
Constraint-based Event Trace Reduction
Jie Wang

University of Chinese Academy of Sciences
Institute of Software, Chinese Academy of Sciences, Beijing, China

wangjie12@otcaix.iscas.ac.cn

ABSTRACT
Due to JavaScript’s dynamic features, it is challenging to debug Ja-

vaScript-based web applications. Thus record-replay techniques

are developed to facilitate web application debugging. However, it

is time-consuming to inspect all recorded events that reproduce an

error. To reduce the cost of debugging, dynamic slicing is used to

remove error-irrelevant events by tracking program dependence.

However, it cannot remove irrelevant events that the error has pro-

gram dependence on. In this paper, we propose an effective and

efficient approach to remove error-irrelevant events in the event

trace. Our approach builds constraints among events and the error

(e.g., a variable can read any of its earlier values), to search for a

minimal event trace that satisfies these constraints. Our evaluation

on 6 real-world web application errors shows that our approach can

remove 98% of irrelevant events, and 70% of resulted events by

dynamic slicing can be further removed.

CCS Concepts

•Software and its engineering→Software testing and debugging

Keywords

JavaScript; record-replay; event trace reduction

1. INTRODUCTION AND MOTIVATION
To help diagnose JavaScript-based web application errors, various

record-replay techniques [1][2] are developed. However, web ap-

plications are becoming more complicated and may generate a long

event trace after running for a while. It is time-consuming and ex-

hausting to debug with such a long trace. According to a recent

study [3], a short event trace for an error can significantly increase

programmers’ efficiency in error diagnosis, fault localization and

fault correction. Thus, event trace reduction techniques [3][4] are

proposed to automatically reduce error-irrelevant events.

Two common techniques (delta debugging [3][5] and dynamic slic-

ing [4]) are used to reduce event traces in web applications. The

approach in [3] adapts delta debugging to reduce event traces of

web application errors. It deletes some events that do not influence

the occurrence of an error in each iteration, until no further events

can be deleted. However, delta debugging relies on trial-and-error

(black box), and does not scale to huge event traces due to (1) the

large search space and (2) re-executing every blindly generated

event trace. In our experiments, it costs 3 minutes for an event trace

with only 341 events.

Our previous work JSTrace [4] adopts dynamic slicing (white box)

to trace the precise program dependence and discards the events

that are not depended by an error. However, not all remaining

events in JSTrace are necessary to reproduce the error. Let’s see an

example in Figure 1. This code snippet shows the event handler

when an item is added to a shopping list. Considering the following

event trace: (1) e1: add an item named “book1”; (2) e2: add an item

named “book2”; (3) e3: add an item named “book1”. An error will

occur if two added items have the same name (e.g., “book1”). Only

e1 and e3 are enough to trigger this error. However, based on dy-

namic slicing, e3 depends on e2 (e3 uses variable shoppingList writ-

ten by e2 at line 3) and e2 depends on e1 (e2 uses variable shop-

pingList written by e1 at line 3). As a result, we cannot delete e2

although it is unnecessary to reproduce this error.

In this paper, we propose a novel constraint-based approach to ef-

fectively and efficiently remove error-irrelevant events in the event

trace that leads to an error. First, we relax the program dependence

constraint (e.g., a variable can read any of its earlier value), thus

irrelevant events (e.g., e2) can be removed (effectiveness). Second,

we use constraints (e.g., variables should be defined before used)

to filter out event traces that cannot reproduce the error (efficiency).

2. BACKGROUND AND RELATED WORK
We focus on those work that concern record-replay in web applica-

tions and techniques for trace/test reduction.

Record-replay in web applications. Mugshot [1] captures all

events and all non-deterministic information such as random API

calls and timers to make sure the replay phase behaves the same.

Timelapse [2] further supports interactive record-replay.

Trace/test reduction. Dynamic slicing [4] can be used to reduce

event traces for web applications, and also for other programs

[6][7][8]. However, it faces the problem of unnecessary depend-

ency. Andreas [5] proposed delta-debugging to simplify a failing

test case to a minimal one. The work [3] adopts delta debugging to

simplify web application event traces. SimpleTest [9] reconstructs

a test to a simpler one by repeatedly replacing referred expressions

in each statement with other alternatives. While [10] applies partial-

order and def-use relationship between events to identify redundant

event traces. However, SimpleTest and While cannot be used for

event trace reduction.

3. APPROACH AND UNIQUENESS
Overview. Figure 2 shows our approach overview. Our approach

consists of three phases: (1) information collecting. We instrument

the source code to collect runtime information while replaying the

original event trace; (2) trace generating. We construct constraints

according to the collected information, and generate possible event

traces that can reproduce the error (candidate traces); (3) trace val-

idating. Each candidate trace is validated to check if it can repro-

duce the error, thus the invalidated ones will be pruned.

