
Transaction-aware SSD Cache Allocation for the
Virtualization Environment

Zhen Tang∗†, Heng Wu∗†¶, Lei Sun‡, Zhongshan Ren∗†, Wei Wang∗†, Wei Zhou§ and Liang Yang§
∗State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

†University of Chinese Academy of Sciences ‡Tianjin Massive Data Processing Technology Laboratory §KSYUN

{tangzhen12,wuheng,renzhongshan13,wangwei}@otcaix.iscas.ac.cn, sunlei@bjsasc.com, {zhouwei2,yangliang1}@kingsoft.com
¶Corresponding author

Abstract—Flash-based Solid State Disk (SSD) is widely used
in the Internet-based virtual computing environment, usually
as cache of the hard disk drive-based virtual machine (VM)
storage. Existing SSD caching schemes mainly treat the VMs
as independent units and focus on critical performance metrics
concerning one single VM, such as the IO latency, throughput,
or the cache miss rate. However, in the Internet-based virtual
computing environment, one transactional application usually
consists of multiple VMs on different hypervisors. Transaction-
aware SSD caching schemes may potentially better improve the
end user-perceived quality of service. The key insight here is
to utilize the relationships among VMs inside the transactional
application to better guide the allocation of the SSD cache, so as
to help learn the pattern of workload changes and build adaptive
SSD caching schemes. To this end, we propose the Transaction-
Aware SSD caching (TA-SSD), which takes the characteristics
of transactions into consideration, uses closed loop adaptation
to react to changing workload, and introduces the genetic
algorithm to enable nearly optimal planning. The evaluation
shows that comparing to the equally partitioned cache, the
allocation produced by the TA-SSD can boost the performance
by up to 40%, with dynamic changes in the intensity and the
type of the workload.

Index Terms—SSD; Cache; Virtualization

I. INTRODUCTION

Transactional applications are widely used in the Internet-

based virtualization environment[1], with different VMs

hosted on different cloud providers to balance the cost and

performance[2]. The hypervisors, where the cloud provider

hosts the VMs on, are mostly attached with a hard disk drive

(HDD) based back end shared storage to store VM images.

The IO performance is vital to the efficient use of virtualized

resources.
Flash-based Solid State Disk (SSD) has recently been a

widespread solution to improving the IO performance[3][4].

SSD has the significant advantage over HDD, especially for

random IO operations. In the virtualization environment, SSD

is often used as the cache for VMs on the hypervisor. The IO

operations will first arrive at the SSD cache. Upon a cache

hit, the operation will be quickly served by the cached data.

Otherwise, it will be served by the much slower back end

storage system.
Though SSD caching is vital for the IO performance,

existing caching schemes face severe challenges in the virtu-

alization environment. Firstly, existing caching schemes [5][6]

mainly focus on critical performance metrics concerning one

single VM, such as the IO latency, throughput, or the cache

miss rate. However, transactional applications deployed in the

Internet-based virtualization environment usually consist of

multiple VMs with relationships among different nodes. When

processing a request, multiple VMs across different cloud

providers will be used, and the contribution to the response

time for each VM is different. Ignoring the relationships may

not lead to the application-level best performance, i.e., the

response time. The key insight here is to utilize the application-

induced relationships among VMs (often hosted on different

cloud providers) to better guide the allocation of the SSD

cache. Furthermore, as SSD has a significant advantage over

HDD especially for random IO operations, allocating cache

to VMs facing more random IO operations will potentially

better utilize the scarce SSD cache. Secondly, transactional

applications usually operate in a quite dynamic environment,

i.e., the type of workloads is changing rapidly. The SSD

caching scheme must be adaptive and intelligently so as to

tune the cache allocation in response to the change of the

workload. The key to designing an adaptive cache allocation

scheme is to extract the meta-level invariance in or law behind

the changes of the workload. Thus, it is indispensable to utilize

the observation that the workload on different VMs often result

from one single transactional application they belong to.

To address the challenges above, we present a novel SSD

caching scheme named Transaction-Aware SSD caching (TA-
SSD). TA-SSD builds a MAPE-K[7] feedback loop to enable

adaptive cache allocation. Using TA-SSD, transactional ap-

plications are instrumented to log the behavior and critical

performance metrics at runtime. We then analyze the runtime

log and performance data to figure out the workloads, the

relationships among VMs, and the characteristics of low-level

IO. Based on the application-level metrics, we use the genetic

algorithm to obtain a nearly optimal cache allocation plan. The

cache allocation plan is finally applied to the VMs.

