it is not only expensive but also unneces-
sary to deliver the entire configuration message repeatedly
when the configuration is updated.

3.3 Workload Distribution
In the existing pub/sub paradigm, a client can select any broker as its
access point. Then, that access broker is in charge of delivering all
the events that the client is interested in. This mechanism simplifies
the function of clients. However, the overhead at the broker side
is high: a single broker might have to serve many clients with
diverse interests, and a single event may need to be routed through
many brokers. As a result, brokers can easily become bottlenecks,
especially when the system’s scale is large and the workload is
high.

As presented in the previous section, service and configuration
management features good interapplication isolation and intraap-
plication connectivity. This means that we can route messages for
different applications relatively independently. We adopt a consis-
tent hashing-based workload distribution mechanism.

S7

S1

S4S10

S2

S3

S8 S6

S5

S12

Configs of App1

Configs of App2

S11

S9

Figure 3: Configuration to Server Mapping

Here, we use a simple example to illustrate the basic ideas. As
shown in Fig. 3, there are two applications, each of which has nu-
merous configurations. Rather than allowing each administrative
client and container to connect to any server, we run a consistent
hashing algorithm on the administrative clients and containers to
select a specific server on the basis of the corresponding applica-
tion’s name. In this way, we cluster the publishers and subscribers
with similar interests. When an event is issued to the system, it will
no longer be routed to many servers. Several methods have been
proposed in pub/sub for clustering and migrating clients’ interests
on the broker side. These methods seem to be different from our
client-based method and are not as efficient at reducing the server
cost.

In a large-scale service and configuration management system
in the cloud, servers may fail for different reasons. For critical cloud
applications, we cannot tolerate any system failures. To improve
robustness, we permit an application to configure a few backup
servers. In the example shown in Fig. 3, each application has one
primary server and two backup servers. A backup server receives all
the update messages for its corresponding application. Only when
an update message is delivered to the primary server and all the
backup servers is that message considered successfully delivered
to the server cluster.
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3.4 Message Delivery
In the cloud, there could be many large-scale services, each of which
could have thousands of containers. Directly delivering messages
to such number of containers would be expensive for the servers,
and this could limit the system’s throughput and message deliv-
ery latency. To overcome this limitation, we propose adopting a
container-assisted message delivery mechanism. Rather than rely-
ing only on servers to directly deliver messages to the containers,
we use the containers as proxies to deliver messages to other con-
tainers that belong to the same application and are in the same data
center. This design is based on the observation that such containers
can usually communicate with each other and that containers of
the same application often have many shared interests.

This client-assisted message delivery mechanism greatly helps
reduce the overheads of servers. However, it also introduces extra
overhead to the containers. To ensure that the overhead and effects
on containers are small, we design a flexible, dynamic destination
list-based message delivery method. For each message to be routed,
the primary server dynamically calculates its routing paths on the
basis of a load balancing algorithm and identifies a few proxy con-
tainers. The server sends the message only to the proxy containers.
A destination list is attached to the message for each proxy con-
tainer. A proxy container simply routes the message on the basis
of the destination list and does not perform any complex compu-
tations. As a result, the extra overhead is limited. To reduce the
overhead further, we design a dynamic load balancing mechanism,
as presented in Section 3.6.

This dynamic destination list-based message delivery method
is flexible. However, it also introduces extra network costs for the
destination list. Is there a way to eliminate these extra costs? By
observing container stability in service and configuration manage-
ment systems, we conclude that the delivery paths of messages
of the same application do not change frequently. On the basis of
this characteristic, we propose generating a hashing ID for each
destination list. The servers and proxy containers cache and map
from the hashing IDs to the destination lists. As a result, only a
short hashing ID needs to be attached.

Many applications require an update message to be successfully
delivered to all the interested containers. In the face of failures,
i.e., when the system fails to deliver an update massage to some
containers, the administrative client may require the system to
report the failed container list. To meet this requirement, we simply
add a low-overhead destination list-based acknowledgment mecha-
nism: if a message is successfully delivered to all its downstream
containers, an acknowledgment message with the corresponding
hashing ID attached is then returned. If there is a failure, the failed
container information is attached. In this way, we can easily iden-
tify the containers that fail to receive a message on the primary
server side at a low cost. To reattempt delivery of a message, the
primary server can calculate a new routing path only for delivering
that message to the failed containers.

Thus far, we have described the message delivery designs in
our system as well as the reasons for each design component. In
short, on the basis of the characteristics of service and configuration
management in the cloud environment, we propose a flexible client-
assisted, dynamic destination list-based and acknowledgment-based

message delivery mechanism. The design can help reduce server
overhead, improve system throughput, reduce message delivery
latency, improve flexibility, reduce the network cost, and improve
system robustness.
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Figure 4: Message Delivery Example

Fig. 4 illustrates the message delivery process in our system. In
this figure, for an event, interested containers c1 to c4 are located
in a data center, whereas interested containers c5 to c8 are located
in another data center. The server 𝑆𝑖 sends the event to c1 and c5
only, with the destination list hashing ID, ID1 and ID2, respectively,
attached. Then, the containers c1 and c5 forward the event to the
downstream containers in the same data center. In this example,
ID3 and ID4 are used by containers c1 and c5 for the next level of
message delivery. The whole message delivery path is a dynamically
constructed spanning tree.

