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ABSTRACT 
Spreadsheets are widely used by end users for numerical compu-
tation in their business. Spreadsheet cells whose computation is 
subject to the same semantics are often clustered in a row or col-
umn. When a spreadsheet evolves, these cell clusters can degener-
ate due to ad hoc modifications or undisciplined copy-and-pastes. 
Such degenerated clusters no longer keep cells prescribing the 
same computational semantics, and are said to exhibit ambiguous 
computation smells. Our empirical study finds that such smells are 
common and likely harmful. We propose AmCheck, a novel tech-
nique that automatically detects and repairs ambiguous computa-
tion smells by recovering their intended computational semantics. 
A case study using AmCheck suggests that it is useful for discov-
ering and repairing real spreadsheet problems. 

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement – restructuring, reverse engineering, and reengi-
neering 

General Terms 
Reliability, Experimentation, Human Factors 

Keywords 
Spreadsheet, ambiguous computation, smell, repair 

1. INTRODUCTION 
Spreadsheets are generally developed and maintained by end users 
who are not familiar with appropriate software development prac-
tice. As a result, spreadsheets have been found to be error-prone 
[28]. Spreadsheet errors can induce great financial losses [26]. 
Various techniques have been proposed to improve the quality of 
spreadsheets. Some examples include testing [12][23][2], error or 
smell detection [6][19][20], and debugging [3][30]. 

A spreadsheet comprises tables of cells arranged in rows and col-
umns. We refer to a cell cluster as a cell array when it is subject 

to the same computational semantics. For example, the cells 
[D2:D7] in Figure 1(b) refer to the semantics of “Total” and uni-
formly follow a formula pattern of Di = Bi + Ci, where 2 ≤ i ≤ 7. In 
general, cell arrays can be specified manually or with tool assis-
tance. In this paper, we focus only on those cell arrays subject to 
computational semantics expressed in formula patterns without 
using “if” conditions. Our empirical study reports that there are 
altogether 16,385 cell arrays among 993 (out of 4,037) spread-
sheets in the EUSES corpus [11]. This indicates that cell arrays 
are common in real-life spreadsheets. 

Spreadsheet smells can occur due to a distortion of, or an ambi-
guity in, the meaning of data or formulas [29]. Spreadsheet soft-
ware like Excel provides two useful features, copy-and-paste and 
auto-fill, to reduce the chances of introducing smells during the 
creation of new cells in a cell array. Both features can help auto-
matically deduce a formula pattern from selected sample cells 
[35], and apply it to the new cells in a cell array. 

Although the two features provide convenience in editing spread-
sheets, their application is restrictive in the sense that end users 
have little control on the formula pattern deduction process. They 
may not even be aware of deduced formula patterns. After editing, 
there is no record in the new cells that they have been created 
using these two features, and therefore have to be uniformly mod-
ified in future. Little provision is offered to warn end users from 
modifying these cells arbitrarily. In principle, all cells in a cell 
array should prescribe the same computational semantics. A cell 
array is said to suffer from an ambiguous computation smell when 
there is more than one computational semantic among the cells it 
contains. Ad hoc modifications to these cells are one major cause 
of ambiguous computation smells. For example, the cell array 
[D2:D7] in Figure 1(a) could be a consequence of ad hoc cell 
modifications that result in four different formula patterns, leading 
to an ambiguous computation smell. Note that no warning can be 
raised by spreadsheet software to alert end users of such a smell. 
This smell can exist for a long time and even be replicated to oth-
er spreadsheets without being discovered. Even though this cell 
array currently offers a correct value in each cell, it is error-prone 
and susceptible to developing errors upon future data updates. For 
example, the value in D2 would be incorrect if the value of C2 is 
later updated to 1. As ambiguous computation smells are vulnera-
ble to errors, their early detection is important. It is particularly 
the case for those spreadsheets subject to liability consequences 
such as company reports for release to authorized third parties. 