We implement TA-SSD based on Xen[8] hypervisor, and

evaluate it by using TPC-W[9][10] benchmark. TA-SSD can

also be applied to other hypervisors such as KVM by modify-

ing the execution part in the feedback loop. The evaluation

shows that TA-SSD can improve the performance of the

transactional application by up to 40% even when facing the

174

2018 IEEE Symposium on Service-Oriented System Engineering

0-7695-6394-5/18/$31.00 ©2018 IEEE
DOI 10.1109/SOSE.2018.00029

Execute Plan

AnalyzeMonitor

Detector

ArbiterExecutor
on Hypervisors

Injector on VMs

Agent on VMs

Agent on Hypervisors

IO Performance

Cache Status

Logs

Relationships and Roles

Magnifier
Characteristics of

Workload

Weights of VMs

Controller
(Trigger new round)

Per-VM
SSD Cache

Fig. 1. Overview of TA-SSD

change of workload.

The rest of the paper is organized as follows. In section

II, we discuss the overview of the tool TA-SSD, along with

the adaptive closed loop we used. In section III, we give the

formal definition of the problem and introduce the genetic

algorithm based approach we used to solve it. In section IV,

we use several experiments to show the self-adaptation and the

performance improvement bringing by TA-SSD. We discuss

the related work in section V. The section VI concludes the

paper.

II. OVERVIEW OF TA-SSD

In this section, we introduce the closed loop adaptation we

use in TA-SSD, and the system architecture of TA-SSD. The

overview of TA-SSD is shown in Fig. 1.

A. Motivation

The transactional application exposes a HTTP-based user

interface or API, for user to access or build the open platform

for third-party applications to connect. For transactional appli-

cations, the latency (time to process user requests) is the most

significant performance metric. Reducing the average latency

will result in better user experience. However, doing static

SSD cache allocation to get optimized latency for transactional

application is difficult. Firstly, when processing a user request,

multiple VMs inside an application may be used. Different sets

of VMs may be used when handling different user requests.

Thus the relationships among VMs need to be dig out from

the process of handling different types requests. We need to

apply fine-grained monitoring to the VMs from multiple levels,

so as to analyze the characteristics of the application and

the low level IO. Secondly, considering that a transactional

application usually has multiple workload types, the loads

or access patterns of the application may change frequently.

Moreover, the application may face burst load or sudden

change of the access pattern in the runtime. This motivates

us to introduce the closed loop adaptation into our approach,

to react to the change of the environment quickly. Therefore,

we need a flexible and adaptive SSD caching approach.

B. Overview of the Closed Loop Adaptation

We present the closed loop adaptation to adaptively allocate

the SSD cache for VM from the view of the transactional

application and trigger the new round after detecting the

change of the workload. The closed loop is inspired by the

MAPE-K feedback loop, consisting of the monitor, analyze,

plan and execute process.

1) Monitor: We do the fine-grained monitor from multi-

ple levels, including the behavior of the application, the IO

performance of VMs and the cache status gathered from the

Hypervisor. We instrument the target transactional application

to record access logs of the execution time of the request along

with the outgoing HTTP connections and database operations,

so as to get the distribution of the latency over VMs. To specify

the application which the VM belongs to, we deploy agents

on each VM to monitor the running processes and TCP ports.

We also deploy agents on hypervisors to monitor the status of

cache.

2) Analyze: By using the monitored information on VMs,

we then figure out the applications they belong to, the char-

acteristics of the workload and the latency of the application.

For each VM, we infer the application which it belongs to

by analyzing the running processes, the opening ports, and

the outgoing connections. Furthermore, we analyze all access

logs and figure out the intensity of each type of the transaction.

Also, for each transaction, we analyze the characteristics of

low-level IO operations of each VM from the monitored IO

performance data.