3.5 Incremental Update
Unlike the typical pub/sub systems in which different delivered
messages are usually independent, for the scenario of service and
configuration management, different messages may contain sub-
stantial amounts of duplicate content. For example, many configu-
rations could be large, even up to hundreds of megabytes. However,
the difference between different versions of a configuration is usu-
ally small. To reduce the cost, we propose adopting an incremental
update mechanism, with which efficient sequential consistency can
be achieved.

Hash

Update
Item Item ... Item

Hash

Update
Item Item ... Item

 {
   key1: value1,
   key2: value2
   ...
   keyn: valuen
 }

Vi

 {
   key1: value1,
   key2: value2
   ...
   keyn: valuen
 }

Vi+1

Figure 5: Incremental Update Example

As presented in Section 3.2, much content duplication often oc-
curs between different versions of the same configuration. Rather
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than delivering the whole message repeatedly, we deliver only
the update operations that can be applied to the previous version.
At each container, these update operations are executed on the
previous version to generate the next version. To ensure that all
incremental update operations are executed on the correct previous
versions, we attach the corresponding previous version’s hashing ID
to each incremental update message. Note that neither the contain-
ers nor the servers need to maintain the update histories. Instead,
they need to keep only the latest version as well as a small number
of unapplied updates. This means that no extra memory cost is in-
curred. When the latest version of the configuration is accidentally
lost by a container, the container simply requests the latest version
from that configuration’s corresponding server. When the arrival
sequences of several updates are not in order, the containers will
reorder those updates and replay them one by one to generate the
correct latest configuration. This means that our system supports
sequential consistency for incremental updates in a simple way.
Notably, although we permit multiple administrators to update the
same configuration together, the updates are be ordered at that con-
figuration’s corresponding server to eliminate potential concurrent
update conflicts.

Fig. 5 briefly illustrates the incremental update strategy. In this
figure, the same configuration is updated twice, generating two
versions, 𝑉𝑖 and 𝑉𝑖+1. For each version a hashing ID is generated
on the basis of the previous version and the new updates. Because
the sizes of updates and hashing IDs are usually much smaller than
the size of a full configuration, the message delivery cost can be
greatly reduced.

3.6 Adaptive Load Balancing
Through load balancing, we aim to achieve three major goals: (1)
the workload is evenly distributed; (2) the system can automatically
adjust to dynamic workload changes; and (3) the extra cost of load
balancing should be very small. To achieve these goals, we design
a simple but effective adaptive load balancing mechanism. It uses
the following process:

• Workload Score: Each server and container periodically
collects its workload, resource utilization information and
QoS information. On this basis, we calculate a workload
score.

• Score Propagation: Instead of designing specific commu-
nication messages to propagate each server or container’s
workload score, we utilize the existing acknowledgment mes-
sage. When a server or container sends an acknowledgment
message to its upstream node, it will periodically attach its
current workload score to the acknowledgment message.
Thus, we do not need extra messages to send the workload
scores. Moreover, this guarantees that workload scores will
only be transferred to the related upstream nodes.

• Load Balancing: Each upstream node collects its down-
stream nodes’ workload scores. When it has a new message
to deliver, the server can dynamically calculate the current
message’s delivery path on the basis of those nodes’ latest
workload scores.

Ripple Server

Netty Communication Layer

Pub-Sub Protocol

Consistent Hashing-based Workload Management

Ripple Admin Client

Config Update

Admin and Monitor

Ripple Client Library

Incremental Update 
Merging Policy

User Space API

Client Assisted
Message Delivery

Adaptive Load Balancing

Workload Score Calculation Fault Tolerance

Topology Management

Spanning Tree Based Overlay
Destination List Caching

Hashing Calculation

Incremental Update Generator  (Pub/Sub Tables)

Figure 6: Major Components of Ripple

4 Implementation
We implement our proposed solution as a project called Ripple3.
Ripple is implemented in Java with approximately 17,000 lines of
code. It utilizes Netty4, a widely used network framework in Java for
reliable and high-performance communication. Ripple implements
all our proposed designs presented in the above section. In this
section, we describe the major components and implementation
details of Ripple.