The constraints for candidate event traces come from two main ob-

servations: (1) The selected events should at least be feasible (i.e.,

a variable must be defined before used). (2) The exact value of a

1. function onAddItem(){

2. var item = new Item(getElement(‘item_name’).value);

3. shoppingList = shoppingList || [];

4. shoppingList.push(item); // Throw an except when item exists.

5. }

Figure 1. Event handler for adding items to shopping list.

mailto:wj%7d@otcaix.iscas.ac.cn

variable v may not be critical to the error. Thus, a variable v could

be relaxed to any of its earlier values that are type-compatible with

v. For example in Figure 1, we require that shoppingList in e3 reads

the value written in e1. Thus, we can possibly remove e2.

Uniqueness. The advantage of our approach is that (1) by relaxing

the dependency of a variable, rather than the exact dependency used

in dynamic slicing, the unnecessary dependency (and related events)

could be removed; (2) by making constraints on the target event

trace, rather than blindly trial, the search space is greatly narrowed

down compared to delta-debugging [3].

3.1 Information Collecting
Because shared variables that are accessed by multiple events can

affect the execution of an event trace, we only trace shared varia-

bles in the event trace. We instrument the source code to collect

necessary runtime information.

We collect type and def-use information for each shared variable v

so that we can build a minimal syntax constraint (Section 3.2.1) and

the value of v can be relaxed to its any value that is type-compatible

with v (Section 3.2.2). For each shared variable v: 1) The type of v

can be “undefined”, “number”, “string”, “boolean”, and “object”.

For a DOM element, we mark it as “DOM” type instead of “object”.

2) The events that operate on v and define v are recorded.

We symbolize each shared variable v and trace their symbolic ex-

pressions so that we can use them to check if a specific program

state is satisfied (Section 3.3). Symbolic expressions are collected

similar to any dynamic symbolic execution [11][12][13].

3.2 Event Trace Generating
Given an original event trace 𝜏 = {𝑒1, 𝑒2 , … , 𝑒𝑛} that can repro-

duce an error, our approach could generate a subset 𝜏 , of 𝜏 that can

still reproduce the error. The trace 𝜏 , should be as short as possible.

Let select(ei) denote whether event ei is selected by 𝜏 ,. If ei is se-

lected by 𝜏 ,, ei = 1. Formally, select(ei) is:

select(ei) ≡ (ei==1).

The trace generating formula Φ is constructed by a conjunction of

three sub-formulas: Φ ≡ Φd ⋀ Φc ⋀ Φm ⋀ Φe, where Φd denotes the

minimal syntax constraint, Φc denotes the type-compatible con-

straint, Φm denotes the length constraints, and Φe denotes that the

error-triggering event must be selected.

3.2.1 Minimal Syntax Constraint (Φd)

The minimal syntax constraint (Φd) ensures that a variable is used

after necessary definition. Specifically, Φd requires that: (1) A local

variable should be explicitly defined. A global variable could be

used without definition, but a local variable must be explicitly de-

fined using keyword var. Thus, if event e is selected, then all events

that define the variables used by e should be selected. (2) An event

handler should be called after its registration. Otherwise, an event

will fail to trigger the event handler. Thus, if event e is selected,

then the events that register the event handler of e should be se-

lected. We can regard an event handler as a variable v, and the reg-

istration of v as its definition. Let use(e) be the set of variables used

by e, def(v) be the event that defines the variable v. Formally, Φd is:

Φd ≡ ⋀e∈τ(select(e) ⇒ ⋀v∈use(e) select(def(v))).

3.2.2 Type-Compatible Constraint (Φc)

Type-compatible constraint (Φc) is used to ensure that each variable

reads the same type as recorded, although their exact value may be

different. By relaxing the dependency of a variable, we can gener-

ate more simplified trace. Φc requires that if an event e is selected,

then for all variables used by e, at least one of its type-compatible

modification events is selected. Let CEvent(v) be the set of events

that contain type-compatible modifications to v. Formally, Φc is:

Φc ≡ ⋀ e∈τ select(e) ⇒ ⋀v∈use(e) (⋁ej∈CEvent(v) select(ej)).

We can directly compare the type information collected by sym-

bolic recorder to decide if a previous modification is type-compat-

ible. However, if v is marked as “DOM” type, we need to subtly

models its CEvent(v) because DOM is build-in object in browser

and has complicated (native) APIs. For DOM type, we say v1 is

type-compatible with v2 when the DOM tree of v1 has the same

structure as the DOM tree of v2.