3) Plan: After monitoring the status of applications, hy-

pervisors and VMs, and analyzing the relationships among

VMs, the workload and the IO characteristics of VMs, we then

calculate the SSD cache allocation plan for each application

found in the cluster. Currently the total SSD cache size for a

specific application is given, we need to further allocate the

cache under the restriction that the total size is limited and

the SSD on each hypervisor is limited. We use the genetic

algorithm to solve the problem and try to get a nearly optimal

solution as calculating an optimized solution in exponential

time is unrealistic for the cloud provider. Finally, we output

the weight of different VMs inside the application, which is

used in the execute progress. More detailed information can

be found in section III.

4) Execute: After calculating weight of different VMs

inside an application, we allocate the SSD cache for each

VM following the plan. The adjustment of SSD cache is done

in hypervisor. Currently our approach is based on the Xen

hypervisor[8]. Each cache is in the form of a file put in SSD

and binds to a specific device in Xen hypervisor. The cache

is based on the device mapper framework of Linux. We map

the cache device and the mounted device of VM image into

a cached device. We then use the target device with cache in

the configuration of VMs in Xen hypervisor.

5) Trigger the New Loop: In general, we start the new

round of cache adjustment frequently, for every minute, aiming

to evolute for the specific workload mode. Furthermore, as the

characteristics of workload is monitored continuously in the

runtime, we immediately trigger a new round of cache adjust-

ment after we detect the change in the mix of the transaction.

Thus we can do the SSD cache allocation adaptively and can

gracefully face the change of the environment.

175

C. System Architecture
TA-SSD consists of the following components: the central-

ized Controller, the Injector and the Agents for monitoring,

the Detector and the Magnifier for analyzing, the Arbiter for

planning and the Executor for executing, as shown in Fig. 1.
1) Controller: The centralized Controller triggers, traces

and maintains the whole closed loop, and gives a uniformed

API for management. The controller interacts with all the other

components and gathers the information from them. It also

traces the closed loop adaptation, and start the new round of

cache adjustment frequently or after detecting the workload

change.
2) Monitor: We deploy the Injector on the VM, and the

Agent on both the VM and the hypervisor. The Injector
is used to do instrumentation on target system so as to

trace the behavior of the application. Currently we support

the Java based web application. We instrument each servlet

class, add code in the request handling method to record the

execution time, and monitor the access of URLConnection and

JDBC to get the distribution of the latency. The instrumented

application will output the log upon every web interaction, the

call of services on other VMs and the access of the database.

The Agent deployed on the VM then gathers logs and monitors

the running process on the VM along with the established TCP

connections for further analysis. The Agent further monitors

the detailed usage of CPU, including the user time and the

IO time, to indicate the load of low-level IO on the VM. We

also deploy the Agent on the hypervisor to monitor the cache

status, including the cache utilization and miss rate of read

and write operations.
3) Analyze: We present the Detector to figure out the VMs

belong to the application, and the Magnifier to analyze the

latency from the application level and the IO performance.

The Detector infers roles of different VMs from the running

processes gathered from the Agent. To infer the relation-

ships among VMs, the Detector analyzes established TCP

connections and matches them with logs of VMs, so as to

figure out both the application and VMs involved for different

transactions. The Magnifier focuses on analyzing the charac-

teristics of the workload from logs, and the characteristics of

IO operations from the performance data. It analyzes logs to

find out the mix of the transaction in the current workload,

and the distribution of the latency for each transaction.
4) Plan: We present the Arbiter to calculate the weight

of each VM inside the application for the further cache

allocation. The Arbiter is the fundamental component in TA-

SSD, which uses the genetic algorithm to find out a nearly

optimal solution consisting of weights of VMs inside the

application. It uses the role of VMs, the relationships among

VMs, the characteristics of the workload and IO operations,

and the monitored performance data as the input, and evolutes

to give an optimized SSD cache allocation plan. More detailed

information can be found in III.
5) Execute: We deploy the Executor on the hypervisor.

The Executor is responsible for allocating the cache according

to the weights calculated by the Arbiter. Furthermore, it

triggers the resize operation of caches for VMs inside the

application. Currently, to change the size of the cache, we

need to hang up the IO operations for a short time to resize

the cache file for new configuration.

III. NEARLY OPTIMAL PLANNING BASED ON GENETIC

ALGORITHM

In this section, we firstly formalize the problem and then

introduce the genetic algorithm we used in TA-SSD.

A. Problem Definition

We regard the workload as a set of user requests.