4.1 Major Components
As shown in Fig. 6, Ripple has three major components: the Ripple
client library for the container, the Ripple administrative client
and the Ripple server. The container client library provides several
user space APIs, such as initialize, subscribe and receive. Develop-
ers need to modify each containerized application only slightly
to invoke the user space APIs of Ripple’s container client library.
Additionally, the client library can process incremental updates to
generate new versions of configurations. Ripple clients act as the
message transfer proxies for client-assisted message delivery. The
administrative client is used by administrators to update config-
urations for different applications and manage the Ripple server
cluster. Regarding the Ripple server, its subcomponents correspond
to our design of consistent hashing-based workload distribution,
message delivery, incremental update and adaptive load balancing.
The Ripple server, client library and administrative client share the
same Netty communication layer and pub/sub protocol layer.

4.2 Workload Distribution
As presented in Section 3.3, Ripple adopts the consistent hashing-
based workload distribution mechanism. The hashing algorithm
that we use is CRC32, which is selected because hashing is a high-
frequency operation and CRC32 generates faster than other hashing
algorithms such as SHA-1. Additionaly, collisionswill not lead to any
side effects in this scenario. The inputs for the hashing algorithm are
the servers’ IP addresses and the applications’ names. To improve
the robustness of Ripple, each application is mapped to N servers.
3https://github.com/ISCAS-SSG/Ripple
4https://netty.io/
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The first server is selected on the basis of the consistent hashing
algorithm. It acts as the primary server for that application. The
remaining servers are selected as the first server’s next adjacent N-1
servers in the hashing circle. These servers act as the backup servers
for that application. In Ripple, each server maintains a subscription
table and a publication table. The subscription table contains the
subscriptions, i.e., interests of containers, and the publication table
contains each application’s configuration or service information.
The basic communication workflow of Ripple is as follows:

(1) The administrator of an application can connect to that ap-
plication’s corresponding primary server to register new
configurations or make updates to existing configurations.
The configurations are stored in the publication table.

(2) When a container is started, it will connect to the servers
corresponding to its interested applications and issue the
subscriptions.

(3) When a configuration update message is delivered to a server
from an administrative client, the server will match it against
the subscription table to identify the interested containers.
Then, the update message is delivered to the backup servers
and the interested containers.

(4) Once the update message is delivered to all the backup
servers and the interested containers, anACK message is sent
to the administrative client. In the face of delivery failures,
the primary server can automatically activate the message
delivery retrying mechanism. If further failures occur, the
server will report to the administrative client which specific
interested containers failed to receive the update.

4.3 Message Delivery
Ripple’s core function is to efficiently deliver messages to many
containers. As presented in Section 3.4, Ripple adopts a dynamic
destination list-based and client-assisted message delivery method.
Here, we describe its implementation details in terms of the follow-
ing five features:

Client-assisted message delivery: When a Ripple server re-
ceives a configuration update message, it first identifies all the con-
tainers that subscribed to this configuration. Then, it splits those
containers into groups on the basis of their application and data
center. For each group, if the number of containers is less than a
certain threshold, the Ripple server simply selects the container
with the smallest workload as the message delivery proxy node,
otherwise, it selects more than one container. The threshold can
be set to a specific value such as 60 to ensure that the delivery
path is short and that the number of messages to be transferred
by a container is not large. A proxy container’s received message
includes its assigned target containers. The overall delivery path
for a message is a spanning tree rooted at the primary server. The
spanning tree usually has only 2 to 3 layers, as this is sufficient to
support thousands of containers for an application.

Destination list hashing ID: To reduce the overhead for the
extra destination list, we calculate the destination list’s hashing ID
and simply use this ID to represent the destination list. Specifically,
we combine the IP address and port of each container in the des-
tination list to build a string. Then, we calculate the SHA-1 value
of the string as the ID of the destination list. We use SHA-1 rather

than CRC32 as collisions will lead to incorrect destination list. Upon
delivering a message, only the destination list ID is attached to the
message, rather than the whole destination list. The mapping from
destination list IDs to destination lists is cached in the containers.
We use the LRU algorithm for caching. When a destination list
ID is not successfully hit in the cache, related information can be
requested from the current node’s upstream node.

Acknowledgment and retry: For robust message delivery, we
support a fault tolerance mechanism that is based on Acknowl-
edgment and retry. When a node successfully delivers a message
to its downstream destinations, that node sends an acknowledg-
ment message to its upstream node. If message delivery to some
destination nodes fails, the failed nodes’ addresses are attached
to the corresponding acknowledgment message. The Netty-based
timeout mechanism is used to detect a failure. In this way, the pri-
mary server knows which specific containers failed to receive the
message and initiates the retry process by using a different proxy
container and routing path. When the number of retries reaches a
threshold, the primary server reports the failure information in the
acknowledgment message to the administrative client.

Isolation and security: Client-assisted message delivery is a
special feature of Ripple. To eliminate potential negative impacts,
we provide isolation and security guarantees. Ripple implements
application plus data center level isolation. Specifically, a container
A can help transfer a message to another container B only when (1)
they belong to the same application, (2) they are in the same data
center and (3) a Ripple server attaches B to the destination list of
the message to A. For special applications that do not permit their
servers, i.e., containers, to communicate with each other, Ripple
also allows users to disable the client-assisted delivery mechanism.

