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ABSTRACT 
Due to JavaScript’s dynamic features, it is challenging to debug Ja-

vaScript-based web applications. Thus record-replay techniques 

are developed to facilitate web application debugging. However, it 

is time-consuming to inspect all recorded events that reproduce an 

error. To reduce the cost of debugging, dynamic slicing is used to 

remove error-irrelevant events by tracking program dependence. 

However, it cannot remove irrelevant events that the error has pro-

gram dependence on. In this paper, we propose an effective and 

efficient approach to remove error-irrelevant events in the event 

trace. Our approach builds constraints among events and the error 

(e.g., a variable can read any of its earlier values), to search for a 

minimal event trace that satisfies these constraints. Our evaluation 

on 6 real-world web application errors shows that our approach can 

remove 98% of irrelevant events, and 70% of resulted events by 

dynamic slicing can be further removed. 
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1. INTRODUCTION AND MOTIVATION 
To help diagnose JavaScript-based web application errors, various 

record-replay techniques [1][2] are developed. However, web ap-

plications are becoming more complicated and may generate a long 

event trace after running for a while. It is time-consuming and ex-

hausting to debug with such a long trace. According to a recent 

study [3], a short event trace for an error can significantly increase 

programmers’ efficiency in error diagnosis, fault localization and 

fault correction. Thus, event trace reduction techniques [3][4] are 

proposed to automatically reduce error-irrelevant events. 

Two common techniques (delta debugging [3][5] and dynamic slic-

ing [4]) are used to reduce event traces in web applications. The 

approach in [3] adapts delta debugging to reduce event traces of 

web application errors. It deletes some events that do not influence 

the occurrence of an error in each iteration, until no further events 

can be deleted. However, delta debugging relies on trial-and-error 

(black box), and does not scale to huge event traces due to (1) the 

large search space and (2) re-executing every blindly generated 

event trace. In our experiments, it costs 3 minutes for an event trace 

with only 341 events. 

Our previous work JSTrace [4] adopts dynamic slicing (white box) 

to trace the precise program dependence and discards the events 

that are not depended by an error. However, not all remaining 

events in JSTrace are necessary to reproduce the error. Let’s see an 

example in Figure 1. This code snippet shows the event handler 

when an item is added to a shopping list. Considering the following 

event trace: (1) e1: add an item named “book1”; (2) e2: add an item 

named “book2”; (3) e3: add an item named “book1”. An error will 

occur if two added items have the same name (e.g., “book1”). Only 

e1 and e3 are enough to trigger this error. However, based on dy-

namic slicing, e3 depends on e2 (e3 uses variable shoppingList writ-

ten by e2 at line 3) and e2 depends on e1 (e2 uses variable shop-

pingList written by e1 at line 3). As a result, we cannot delete e2 

although it is unnecessary to reproduce this error. 

In this paper, we propose a novel constraint-based approach to ef-

fectively and efficiently remove error-irrelevant events in the event 

trace that leads to an error. First, we relax the program dependence 

constraint (e.g., a variable can read any of its earlier value), thus 

irrelevant events (e.g., e2) can be removed (effectiveness). Second, 

we use constraints (e.g., variables should be defined before used) 

to filter out event traces that cannot reproduce the error (efficiency). 

2. BACKGROUND AND RELATED WORK 
We focus on those work that concern record-replay in web applica-

tions and techniques for trace/test reduction. 

Record-replay in web applications. Mugshot [1] captures all 

events and all non-deterministic information such as random API 

calls and timers to make sure the replay phase behaves the same. 

Timelapse [2] further supports interactive record-replay. 

Trace/test reduction. Dynamic slicing [4] can be used to reduce 

event traces for web applications, and also for other programs 

[6][7][8]. However, it faces the problem of unnecessary depend-

ency. Andreas [5] proposed delta-debugging to simplify a failing 

test case to a minimal one. The work [3] adopts delta debugging to 

simplify web application event traces. SimpleTest [9] reconstructs 

a test to a simpler one by repeatedly replacing referred expressions 

in each statement with other alternatives. While [10] applies partial-

order and def-use relationship between events to identify redundant 

event traces. However, SimpleTest and While cannot be used for 

event trace reduction. 

3. APPROACH AND UNIQUENESS 
Overview. Figure 2 shows our approach overview. Our approach 

consists of three phases: (1) information collecting. We instrument 

the source code to collect runtime information while replaying the 

original event trace; (2) trace generating. We construct constraints 

according to the collected information, and generate possible event 

traces that can reproduce the error (candidate traces); (3) trace val-

idating. Each candidate trace is validated to check if it can repro-

duce the error, thus the invalidated ones will be pruned. 

The constraints for candidate event traces come from two main ob-

servations: (1) The selected events should at least be feasible (i.e., 

a variable must be defined before used). (2) The exact value of a 

1. function onAddItem(){ 

2.     var item = new Item(getElement(‘item_name’).value); 

3.     shoppingList = shoppingList || []; 

4.     shoppingList.push(item); // Throw an except when item exists. 

5. } 

Figure 1. Event handler for adding items to shopping list. 

 

mailto:wj%7d@otcaix.iscas.ac.cn


variable v may not be critical to the error. Thus, a variable v could 

be relaxed to any of its earlier values that are type-compatible with 

v. For example in Figure 1, we require that shoppingList in e3 reads 

the value written in e1. Thus, we can possibly remove e2. 

Uniqueness. The advantage of our approach is that (1) by relaxing 

the dependency of a variable, rather than the exact dependency used 

in dynamic slicing, the unnecessary dependency (and related events) 

could be removed; (2) by making constraints on the target event 

trace, rather than blindly trial, the search space is greatly narrowed 

down compared to delta-debugging [3]. 