Definition 1: Workload. The Workload is the two-tuple

W = (T,w), while T = {t1, t2, . . . , tn} is the set of the

transactions and w = {w1, w2, . . . , wn} is the set of the ratio.

We also have
∑n

i=1 wi = 1.

We regard the application as a set of virtual machines,

or what we call “application component”. One application

consists of several application components, with each of them

deployed on different virtual machines.

Definition 2: Application. The Application is the set of n
application components, A = {c1, c2, . . . , cn}.

The set A is extracted from the workload. Assuming that

when handling the transaction ti, the application components

c(ti) = cj , ck, ..., cl are used. We have A =
⋃n

i=1 c(ti).
Using the definition of the workload and application, we

can then induce the definition of the performance of the

transactional application, which is the average latency. For

a transaction, we have L(ti) =
∑l

j=k L(Ti, cj). Thus, the

performance of transactional application can be defined as

the latency L =
∑n

i=1 L(ti) · wi. The goal of flash cache

allocation is to get min(L).
Assuming that we allocate flash cache si for the application

component ci, with the miss rate mri. We have the IO latency

of the VM when reading a data block of specific size l =
mr ·lHDD+(1−mr) ·lSSD, while lHDD indicates the latency

of HDD for reading the data block and lSSD indicates the

latency of SSD.

We can then estimate the latency on the VM as follows:

L(Ti, cj) = α · (lran · rran+ lseq(1−·rran)). Noting that lran
is the average latency for random access, while lseq is that for

sequential access. α indicates the dependency on the random

access while handling the transaction Ti on the VM cj , which

can be estimated by comparing the IO time and the random

access ratio of the workload and the transaction intensity. rran
is the ratio of random access, which we monitored before.

Thus, to get the min(L), we aim to create connection

between high-level latency of transactional applications to

the low-level characteristics of IO operations, especially for

dependency and random access.

B. Genetic Algorithm

Calculating an optimized solution in exponential time is

unrealistic, thus we choose to use genetic algorithm to get

a nearly optimal solution.

There are some critical parameters in the genetic algorithm

which we need to introduce here. The chromosome indicates

176

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

A
m

p
li
fi

c
a
ti

o
n

W
IP

S

Amount of entries (×106)

Equally TA-SSD Amplification

(a) Browsing mode

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
m

p
li
fi

c
a
ti

o
n

W
IP

S

Amount of entries (×106)

Equally TA-SSD Amplification

(b) Shopping mode

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

A
m

p
li
fi

c
a
ti

o
n

W
IP

S

Amount of entries (×106)

Equally TA-SSD Amplification

(c) Ordering mode

Fig. 2. TPC-W WIPS

the weight of a specific VM, which is the ratio of the

cache space. The genome indicates a specific SSD cache

allocation plan, which consists of a set of chromosomes with

the normalized (sum up to 1) weights of every VM inside

an application. We define the selection operation as selecting

genomes randomly by their fitnesses. We define the crossover
operation as selecting random numbers of chromosomes of

two genomes and swap them. We define the mutation opera-

tion as changing weights of random numbers of chromosomes

of a genome inside a specific range.

For the most important part, the fitness aims to help predict

the latency. We calculate the fitness from the following 3

metrics: the VM intensity, the IO ratio, and the random ratio.

Firstly, the VM intensity is calculated by summing up the

latency on specific VM among all transactions, which figures

out the importance of the VM inside the application. Secondly,

the IO ratio is the ratio of IO and non-IO operations, as

optimizing a VM with low ratio of IO operations is not worthy,

even if the VM is important. Thirdly, as VMs with high ratio

of random access will benefit significantly from SSD cache,

we takes the random ratio into consideration, which is the

reciprocal of the average size of IO operations. Finally, we

regard the fitness as the opposite number of the euclidean

metric of the given weight with the three metrics.

IV. EVALUATION

In this section, we evaluate TA-SSD and aim to answer the

following research questions:

1) Can TA-SSD improve the performance of transactional

applications?

2) Can TA-SSD adapt to the changing of workloads?

As we focus on the transactional application, we use TPC-

W[9][10], a widely used e-commerce benchmark, in the evalu-

ation. We use a TPC-W based load testing tool, Bench4Q[11],

to generate the workload and evaluate the performance of the

target system.