4.4 Incremental Update
The incremental update starts from administrators’ inputs. Con-
figurations are usually written in plain text format, such as XML,
JSON or key-value pairs. When an administrator submits an update
message, it is transferred via various atomic update operations,
including add, delete and update. The primary server executes these
operations on its locally stored version of the configuration to
generate a new version. The new version’s SHA-1 hashing ID is
calculated. The primary server uses the previous version’s hashing
ID, the update operations and the latest version’s hashing ID to con-
struct an update message. When the update message is received by
a container or a backup server, it will execute the update operations
on its stored version of the configuration only if the hashing IDs
match. In this way, we can ensure that even when update messages
arrive in the wrong order, the latest configuration can be generated
correctly. Therefore, Ripple ensures sequential consistency. In case
of primary server failure, the clients, i.e., containers, automatically
switch to the first backup server.

4.5 Adaptive Load Balancing
As described in Section 3.6, Ripple relies on a workload score to
support adaptive load balancing. The workload score is calculated
on the basis of the workload, the past message delivery latency
and the available resources. When the workload is high, the past
message delivery latency is higher and the amount of available
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resources is lower, the workload score is higher. Specifically, the
formula for calculating the workload score is as follows:

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑠𝑐𝑜𝑟𝑒 =
𝑁req · 𝑃avg · 𝐿avg
𝐹cpu · 𝐹mem · 𝐹net

In the formula above, 𝑁req , 𝑃avg and 𝐿avg represent the num-
ber of processed update messages, the average message payload
size and the average message processing latency, respectively, and
𝐹cpu , 𝐹mem and 𝐹net represent available CPU, memory and network
resources, respectively.

5 Evaluation
Ripple aims to provide efficient, scalable and robust large-scale
service and configuration management. Regarding performance,
the QPS and event delivery latency are the two key evaluation
metrics that are of interest to us. A good solution should be able
to provide high QPS and low event delivery latencies under dif-
ferent environments and workloads. For comparison with Ripple,
we use Nacos [17] and Padres [24] as baselines. Each baseline is
a representative solution; moreover, significant changes are not
needed to provide the necessary functions for service and configu-
ration management. Nacos is a state-of-the-art solution that was
specifically designed for service and configuration management.
Padres is a representative pub/sub system. Although pub/sub does
not have distributed storage by default, we apply various changes
and extensions to Padres to support this. We use both synthesized
and real-world workloads for the experiments, as we show below.

5.1 Setups of Synthesized Experiments
The performances of different algorithms can change dynamically
when the environment and workload vary. For an intuitive compar-
ison, we first use different synthesized experiment setups to run
the evaluation. The related workloads are simplified from Alibaba’s
real-world workload.

As shown in Table 2, we consider a variety of controlled experi-
mental conditions: number of servers, number of clients, system
QPS, average payload size and incremental event update ratio. With
these configurations, we can generate different combinations of ex-
perimental setups. The default configuration for our experiments is
as follows: 10 servers, 500 clients, 1,000 QPS, 10 KB average payload
size, and an 80% incremental update ratio.

Table 2: Experiment Setup Configurations

Server Number 1, 5, 10, 15, 20
Client Number 50, 250, 500, 2500, 5000
System QPS 100, 500, 1000, 1500, 2000, 2500
Average Payload Size 1KB, 5KB, 10KB, 50KB, 100KB
Incremental Update Ratio 0%, 10%, 20%, ..., 80%, 90%,100%

We evaluate Ripple in a cluster consisting of numerous virtual
machines as the server nodes. Each server node has 2 virtual CPUs,
4 GB of memory and 40 GB of NVMe SSD storage. We also use
virtual machines as workload generators to deploy client nodes.
Each client node has 1 virtual CPU, 4 GB of memory and 40 GB of
NVMe SSD storage. We limit the memory usage of JVM to 2 GB.
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400
Padres Nacos Ripple

Servers

Figure 7: Changing the Number of Servers

5.2 Comparison with Related Work
In this section, we present the detailed experimental results for Rip-
ple, Nacos, and Padres under the different controlled experimental
conditions. Additionally, we report the system overheads of these
algorithms under the same workload.

5.2.1 Number of Servers. As shown in Fig. 7, when the number of
servers in the system increases, the latency changes are different
for different systems. For Nacos and Padres, the event delivery
latency increases with the number of servers. The major reason is
that these algorithms either route messages to all the servers in the
cluster or route messages on the basis of a reverse tree. When there
are more servers, the number of nodes on the message delivery
path increases. This increases the latency. However, for Ripple, the
latency does not obviously change when the number of servers in
the system increases. This is because Ripple utilizes a consistent
hashing-based workload distribution, and a message usually needs
only a single server for delivery. When there are more servers, the
system can handle a higher workload without obviously affecting
the event delivery latency.