Spreadsheet software like Excel provides a mechanism to detect 
cells with inappropriate formulas. However, the detection is appli-
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Smells can occur in a cell array when end users make ad hoc mod-
ifications to its cells. Such modifications can be made by inexpe-
rienced end users to accommodate last-minute modifications un-
der tight deadlines. We find two common types of ambiguous 
computation smell: missing formula smell and inconsistent formu-
la smell, as explained earlier. A missing formula smell occurs in a 
not well-formed cell array when it contains a data cell. An incon-
sistent formula smell occurs in a not well-formed cell array when 
it has two formula cells with semantically different R1C1 expres-
sions. A cell array of more than two cells can suffer from missing 
formula and inconsistent formula smells at the same time. 

Definition 2: A conformance error occurs when the value of a 
cell in a cell array does not conform to that computed by this cell 
array’s ��������: 

∃� ∈ ���������, �. �����	 ≠ ��������(�. ������). 

A conformance error may be caused by improper modifications to 
a cell array such that it suffers from ambiguous computation 
smells. Conformance errors reflect true data discrepancies in 
spreadsheets, such as F7 in Figure 1(a). 

4. DETECTING AND REPAIRING 
AMBIGUOUS COMPUTATION SMELLS 
Given a spreadsheet, our AmCheck analyzes it and reports all 
detected ambiguous computation smells with repair suggestions. 
AmCheck heuristically identifies cell arrays (§4.1), and detects 
ambiguous computation smells via constraint solving (§4.2). To 
repair ambiguous computation smells, AmCheck infers an 
�������� in two steps. First, AmCheck uses values and formulas in 

a cell array to derive constraints associated with its underlying 
formula pattern (§4.3). Second, AmCheck infers an �������� based 

on these constraints. In order to expedite the inference process, 
AmCheck combines heuristics (§4.4) and program synthesis tech-
niques (§4.5). After the inference, AmCheck reports a conform-
ance error if any cell in a cell array has a value not conforming to 
the one computed by the inferred ��������. 

4.1 Extracting Cell Arrays 
The first challenge of ambiguous computation smell detection is 
to identify cell arrays from a given spreadsheet, which has no 
record about cells previously prepared by copy-and-paste and 
auto-fill. We observe that a spreadsheet snippet usually provides 
useful hints about boundaries of cell arrays. Besides, the formula 
of a cell in a cell array often references other cells in the same row 
or column as this cell. These two observations facilitate our cell 
array identification and extraction. 

The first step is to identify potential snippets. Related data and 
formulas in a spreadsheet are often clustered together in a rectan-
gle circumscribed by empty cells or labels [16]. We refer to such 
rectangles of cells as snippets. Examples of spreadsheet snippets 
in Figure 1(a) include two rectangles comprising cells [B2:F7] 
and [B9:D9], respectively. 

To identify snippets, we adopt a cell classification strategy, simi-
lar to what Abraham and Erwig [4] suggested. We define a fence 
as a row or column of cells that comprises only empty cells or 
labels in a spreadsheet. We use fences to identify boundaries for 
each spreadsheet snippet. Other cells inside the identified bounda-
ries are considered as cells of this spreadsheet snippet. 

We describe our spreadsheet snippet identification algorithm 
briefly as follows. Initially, each spreadsheet is considered as one 
snippet. We then identify fences in this snippet, and divide this 
snippet into more ones by the identified fences. For each newly 

identified snippet, we repeat this refinement until no further snip-
pet can be identified. 

The second step is to extract cell arrays from identified spread-
sheet snippets. As mentioned, the formula of a cell in a cell array 
often references other cells in the same row or column as this cell. 
Our cell array extraction algorithm works as follows. For each 
snippet, it examines consecutive cells clustered in a row or col-
umn, and considers a cluster as a cell array if: (1) the cluster is not 
a subset of another cell array, and (2) the formula of each cell in 
the cluster consistently references input cells from the same col-
umn or row as this cell. The algorithm may encounter the follow-
ing four scenarios in its extraction process: 

 Row-based cell array: For a cluster of consecutive cells in a 
row, some cells contain formulas, and for each cell with a 
formula, its formula only references input cells from the same 
column as this cell. We then consider this cluster as a row-
based cell array. One example is [B9:C9] in Figure 1(a). 