In the experiment environment, we deploy three applications

on two hypervisors, to simulate the Internet-based virtual

computing environment. Each hypervisor has two 8-core Intel

Xeon CPU and 16GB memory. A 240GB Intel 535 SSD is

attached, along with one Toshiba AL13SEB300 300GB SAS

hard disk drive. The VMDKs are stored on HDD.

Currently for each application we build a TPC-W System

Under Test (SUT) of two VMs. One is the Apache Tomcat web

server, while the other is the MySQL database server. We put

two VMs on different hypervisor to simulate the access across

different cloud providers. Each VM is equipped with 2 vCPUs

and 1GB of RAM, and 16GB of HDD.
We use 3 VMs to generate workloads and do load testing

on 3 applications. Each VM is also equipped with 2 vCPUs

and 1GB of RAM, and 16GB of HDD. Furthermore, for each

application, we have a total cache size of 512MB available to

allocate to VMs.
In the evaluation part, we compare the performance to the

equally partitioned cache, i.e., to allocate a fixed size of the

cache at a certain percentage of the HDD size of the VM. As

there are 2 VMs in each application, we allocate 256MB of

the SSD cache to each VM.

A. Performance
Firstly, we evaluate the performance from the view of one

application and multiple applications.
1) Performance Focusing on One Application: We compare

the performance of our approach with the equally partitioned

cache in the three modes of TPC-W, which are BROWSING,

SHOPPING and ORDERING. We change the mode of TPC-

W benchmark with the based load of 100 concurrent virtual

users and scale the data from 100,000 entries (the number of

books) to 1,000,000 entries.
We use the TPC-W WIPS (Web Interactions Per Second)

as the major performance metric as it indicates the throughput

of the application. The comparison of WIPS under different

modes is shown in Fig. 2(a) (for the browsing mode), 2(b)

(for the shopping mode) and 2(c) (for the ordering mode).
We observed that the WIPS (Web Interactions Per Sec-

ond) value is improved by up to 40% when using TA-SSD,

comparing to the equally partitioned cache. The performance

amplification increases stably and slowly when the data scale

increases. Moreover, as the data scale increases, the working

sets for the web server and database server also increase.

This results in the performance degradation, especially for

the workload type with high ratio of read operations, which

explains the noticeably difference of Fig. 2(c) comparing to

Fig. 2(a) and 2(b).
We also observed that the decrease of WIPS under the

Ordering mode is not so much as that of the Browsing and

Shopping mode. This is because the ratio of searching new

books and viewing the detail of books is small, and such op-

erations require high load of database scanning which causes

177

TABLE I
OVERVIEW OF TRANSACTIONS

Abbreviation Description Dominant IO

ADMC Admin Confirm (No Dominant IO)
ADMR Admin Request Random read
BESS Best Seller Sequential read
BUYC Buy Confirm Random write
BUYR Buy Request Random read
CREG Registration (No Dominant IO)
HOME Home Random read
NEWP New Products Sequential read
ORDD Order Display Random read
ORDI Order Inquiry (No Dominant IO)
PROD Product Detail Random read
SREQ Search Request (No Dominant IO)
SRES Search Result Sequential Read
SHOP Shopping Cart Random write

the cache replacement. Also, the improvement is significant

for the Ordering mode, as it consists of high ratio of ordering

operations, which triggers the random write operations to the

database.

In summary, TA-SSD monitors and optimizes the perfor-

mance of random read and write operations, so as it can handle

this well.

To further figure out the efficiency of cache allocation, we

analyze the performance improvement of different types of the

transaction, which is shown in Fig. 3. The results is for the

data scale of 1,000,000 entries.

We’ve analyzed the behavior of all transactions in the TPC-

W SUT and list the dominant IO operations in table I. For the

ADMC, CREG, ORDI and SREQ transactions, a simple form

is transferred to the user, and only images for the web page

are loaded, with no heavy IO requests operations. Moreover,

for the BESS, NEWP and SRES transactions, a full table scan

may be triggered, which results in the sequential read of the

database.