5.2.2 Number of Clients. As shown in Fig. 8, when the number
of clients increases, the event delivery latencies of all algorithms
increases. This is because a greater number of clients means that
a message needs to be delivered to more nodes. However, overall,
the latency increase is more obvious for Nacos and Padres. Nacos
cannot pass the test when the total number of clients increases to
2,500. In contrast, Ripple’s event delivery latency does not obviously
change when the number of clients is equal to or less than 500. The
event delivery latency of Ripple starts to obviously increase when
the number of clients increases to 2,500.

5.2.3 Overall QPS. Here, we evaluate the relationship between the
system’s overall QPS and the event delivery latency. As shown in
Fig. 9, increasing the QPS results in higher event delivery latency
for all algorithms, which is expected. However, under different QPS
workloads, Ripple always outperforms Nacos and Padres.

5.2.4 Average Payload. When the average payload size increases,
the system needs more network bandwidth to transfer the data.
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Fig. 10 shows the algorithms’ event delivery latencies as the average
payload size increases. As expected, a larger payload results in a
higher event delivery latency. However, Ripple has a smaller event
delivery latency increase. This is because Ripple uses less network
bandwidth to handle the same workload. As a result, Ripple can
support a high average payload size.

5.2.5 Incremental Update Ratio. Incremental update is very use-
ful for situations in which high ratios of duplication may occur.
Configuration management is a typical workload with a high ratio
of duplication. As Nacos and Padres do not have mechanisms for
handling the incremental update workload, their performance will
not change with the incremental update ratio. Therefore, we need
to evaluate only Ripple’s performance under different incremental
update ratios.

As shown in Fig. 11, when the incremental update ratio is higher,
the message delivery latency of Ripple is lower. For example, when
the incremental update ratio is 0, the average message delivery
latency is approximately 103 ms, whereas when the incremental
update ratio is 100%, the averagemessage delivery latency decreases
to 70 ms. This is because Ripple needs to transfer only the updated
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Figure 10: Changing the Average Payload Size
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Table 3: System Overhead Comparison

Nacos Padres Ripple
CPU Usage (%) 41.42 56.37 28.57
Memory Usage (MiB) 1255.02 1607.61 894.59
Network Cost (KiB/s) 423.69 1837.21 123.82

part of a configuration rather than the whole latest configuration.
Thus, the network overhead is obviously reduced.

5.3 System Overhead
Latency and QPS measure the performance of algorithms from the
perspective of clients. On the server cluster side, we care about
resource utilization. A better algorithm uses fewer resources to
handle the same workload. Therefore, we report the CPU, memory
and network usage of Ripple, Nacos and Padres under the same
default workload.

As shown in Table 3, Ripple’s CPU, memory and network over-
heads are all obviously smaller than those of Nacos and Padres.
Compared with Nacos, Ripple reduces the CPU, memory and net-
work usage by 31%, 29% and 71%, respectively. Compared with
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Figure 12: Self-Comparison Experiment on Ripple

Padres, Ripple reduces CPU, memory and network usage by 49%,
56% and 93%, respectively.

5.4 Self-Comparison
As presented in Section 3, Ripple includes four major design com-
ponents: consistent hashing-based workload distribution, dynamic
destination list-based message delivery, incremental update and
adaptive load balancing. Among them, the first three design compo-
nents aim to improve performance. The experiments presented in
the above section show the effectiveness of utilizing these three de-
sign components together. However, they do not show the effects of
each design. Therefore, here, we conduct a group of self-comparison
experiments.

As shown in Fig. 12, given the same QPS, Ripple has the lowest
event delivery latency when all three design components are en-
abled. The differences are more obvious when the QPS is higher.
For example, when the QPS is 100, the latency increases by ap-
proximately 5%, 11% and 20% when the consistent hashing-based
workload distribution, dynamic destination list-based message de-
livery and incremental update are disabled, respectively. In contrast,
when the QPS is 2,500, the latency increases by 55%, 88%, and 200%,
respectively.

5.5 Adaptive Load Balancing
Adaptive load balancing for Ripple is designed to support an unbal-
anced and dynamically changing workload, which is very common
in real-world applications. To measure the effects of Ripple’s adap-
tive load balancing design, in this group of experiments, we change
the workload distribution dynamically while monitoring the sys-
tem’s performance metrics.

Fig. 13 compares the cases in which Ripple’s load balancing
feature is enabled and disabled. In this experiment, we control the
system QPS as follows: from 0 s to 30 s, the QPS is set to 500; from
31 s to 60 s, the QPS is changed to 1,000; from 61 s to 90 s, the QPS
is changed to 2,000; from 91 s to 120 s, the QPS is changed back to
500; and from 121 s to 150 s, the QPS is changed to 1,500. Given
these time ranges, when adaptive load balancing is enabled, Ripple
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Figure 13: Adaptive Load Balancing Experiment

Figure 14: Real-world Experiment

has better performance: on average, adaptive load balancing helps
reduce the event delivery latency from 287.73 ms to 208.21 ms.