 Column-based cell array: For a cluster of consecutive cells 
in a column, some cells contain formulas, and for each cell 
with a formula, its formula only references input cells from 
the same row as this cell. We then consider this cluster as a 
column-based cell array. One example is [D2:D7] in Figure 
1(a). 

 Pure value: It is hard to judge whether a row or column con-
taining only data cells prescribes one business concept and is 
subject to certain computational semantics. We do not consid-
er such rows or columns as cell arrays. 

 Other cases: If a row or column does not belong to any of the 
above cases, we also do not consider it as a cell array. 

4.2 Detecting Ambiguous Computation Smells 
By Definition 1, a cell array is well-formed if it satisfies: (1) it 
contains only formula cells, (2) all its formulas use the same in-
puts (in R1C1 notation), and (3) all its formulas give the same 
outputs given the same input values. Thus, we can map ambigu-
ous computation smell detection to a constraint satisfaction prob-
lem, and rewrite the above three conditions as follows: 

∀��, �� ∈ ���������, �(��. ���) = 	�(��. ���) 
∧	∄	�����, ��. ���(�����) ≠ ��. ���(�����). 

Here, we use input to denote any possible input values to cells c1’s 
and c2’s expressions. If a cell array does not satisfy any of the 
above conditions, it suffers from ambiguous computation smells. 

4.3 Extracting Formula Cell Constraints 
Given a smelly cell array, we expect AmCheck to detect any ex-
istence of conformance errors as defined in Definition 2. To do 
that, AmCheck needs to recover an R1C1 expression from exist-
ing cells to represent this cell array’s ��������. 

Our construction technique is inspired by component-based pro-
gram synthesis, which synthesizes a loopless program from com-
ponents, input-output pairs and specifications used by this pro-
gram [14][21]. The construction is based on three assumptions: (1) 
Components in formulas used by a cell array are often compo-
nents used by this cell array’s ��������; (2) Most values should be 

correct for this cell array, and they can serve as input-output pairs; 
(3) Existing formulas in the cell array are good hints of ��������. 

Under these assumptions, AmCheck recovers an R1C1 expression 
by extracting its constraints from cells of a smelly cell array, and 
combining them appropriately. The extraction process consists of 
four parts, i.e., extracting input variables, components, input-
output pairs and functions from a smelly cell array, as follows: 
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1) All cells referenced by formulas in a cell array are considered 
as input variables for this cell array’s ��������. For example, 

input variables for CellArray1 are RC[-2] and RC[-1], input 
variables for CellArray2 are RC[-2] and RC[-1], and input 
variables for CellArray3 are R[-7]C, R[-6]C, …, R[-2]C (in 
Figure 1 (a)). The process may extract irrelevant input varia-
bles, which can be removed at a later stage. Let IV be the set 
of all input variables of a cell array. After extracting n input 
variables for �������� , we can model ��������  as a function 

�(��, ��, … ��). Formally, IV is defined as follows: 

�� = �(��. ���) ∪ �(��. ���) … ∪ �(��. ���), 
where	��, ��, … �� ∈ ���������. 

2) All operators used by formulas in the cell array are considered 
as components. For example, components from CellArray1 
include “*”, components from CellArray2 include “+” and “–
”, and components from CellArray3 include “+” and SUM. 
Some components may be irrelevant, but we can skip them at 
a later stage. If AmCheck fails to find any operator from a cell 
array, it would add basic operators (e.g., +, –, *, /) as compo-
nents. 

3) All data in the cell array are considered as input-output pairs. 
For example, in CellArray2, <(1, 0), 1>, <(2, 0), 2>, <(3, 0), 
3>, <(4, 1), 5>, <(0, 5), 5> and <(0, 6), 6> are considered as 
input-output pairs. 

4) Existing formulas in the cell array can be modeled as func-
tions. For example, one can extract from CellArray2 four 
functions, namely, f(x1, 0) = x1, f(x1, x2) = x1 + x2, f(x1, x2) = x1 
– x2 and f(0, x2) = x2. These functions are treated as specifica-
tions in component-based program synthesis [14][21]. 