3.1 Information Collecting 
Because shared variables that are accessed by multiple events can 

affect the execution of an event trace, we only trace shared varia-

bles in the event trace. We instrument the source code to collect 

necessary runtime information. 

We collect type and def-use information for each shared variable v 

so that we can build a minimal syntax constraint (Section 3.2.1) and 

the value of v can be relaxed to its any value that is type-compatible 

with v (Section 3.2.2). For each shared variable v: 1) The type of v 

can be “undefined”, “number”, “string”, “boolean”, and “object”. 

For a DOM element, we mark it as “DOM” type instead of “object”. 

2) The events that operate on v and define v are recorded. 

We symbolize each shared variable v and trace their symbolic ex-

pressions so that we can use them to check if a specific program 

state is satisfied (Section 3.3). Symbolic expressions are collected 

similar to any dynamic symbolic execution [11][12][13]. 

3.2 Event Trace Generating 
Given an original event trace 𝜏 = {𝑒1,  𝑒2 , … , 𝑒𝑛} that can repro-

duce an error, our approach could generate a subset 𝜏 , of 𝜏 that can 

still reproduce the error. The trace 𝜏 , should be as short as possible. 

Let select(ei) denote whether event ei is selected by 𝜏 ,. If ei is se-

lected by 𝜏 ,, ei = 1. Formally, select(ei) is: 

select(ei) ≡ (ei==1). 

The trace generating formula Φ is constructed by a conjunction of 

three sub-formulas: Φ ≡ Φd ⋀ Φc ⋀ Φm ⋀ Φe, where Φd denotes the 

minimal syntax constraint, Φc denotes the type-compatible con-

straint, Φm denotes the length constraints, and Φe denotes that the 

error-triggering event must be selected. 

3.2.1 Minimal Syntax Constraint (Φd) 

The minimal syntax constraint (Φd) ensures that a variable is used 

after necessary definition. Specifically, Φd requires that: (1) A local 

variable should be explicitly defined. A global variable could be 

used without definition, but a local variable must be explicitly de-

fined using keyword var. Thus, if event e is selected, then all events 

that define the variables used by e should be selected. (2) An event 

handler should be called after its registration. Otherwise, an event 

will fail to trigger the event handler. Thus, if event e is selected, 

then the events that register the event handler of e should be se-

lected. We can regard an event handler as a variable v, and the reg-

istration of v as its definition. Let use(e) be the set of variables used 

by e, def(v) be the event that defines the variable v. Formally, Φd is: 

Φd ≡ ⋀e∈τ(select(e) ⇒ ⋀v∈use(e) select(def(v))). 

3.2.2 Type-Compatible Constraint (Φc) 

Type-compatible constraint (Φc) is used to ensure that each variable 

reads the same type as recorded, although their exact value may be 

different. By relaxing the dependency of a variable, we can gener-

ate more simplified trace. Φc requires that if an event e is selected, 

then for all variables used by e, at least one of its type-compatible 

modification events is selected. Let CEvent(v) be the set of events 

that contain type-compatible modifications to v. Formally, Φc is: 

Φc ≡ ⋀ e∈τ select(e) ⇒ ⋀v∈use(e) ( ⋁ej∈CEvent(v) select(ej)). 

We can directly compare the type information collected by sym-

bolic recorder to decide if a previous modification is type-compat-

ible. However, if v is marked as “DOM” type, we need to subtly 

models its CEvent(v) because DOM is build-in object in browser 

and has complicated (native) APIs. For DOM type, we say v1 is 

type-compatible with v2 when the DOM tree of v1 has the same 

structure as the DOM tree of v2. 

3.2.3 Length Constraint (Φm) 

Length constraint (Φm) is used to restrict the length of candidate 

event traces. Let length be the required maximal length of candidate 

traces. We could generate candidate traces by increasing length 

from 1. Formally, Φm is: 

Φm ≡ (∑
e∈τ

ei) == length. 

3.3 Event Trace Validating 
The generated candidate traces are checked whether they can re-

produce the error, and thus prune the false ones. Instead of simply 

replaying the candidate traces as delta debugging, we utilize the 

collected symbolic expressions to check the validation. 

Our observation is that the execution of a valid event trace may 

follow the same path conditions and hit the same error as the origi-

nal event trace does. That is, for each valid trace, the following con-

straints should be satisfied: (1) Path constraint (Φp). All the path 

conditions hold the same value as recorded. (2) Error constraint 

(Φa). Error assertions tell if the error will occur. We calculate the 

value of each symbolic expression for a given candidate trace and 

further to check if the symbolic expression for Φp⋀Φa is satisfied. 

4. RESULTS AND CONTRIBUTIONS 
Our evaluation answers the following two questions: (1) whether 

our approach can effectively remove error-irrelevant events; (2) 

how is our approach compared to existing approaches (dynamic-

slicing [4] and delta-debugging [3]). Our approach is evaluated on 

6 real-world errors in terms of reduction rate, search space and time 

overhead. The result shows that our approach can effectively re-

move 98% of error-irrelevant events, and can further remove 70% 

of resulted events by dynamic slicing [4]. The average reduction 

time overhead is less than 1 minute. Our approach narrows down 

the search space to 3.2% compared to delta debugging [3], while 

keeping high reduction rate. The contributions of this paper are as 

follows: 

• We propose a novel approach that transforms event trace re-

duction problem into a constraint solving problem. 

• The evaluation on 6 real-world web application errors show 

our approach can effectively and efficiently remove error-ir-

relevant events. 

 

Figure 2. Approach overview. 
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