5.6 Real-World Workload
As there are no public benchmark workloads for large-scale service
and configuration management, we mimic Alibaba’s real-world
workload during a specific Double 11 day in previous years. For
this workload, the number of configurations is 3 M, the number of
messages to be delivered is 1,801 M, the number of Nacos servers is
363, the average QPS is 139 K and the peak QPS is 381 K. Due to cost
limitations, we cannot setup a test cluster of this scale. Given this
scale of the workload, when we use our affordable tens of servers
to run the evaluations, Nacos and Padres become overloaded; thus,
here, we only report the performance metrics of Ripple.

In this experiment, we set up a cluster containing 60 servers.
Each server is configured to utilize 8 CPUs, 32 GB of memory and
128 GB of NMVe SSD storage. We record the average message
delivery latency (50%, 70%, 90% and 99% percentiles) when we set
the QPS to 26 K, 83K and 139 K. As shown in Fig. 14, the system
is not overloaded even when we increase the QPS to 139 K. The
average message delivery latency is less than 300 ms. This group of
experiments proves that Ripple is efficient at handling large-scale
real-world workloads with a limited number of machines.
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6 Conclusion
We propose an efficient and scalable solution for large-scale service
and configuration management in the cloud, called Ripple. It uti-
lizes the pub/sub paradigm and related techniques. However, unlike
existing pub/sub systems, we propose several design features and
optimizations on the basis of the characteristics of our application
and the cloud environment, including consistent hashing-based
workload distribution, dynamic destination list-based and client-
assisted message delivery, incremental update, and adaptive load
balancing. Ripple integrates several existing practical techniques
with our newly proposed novel mechanisms to provide an efficient
solution. The experiments show that our solution significantly
improves the system throughput, reduces the message delivery
latency, saves hardware resources, and achieves good scalability, ef-
ficiency and robustness. In addition, it clearly outperforms existing
solutions.

Acknowledgments
This work is supported by the Alibaba Group through the Alibaba
Innovative Research (AIR) Program (No. 1223), the Youth Innova-
tion Promotion Association, Chinese Academy of Sciences (Grant
No. 2023118), Major Project of ISCAS (ISCAS-ZD-202302), and the
Guangdong Power Grid Limited Liability Company under Project
037800KC23090006. We would like to thank Yanlin Li, a staff en-
gineer at the Alibaba Group and a member of the Nacos Project
Management Committee, for his valuable discussions and help. We
also would like to thank our shepherd David Eyers for his guidance
and detailed feedback on our manuscript.

References
[1] Micah Adler, Zihui Ge, James F Kurose, Don Towsley, and Steve Zabele. 2001.

Channelization problem in large scale data dissemination. In Proceedings Ninth
International Conference on Network Protocols. ICNP 2001. IEEE, Riverside, CA,
USA, 100–109.

[2] Atul Adya, Gregory Cooper, Daniel Myers, and Michael Piatek. 2011. Thialfi: a
client notification service for internet-scale applications. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (Cascais, Portugal)
(SOSP ’11). Association for Computing Machinery, New York, NY, USA, 129––142.
https://doi.org/10.1145/2043556.2043570

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C. Stur-
man. 1999. An Efficient Multicast Protocol for Content-Based Publish-Subscribe
Systems. In Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems (ICDCS ’99). IEEE Computer Society, USA, 262.

[4] David Bernstein. 2014. Containers and Cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Computing 1, 3 (2014), 81–84.

[5] Luis Felipe Cabrera, Michael B. Jones, and Marvin Theimer. 2001. Herald: Achiev-
ing a Global Event Notification Service. In Proceedings of the Eighth Workshop
on Hot Topics in Operating Systems (HOTOS ’01). IEEE Computer Society, USA,
87–92.

[6] Fengyun Cao and Jaswinder Pal Singh. 2005. MEDYM: match-early with dynamic
multicast for content-based publish-subscribe networks. In Proceedings of the
ACM/IFIP/USENIX 2005 International Conference on Middleware (Grenoble, France)
(Middleware ’05). Springer-Verlag, Berlin, Heidelberg, 292–313.

[7] Antonio Carzaniga, Cyrus Hall, Giovanni Toffetti Carughi, and Alexander L Wolf.
2009. Practical high-throughput content-based routing using unicast state and
probabilistic encodings. Technical Report. Università della Svizzera italiana.

[8] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 2001. Design
and evaluation of a wide-area event notification service. ACM Trans. Comput.
Syst. 19, 3 (Aug. 2001), 332–383. https://doi.org/10.1145/380749.380767

[9] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. 2003. Splitstream: High-bandwidth multicast in
cooperative environments. ACM SIGOPS operating systems review 37, 5 (2003),
298–313.