We observe up to 50% decrease in latency, especially for

those transaction types with a high ratio of random write

operations, as SSD cache can benefit a lot from random

operations and TA-SSD takes the characteristics of random IO

operations into consideration. Moreover, we have found that

for the NEWP transaction, TA-SSD gets almost similar latency

comparing to the equally allocated cache (approximately 5%

decrease of latency). This is because when processing the

NEWP transaction, a full table scan is triggered to filter books

of specific subjects, which is time consuming on both CPU and

IO when the data scale is large.

2) Performance among All Applications: We also evaluate

TA-SSD in the scenarios with multiple tenants. We deploy

three TPC-W SUTs on two hypervisors. Each application has

different workload mode and different data scale. The appli-

cation 1 is populated with 300,000 entries, while the amount

of entries for application 2 is 500,000 and for application 3 is

700,000.

We choose three different deployment plans for the 3

applications, which is deploying the CPU-sensitive VMs of

0

0.1

0.2

0.3

0.4

0.5

0.6

0

500

1000

1500

2000

2500

3000

3500

ADMC ADMR BESS BUYC BUYR CREG HOME NEWP ORDD ORDI PROD SREQ SRES SHOP

R
e
d

u
c
ti

o
n

L
a
te

n
c
y

 (
m

s
)

Type of transactions

Equally TA-SSD Reduction

Fig. 3. TPC-W Latency of different transactions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BSO BOS SBO SOB OBS OSB

D
e
c
re

a
s
e
 o

f
a
v

e
ra

g
e
 la

te
n

c
y

Mix of workload mode

App-1 App-2 App-3

Fig. 4. Decrease of average latency. The letter “B” indicates the Browsing
mode, while “S” for the Shopping mode and “O” for the Ordering mode.

2 applications together on the same hypervisor, deploying

the applications over different hypervisors, and deploying the

applications on the same hypervisor. Similar to the scenario

of focusing on one application, the base load for each of the

3 application is 100.

We mix the three modes of TPC-W over three applications,

confirming that each application are under different modes,

and then apply the cache allocation on it. We still compare the

WIPS to the equally partitioned cache. The results are shown

in Fig. 4. The x axis indicates the modes of three applications.

The y axis indicates the decrease of average latency of 3

applications, by comparing TA-SSD to the equally partitioned

cache allocation.

We observe that TA-SSD can boost the performance of the

individual application for up to 45% comparing to the equally

partitioned cache, and with average performance improvement

of 20%. Also, TA-SSD works well for applications with high

ratio of random operations, even when multiple applications

compete for the IO resources.

B. Self-Adaptation

We evaluate TA-SSD and find out if it can handle the change

of the workload gracefully. We still compare the performance

of our approach and the equally partitioned cache. It can be

assumed as a straight-forward approach in self adaptation, as

the data blocks in the cache will be replace to adapt to new

environment.

1) Change of Base Load: Firstly, we change the base

workload of TPC-W benchmark, and find out if TA-SSD can

handle this. We focus on one application consists of 2 VMs

deployed on different hypervisors. The data scale is 500,000

and the workload mode is Ordering. We perform the experi-

ment lasting for 4 minutes. The base load is 50 for the first

minute, 100 for the second minute, 200 for the third minute

and 150 for the forth minute, to simulate different overheads.

178

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200 220 240

W
IP

S

Time (s)

Equally TA-SSD

Fig. 5. Change of base load

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

W
IP

S

Time (s)

Equally TA-SSD

Fig. 6. Change of workload type

The results are shown in Fig. 5. We observe that comparing

to the equally partitioned cache, TA-SSD can adapt to the new

workload more quickly. Moreover, for the stabilized perfor-

mance, TA-SSD is up to 40% better than equally partitioned

cache. Also, we observe from the figure that for the extreme

heavy load (200 base load), the WIPS value for both approach

is decreased significantly. This is due to large number of

failed requests marked by the load generator, which is timeout

(longer than the tolerable wait time for the user) or error.

2) Change of Workload Type: We change the type of

the workload and compare the performance of TA-SSD and

equally partitioned cache. We change the type of the workload

for every two minutes and find out if TA-SSD can quickly react

to the new workload. We focus on one application consists of

2 VMs deployed on different hypervisors. The data scale is

500,000 and the base load is 100. We perform the experiment

lasting for 6 minutes, and change the workload mode by the

order of Ordering, Browsing and Shopping, and each lasts for

2 minutes. The results are shown in Fig. 6. We observe that

TA-SSD can quickly react to the workload change, comparing

to the equally partitioned cache. Thus, with the help of closed

loop adaptation, TA-SSD is able to react to the change of the

environment quickly and efficiently.