All these extracted input variables, components, input-output pairs 
and functions are constraints used for recovering ��������. 

4.4 Recovering �������� 
We observe that a cell array’s �������� can exist in functions ex-

tracted from the cell array’s formula cells. For example, function 
f(x1, x2) = x1 * x2 extracted from formula cells in CellArray1 in 
Figure 1(a) is a good candidate for recovering CellArray1’s 
�������� . This observation enables us to recover a cell array’s 

�������� based on a candidate set of functions obtained from its 

formula cells. This can significantly reduce the cost of formula 
pattern inference since program synthesis [21] is expensive. We 
aim to select a function that contains all input variables and covers 
all cells in a cell array as its ��������. We say that a function co-

vers a data cell when the cell’s value can be computed by the 
function. For example, the value of F5 in CellArray1 in Figure 1(a) 
can be computed by f(x1, x2) = x1 * x2. We say that a function co-
vers a formula cell if the function is compatible with the one ex-
tracted from the cell’s formula in the sense that both of them can 
produce the same outputs given the same inputs. For example, 
function f(x1, x2) = x1 + x2 is compatible with function f(x1, 0) = x1 

extracted from D2 in Figure 1(a). Note that the second parameter 
binds to zero for the two functions to have the same inputs. How-
ever, f(x1, x2) = x1 + x2 is incompatible with another function f(x1, 
x2) = x1 – x2 extracted from D4 in CellArray2 in Figure 1(a) be-
cause their outputs are different when x1 is 0 and x2 is 1. 

Algorithm 1 gives our �������� recovery algorithm. The algorithm 

returns NULL if it fails to recover any ��������  from functions 

extracted from a given cell array, which contains at least one for-
mula cell. If only one function can be extracted from a given cell 
array, it is treated as the cell array’s �������� (Lines 13). Other-

wise, a function that can cover (by the Coverage method) all val-
ues and formulas in the given cell array (Lines 410) is treated as 
the ��������. The Coverage method (Lines 1327) computes the 

ratio of the number of cells a function can cover over the total 
number of cells in the cell array. Lines 17-19 (and Lines 21-23) 
check whether a formula (and data) cell is covered by a function. 

4.5 Synthesizing �������� 
The ��������  recovery algorithm returns NULL when it fails to 

identify an appropriate ��������  of a smelly cell array from its 

extracted functions. When this happens, AmCheck synthesizes the  
�������� using component-based program synthesis [14][21]. 

Let us review the basic mechanism of component-based program 
synthesis to construct a program before explaining the �������� 

synthesis algorithm. Program synthesis first derives constraints 
(constraintsps) for a program to be synthesized based on a set of 
components and input-output pairs (generated by specifications 
[14] or provided by users [21]). It then solves constraintsps to 
synthesize the program. If the input-output pairs provided are not 
sufficiently restrictive, multiple candidate programs can be syn-
thesized (all satisfying constraintsps). More input-output pairs can 
be used to provide additional constraints to strengthen con-
straintsps until a unique program is synthesized. 

Algorithm 2 gives the pseudo-code of our �������� synthesis algo-

rithm. There are three challenges in synthesizing the ��������: (1) 

Component-based program synthesis [14][21] requires users to 
explicitly provide components and input-output pairs [21]. The 
algorithm addresses this using constraints extracted from values 
and formulas in a smelly cell array (§4.3). (2) Functions extracted 
from a smelly cell array’s formulas can be incompatible with one 
another. For example, two functions f(x1, x2) = x1 + x2 and f(x1, x2) 
= x1 – x2 extracted from CellArray2 in Figure 1(a) are incompati-
ble. Such incompatibility can make our �������� synthesis fail. (3) 

Data cells may contain incorrect values, which cannot be comput-
ed by an appropriate ��������  of the cell array. Such incorrect 

values can also make our �������� synthesis fail. 

To tackle the second challenge, Algorithm 2 classifies extracted 
functions into compatible groups using the Classify method (Line 

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 1. �������� recovery algorithm. 
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Input: IV (input variables), FUNC (functions), IO (input–
output pairs), CA (cell array). 