[10] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Rowstron. 2002.
SCRIBE: A large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in communications 20, 8 (2002), 1489–1499.

[11] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola. 2003.
Introducing reliability in content-based publish-subscribe through epidemic
algorithms. In Proceedings of the 2nd International Workshop on Distributed Event-
Based Systems (San Diego, California) (DEBS ’03). Association for Computing
Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/966618.966629

[12] Paolo Costa and Gian Pietro Picco. 2005. Semi-probabilistic content-based publish-
subscribe. In 25th IEEE International Conference on Distributed Computing Systems
(ICDCS’05). IEEE, Columbus, OH, USA, 575–585.

[13] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. 2001. The JEDI
event-based infrastructure and its application to the development of the OPSS
WFMS. IEEE transactions on Software Engineering 27, 9 (2001), 827–850.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[15] Stephen E. Deering and David R. Cheriton. 1990. Multicast routing in datagram
internetworks and extended LANs. ACM Trans. Comput. Syst. 8, 2 (May 1990),
85–110. https://doi.org/10.1145/78952.78953

[16] Cloud Native Computing Foundation. 2016. Etcd: a distributed, reliable key-value
store for the most critical data of a distributed system. Cloud Native Computing
Foundation. https://etcd.io/

[17] Alibaba Group. 2019. Nacos: An easy-to-use dynamic service discovery, configu-
ration and service management platform for building cloud native applications.
Alibaba Group. https://nacos.io/en-us/

[18] Long Guo, Dongxiang Zhang, Guoliang Li, Kian-Lee Tan, and Zhifeng Bao.
2015. Location-Aware Pub/Sub System: When Continuous Moving Queries
Meet Dynamic Event Streams. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data (Melbourne, Victoria, Australia) (SIG-
MOD ’15). Association for Computing Machinery, New York, NY, USA, 843–857.
https://doi.org/10.1145/2723372.2746481

[19] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. 2004.
Meghdoot: content-based publish/subscribe over P2P networks. In Proceedings
of the 5th ACM/IFIP/USENIX International Conference on Middleware (Toronto,
Canada) (Middleware ’04). Springer-Verlag, Berlin, Heidelberg, 254–273.

[20] HashiCorp. 2019. Consul: a tool for service discovery and configuration. HashiCorp.
https://www.consul.io/

[21] HedWig. 2014. TIBCO rendezvous concepts. TIBCO Software, Inc. https://docs.
tibco.com/pub/rendezvous/8.3.1_january_2011/pdf/tib_rv_concepts.pdf

[22] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: wait-free coordination for internet-scale systems. In Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference (Boston,
MA) (USENIXATC’10). USENIX Association, USA, 11.

[23] Mihalea Ion, Giovanni Russello, and Bruno Crispo. 2010. An implementation of
event and filter confidentiality in pub/sub systems and its application to e-health.
In Proceedings of the 17th ACM Conference on Computer and Communications
Security (Chicago, Illinois, USA) (CCS ’10). Association for Computing Machinery,
New York, NY, USA, 696–698. https://doi.org/10.1145/1866307.1866401

[24] Hans-Arno Jacobsen, Alex Cheung, Guoli Li, Balasubramaneyam Maniymaran,
Vinod Muthusamy, and Reza Sherafat Kazemzadeh. 2010. The PADRES pub-
lish/subscribe system. In Principles and Applications of Distributed Event-Based
Systems. IGI Global, Hershey, Pennsylvania, USA, 164–205.

[25] Shuping Ji, Chunyang Ye, Jun Wei, and Hans-Arno Jacobsen. 2015. MERC: Match
at Edge and Route intra–Cluster for Content-based Publish/Subscribe Systems.
In Proceedings of the 16th Annual Middleware Conference (Vancouver, BC, Canada)
(Middleware ’15). Association for Computing Machinery, New York, NY, USA,
13–24. https://doi.org/10.1145/2814576.2814801

[26] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, Vol. 11. Association for
Computing Machinery, Athens, Greece, 1–7.

[27] Guoli Li, Shuang Hou, and Hans-Arno Jacobsen. 2005. A unified approach to
routing, covering and merging in publish/subscribe systems based on modified
binary decision diagrams. In 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05). IEEE, Columbus, OH, USA, 447–457.

[28] Peter M. Mell and Timothy Grance. 2011. SP 800-145. The NIST Definition of Cloud
Computing. Technical Report. National Institute of Standards & Technology,
Gaithersburg, MD, USA.

[29] Dmitry Namiot and Manfred Sneps-Sneppe. 2014. On micro-services architecture.
International Journal of Open Information Technologies 2, 9 (2014), 24–27.

[30] Netflix. 2015. Eureka. Netflix. https://github.com/xmartlabs/Eureka
[31] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable

Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC
14). USENIX Association, Philadelphia, PA, USA, 305–319.