3.2.3 Length Constraint (Φm)

Length constraint (Φm) is used to restrict the length of candidate

event traces. Let length be the required maximal length of candidate

traces. We could generate candidate traces by increasing length

from 1. Formally, Φm is:

Φm ≡ (∑
e∈τ

ei) == length.

3.3 Event Trace Validating
The generated candidate traces are checked whether they can re-

produce the error, and thus prune the false ones. Instead of simply

replaying the candidate traces as delta debugging, we utilize the

collected symbolic expressions to check the validation.

Our observation is that the execution of a valid event trace may

follow the same path conditions and hit the same error as the origi-

nal event trace does. That is, for each valid trace, the following con-

straints should be satisfied: (1) Path constraint (Φp). All the path

conditions hold the same value as recorded. (2) Error constraint

(Φa). Error assertions tell if the error will occur. We calculate the

value of each symbolic expression for a given candidate trace and

further to check if the symbolic expression for Φp⋀Φa is satisfied.

4. RESULTS AND CONTRIBUTIONS
Our evaluation answers the following two questions: (1) whether

our approach can effectively remove error-irrelevant events; (2)

how is our approach compared to existing approaches (dynamic-

slicing [4] and delta-debugging [3]). Our approach is evaluated on

6 real-world errors in terms of reduction rate, search space and time

overhead. The result shows that our approach can effectively re-

move 98% of error-irrelevant events, and can further remove 70%

of resulted events by dynamic slicing [4]. The average reduction

time overhead is less than 1 minute. Our approach narrows down

the search space to 3.2% compared to delta debugging [3], while

keeping high reduction rate. The contributions of this paper are as

follows:

• We propose a novel approach that transforms event trace re-

duction problem into a constraint solving problem.

• The evaluation on 6 real-world web application errors show

our approach can effectively and efficiently remove error-ir-

relevant events.

Figure 2. Approach overview.

5. REFERENCES
[1] J. Mickens, J. Elson, and J. Howell, “Mugshot :

Deterministic Capture and Replay for JavaScript

Applications,” in Proceedings of the 7th USENIX

Conference on Networked Systems Design and

Implementation(NSDI), 2010, pp. 159–174.

[2] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive

Record/Replay for Web Application Debugging,” in

Preceedings of User Interface Software and Technology

(UIST), 2013, pp. 473–484.

[3] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel, “On the

Use of Delta Debugging to Reduce Recordings and

Facilitate Debugging of Web Applications,” in Proceedings

of the 10th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software (ESEC/FSE),

2015, pp. 333–344.

[4] J. Wang, W. Dou, C. Gao, and J. Wei, “Fast reproducing

web application errors,” in Preceedings of the 26th

International Symposium on Software Reliability

Engineering (ISSRE), 2015, pp. 530–540.

[5] A. Zeller and R. Hildebrandt, “Simplifying and Isolating

Failure-inducing Input,” IEEE Transactions on Software

Engineering (TSE), vol. 28, no. 2, pp. 183–200, 2002.

[6] J. Krinke, “Context-Sensitive Slicing of Concurrent

Programs,” Proceedings of the 9th European software

engineering conference held jointly with 11th ACM

SIGSOFT international symposium on Foundations of

software engineering (ESEC/FSE), pp. 178–187, 2003.

[7] D. Giffhorn and C. Hammer, “Precise Slicing of Concurrent

Programs: An Evaluation of Static Slicing Algorithms for

Concurrent Programs,” Automated Software Engineering,

vol. 16, no. 2, pp. 197–234, 2009.

[8] X. Zhang, S. Tallam, and R. Gupta, “Dynamic Slicing Long

Running Programs Through Execution Fast Forwarding,”

Proceedings of the 14th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE),

pp. 81–91, 2006.

[9] S. Zhang, “Practical Semantic Test Simplification,” in

Proceedings of the International Conference on Software

Engineering (ICSE), 2013, pp. 1173–1176.

[10] S. Arlt, A. Podelski, and M. Wehrle, “Reducing GUI Test

Suites via Program Slicing,” in Proceedings of the

International Symposium on Software Testing and Analysis

(ISSTA), 2014, pp. 270–281.

[11] K. Sen, “Concolic Testing,” in Proceedings of the twenty-

second IEEE/ACM international conference on Automated

software engineering (ASE), 2007, pp. 571–572.

[12] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic

Symbolic Testing of JavaScript Web Applications,” in

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering(ICSE),

2014, pp. 449–459.

[13] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You

Ever Wanted to Know about Dynamic Taint Analysis and

Forward Symbolic Execution,” in IEEE Symposium on

Security & Privacy (S&P), 2010, pp. 317–331.