Output: F (target formula pattern) or NULL. 
 1:  if (FUNC.length == 1) 
 2:    return FUNC.get(0) 
 3:  end if 
 4:  foreach fn in FUNC do 
 5:    if fn contains all input variables in IV then 
 6:      if (Coverage(fn, CA) == 100%) then 
 7:        return fn 
 8:      end if 
 9:    end if 
10:  end for 
11:  return NULL 
12: 
13:  method Coverage(fn, CA) 
14:    coveredCells = 0 
15:    foreach cell in CA do 
16:      if (cell.type == FORMULA) then 

17:        if (!input. fn(input)cell.exp(input)) then 
18:          coveredCells ++ 
19:        end if 
20:      else  // Plain value case 
21:        if (fn(cell.input) == cell.value) then 
22:          coveredCells ++ 
23:        end if 
24:      end if 
25:    end for 
26:    return coveredCells / CA.length 
27:  end method 

852



1) 
od classifies as many
as
them iteratively into compatible groups
function 
a new
functions
18
patible groups
groups
x

To tackle

candidates
two observations: (1) the inclusion of input
from incorrect data cells can result in unsuccessful synthesis of 
�

data cells are incorrect; (2) the additional constr
output pairs are useful 

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize 
�

method is implemented to follow 
technique 
gives an 

functions in 
tain 
collectively constitute only a partial specification for 

synthesis.
rich the specification with additional constraints given by the i
put
�

candidates 
array while i
lieves us from the need to identify incorrect data cells and exclude 
their associated input
can be found in related work 
arbitrary one of 

result. 

2
the

AmCheck infers an 

thesize the 

use the 

cell array. 

5.
Our tool implementation of 
convenience,
Excel files
smells
ous computation smells and

We implemented AmCheck
underlying 
transform

e.g., 
For visualization
tations
smell

                                        
1 

1) such that all functions in each group
od classifies as many
as possible. The 
them iteratively into compatible groups
function f that cannot be classified into existing groups, it creates 
a new compatible 
functions compatible with 
1822). Note that a
patible groups. 
groups from CellArray2
x1 + x2 and f(0, x2

To tackle the third challenge, 

candidates in two steps. The two
two observations: (1) the inclusion of input
from incorrect data cells can result in unsuccessful synthesis of 
��������  candidates, but we have no prior knowledge of which 

data cells are incorrect; (2) the additional constr
output pairs are useful 

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize 
��������  candidates with the 

method is implemented to follow 
technique [14] by treating functions as specification inputs.
gives an ��������

functions in one 
tain multiple candidates. 
collectively constitute only a partial specification for 

synthesis. The algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i
put-output pairs using the 
�������� candidate 

candidates in the set using the input
array while ignor
lieves us from the need to identify incorrect data cells and exclude 
their associated input
can be found in related work 
arbitrary one of 

result. Finally, among all 

2 selects the one
the synthesized �

AmCheck infers an 

thesize the ��������

use the inferred �

cell array. Remaining cells that it cannot cover 

5. IMPLEMENTATION
Our tool implementation of 
convenience, uses
Excel files. AmCheck 
smells, and generates 
ous computation smells and

We implemented AmCheck
underlying constraint solver.
transforms an inferred

e.g., x1 + x2 is transformed into
For visualization
tations: (1) Cell arrays
smells are colored 

                                        

 Apache POI: http://poi.apache.org/

functions in each group
od classifies as many distinct compatible functions 

. The Classify method 
them iteratively into compatible groups

that cannot be classified into existing groups, it creates 
compatible group (Lines 16

compatible with this new group
Note that a function can

 For example, we can 
CellArray2 in Figure

2) = x2; (2) f(x1, 0) = 

the third challenge, Algorithm 

in two steps. The two
two observations: (1) the inclusion of input
from incorrect data cells can result in unsuccessful synthesis of 

candidates, but we have no prior knowledge of which 

data cells are incorrect; (2) the additional constr
output pairs are useful for prun

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize 

candidates with the SynFPa

method is implemented to follow 
by treating functions as specification inputs.