[32] Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar, Robert
Strom, and Daniel Sturman. 2000. Exploiting IP multicast in content-based
publish-subscribe systems. In IFIP/ACM International Conference on Distributed
Systems Platforms (New York, New York, USA) (Middleware ’00). Springer-Verlag,
Berlin, Heidelberg, 185–207.

365

https://doi.org/10.1145/2043556.2043570
https://doi.org/10.1145/380749.380767
https://doi.org/10.1145/966618.966629
https://doi.org/10.1145/78952.78953
https://etcd.io/
https://nacos.io/en-us/
https://doi.org/10.1145/2723372.2746481
https://www.consul.io/
https://docs.tibco.com/pub/rendezvous/8.3.1_january_2011/pdf/tib_rv_concepts.pdf
https://docs.tibco.com/pub/rendezvous/8.3.1_january_2011/pdf/tib_rv_concepts.pdf
https://doi.org/10.1145/1866307.1866401
https://doi.org/10.1145/2814576.2814801
https://github.com/xmartlabs/Eureka


Ripple: Large-Scale Service and Configuration Management in the Cloud MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

[33] Peter R. Pietzuch and Jean Bacon. 2002. Hermes: A Distributed Event-Based
Middleware Architecture. In Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCSW ’02). IEEE Computer Society, USA,
611–618.

[34] RabbitMQ. 2014. RabbitMQ. http://www.rabbitmq.com/
[35] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

2001. A scalable content-addressable network. In Proceedings of the 2001 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (San Diego, California, USA) (SIGCOMM ’01). Association for
Computing Machinery, New York, NY, USA, 161–172. https://doi.org/10.1145/
383059.383072

[36] Anton Riabov, Zhen Liu, Joel L Wolf, Philip S Yu, and Li Zhang. 2002. Clustering
algorithms for content-based publication-subscription systems. In Proceedings
22nd International Conference on Distributed Computing Systems. IEEE, Vienna,
Austria, 133–142.

[37] Antony I. T. Rowstron and Peter Druschel. 2001. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In Proceed-
ings of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg (Middleware ’01). Springer-Verlag, Berlin, Heidelberg, 329–350.

[38] AmazonWeb Services. 2014. Amazon Simple Queue Service. AmazonWeb Services,
Inc. http://aws.amazon.com/sqs/

[39] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David Callies, Abhishek
Choudhary, Laurent Demailly, Thomas Fersch, Liat Atsmon Guz, Andrzej Kotul-
ski, Sachin Kulkarni, Sanjeev Kumar, Harry Li, Jun Li, Evgeniy Makeev, Kowshik
Prakasam, Robbert Van Renesse, Sabyasachi Roy, Pratyush Seth, Yee Jiun Song,
Kaushik Veeraraghavan, Benjamin Wester, and Peter Xie. 2015. Wormhole: reli-
able pub-sub to support geo-replicated internet services. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation (Oakland,
CA) (NSDI’15). USENIX Association, USA, 351—-366.

[40] Zoe Sofia. 2000. Container technologies. Hypatia 15, 2 (2000), 181–201.
[41] Ion Stoica, RobertMorris, David Liben-Nowell, David R Karger,M Frans Kaashoek,

Frank Dabek, and Hari Balakrishnan. 2003. Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Transactions on networking 11, 1
(2003), 17–32.

[42] Yoav Tock, Nir Naaman, Avi Harpaz, and Gidon Gershinsky. 2005. Hierarchi-
cal Clustering of Message Flows in a Multicast Data Dissemination System. In
Proceedings ofthe 17th IASTED International Conference Parallel and Distributed
Computing and Systems, Vol. 5. ACTA Press, Phoenix, AZ, USA, 1–7.

[43] Toby Velte, Anthony Velte, and Robert Elsenpeter. 2009. Cloud Computing, A
Practical Approach (1 ed.). McGraw-Hill, Inc., USA.

[44] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. 2001. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and. Technical Report.
Computer Science Division, University of California Berkeley, USA.

366

http://www.rabbitmq.com/
https://doi.org/10.1145/383059.383072
https://doi.org/10.1145/383059.383072
http://aws.amazon.com/sqs/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Existing Service and Configuration Management Systems
	2.2 Distributed Storage and Message Bus Systems
	2.3 Pub/Sub Systems

	3 System Design
	3.1 Semantic Mapping
	3.2 Characteristic Analysis
	3.3 Workload Distribution
	3.4 Message Delivery
	3.5 Incremental Update
	3.6 Adaptive Load Balancing

	4 Implementation
	4.1 Major Components
	4.2 Workload Distribution
	4.3 Message Delivery
	4.4 Incremental Update
	4.5 Adaptive Load Balancing

	5 Evaluation
	5.1 Setups of Synthesized Experiments
	5.2 Comparison with Related Work
	5.3 System Overhead
	5.4 Self-Comparison
	5.5 Adaptive Load Balancing
	5.6 Real-World Workload

	6 Conclusion
	References