V. RELATED WORK

In this section, we focus on the related work for the resource

management of Flash-based SSD and cache. Centaur[6] uses

curves of miss rate and IO latency to help allocate the per-VM

SSD cache and meet the requirement of VMs. S-CAVE[12]

considers the number of reused blocks to help identify the

cache space demand of each VM. Unlike Centaur and S-

CAVE, TA-SSD not only uses the low-level performance data,

but also analyzes the characteristics of transaction applications

to help allocate the SSD cache. CloudCache[13] proposes

a new cache demand model for SSD cache, using Reuse

Working Set (RWS) to satisfy the requirement of workloads.

Unlike CloudCache, TA-SSD creates connections between the

high-level application and the low-level IO performance to

figure out the SSD cache requirement of VMs.

VI. CONCLUSION

We present TA-SSD, a novel tool to allocate SSD cache in

Internet-based virtualization environment, in order to improve

the performance of the transactional application. We intro-

duced the MAPE-K feedback loop to automatically detect the

change of the workload mode and trigger the cache adjustment.

Moreover, we use the genetic algorithm based SSD cache

allocation approach to calculate a nearly optimal solution

quickly and efficiently. The evaluation shows that TA-SSD has

the significant advantage over the equally partitioned cache.

ACKNOWLEDGMENT

This work was supported by the National Key Research

and Development Program of China (2016YFB1000103), the

National Natural Science Foundation of China (61572480),

Tianjin Massive Data Processing Technology Laboratory, and

Youth Innovation Promotion Association, CAS (No. 2015088).

REFERENCES

[1] H. Wang, P. Shi, and Y. Zhang, “Jointcloud: A cross-cloud cooperation
architecture for integrated internet service customization,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), June 2017, pp. 1846–1855.

[2] B. An, X. Shan, Z. Cui, C. Cao, and D. Cao, “Workspace as a service: An
online working environment for private cloud,” in 2017 IEEE Symposium
on Service-Oriented System Engineering (SOSE), April 2017, pp. 19–27.

[3] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Wisckey: Separating keys from values in ssd-conscious storage,” in
Proceedings of the 14th Usenix Conference on File and Storage Tech-
nologies, ser. FAST’16. USENIX Association, 2016, pp. 133–148.

[4] J. Kim, D. Lee, and S. H. Noh, “Towards slo complying ssds through
ops isolation,” in Proceedings of the 13th USENIX Conference on File
and Storage Technologies, ser. FAST’15. USENIX Association, 2015,
pp. 183–189.

[5] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-side flash caching
for the data center,” in Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on, April 2012, pp. 1–12.

[6] R. Koller, A. J. Mashtizadeh, and R. Rangaswami, “Centaur: Host-side
ssd caching for storage performance control,” in Autonomic Computing
(ICAC), 2015 IEEE International Conference on, July 2015, pp. 51–60.

[7] A. Computing et al., “An architectural blueprint for autonomic comput-
ing,” IBM White Paper, 2006.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. ACM, 2003, pp. 164–177.

[9] D. Menasce et al., “Tpc-w: A benchmark for e-commerce,” Internet
Computing, IEEE, vol. 6, no. 3, pp. 83–87, 2002.

[10] D. F. Garcı́a and J. Garcı́a, “Tpc-w e-commerce benchmark evaluation,”
Computer, vol. 36, no. 2, pp. 42–48, 2003.

[11] W. Zhang, S. Wang, W. Wang, and H. Zhong, “Bench4q: a qos-oriented
e-commerce benchmark,” in Computer Software and Applications Con-
ference (COMPSAC), 2011 IEEE 35th Annual. IEEE, 2011, pp. 38–47.

[12] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-cave: Effective
ssd caching to improve virtual machine storage performance,” in Pro-
ceedings of the 22Nd International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’13. IEEE Press, 2013, pp.
103–112.

[13] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao, “Cloud-
cache: On-demand flash cache management for cloud computing,”
in Proceedings of the 14th Usenix Conference on File and Storage
Technologies, ser. FAST’16. USENIX Association, 2016, pp. 355–369.

179