������� candidate set for each compatible group. 

one group are not restrictive
multiple candidates. In other words, th

collectively constitute only a partial specification for 

he algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i

output pairs using the Refine
candidate set, the method

in the set using the input
gnoring those pairs 

lieves us from the need to identify incorrect data cells and exclude 
their associated input-output pairs. 
can be found in related work [21]
arbitrary one of �������� candidates left behind in each set as 

mong all returned

one that covers cells in th
�������� (Lines 7

AmCheck infers an �������� successfully if it can recover or sy

������� for a given 

�������� to repair the cells that it can cover in the 

Remaining cells that it cannot cover 

IMPLEMENTATION
Our tool implementation of AmCheck

uses the Apache POI
. AmCheck loads an Excel file

, and generates related comments 
ous computation smells and corresponding 

We implemented AmCheck in Java
straint solver. For user friendliness, 

inferred �������� back to a 

is transformed into B
For visualization, AmCheck marks

ell arrays that suffer 
are colored in yellow; (2)

                                                                

http://poi.apache.org/

functions in each group are compatible
distinct compatible functions 

method classifies functions by adding 
them iteratively into compatible groups. When it comes across a 

that cannot be classified into existing groups, it creates 
group (Lines 1617) and iteratively 

this new group to this 
can be classified into 

For example, we can obtain
Figure 1(a): (1) f(x1, 0) = 

, 0) = x1 and f(x1, 

Algorithm 2 synthesizes 

in two steps. The two-step synthesis is motivated
two observations: (1) the inclusion of input-output pairs derived 
from incorrect data cells can result in unsuccessful synthesis of 

candidates, but we have no prior knowledge of which 

data cells are incorrect; (2) the additional constr
pruning inappropriate 

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize 

SynFPattern method

method is implemented to follow the component
by treating functions as specification inputs.

candidate set for each compatible group. 

group are not restrictive enough, 
In other words, the functions in the group 

collectively constitute only a partial specification for 

he algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i

Refine method (Line 6)
method iteratively prunes 

in the set using the input-output pairs
pairs that lead to no solution

lieves us from the need to identify incorrect data cells and exclude 
output pairs. Details of this 

[21]. The Refine method returns an 
candidates left behind in each set as 

returned �������� candidates, 

that covers cells in the given cell array 
(Lines 710). 

successfully if it can recover or sy

given smelly cell array. 

to repair the cells that it can cover in the 

Remaining cells that it cannot cover are 

IMPLEMENTATION 
AmCheck, also named AmCheck for 

Apache POI1 library to read and modif
s an Excel file, analyzes its spreadsheet 

comments explaining these 
corresponding repairs

Java 7 and used 
For user friendliness, 
back to a human

B2 + C2 for cell 
marks analysis results 
suffer from ambiguous computation 

 Spreadsheet comments 

                         

http://poi.apache.org/. 

are compatible. The met
distinct compatible functions in each group 

classifies functions by adding 
When it comes across a 

that cannot be classified into existing groups, it creates 
iteratively adds other 

 new group (Lines
be classified into multiple com-

obtain two compatible 
, 0) = x1, f(x1, x2) = 
, x2) = x1 – x2. 

synthesizes ��������

step synthesis is motivated by 
output pairs derived 

from incorrect data cells can result in unsuccessful synthesis of 
candidates, but we have no prior knowledge of which 

data cells are incorrect; (2) the additional constraints of input
inappropriate ��������  cand

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize 

method (Line 5). The 

component-based synthesis 
by treating functions as specification inputs. 

candidate set for each compatible group. If the 

enough, the set can co
functions in the group 

collectively constitute only a partial specification for �������

he algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i

method (Line 6). For each 
prunes inappropriate 

output pairs of the given cell 
that lead to no solution. This r

lieves us from the need to identify incorrect data cells and exclude 
Details of this pruning process 

method returns an 
candidates left behind in each set as 

candidates, Algorithm 

e given cell array most 

successfully if it can recover or sy

smelly cell array. End users can 

to repair the cells that it can cover in the 

are error-prone. 

, also named AmCheck for 
to read and modif

analyzes its spreadsheet 
explaining these ambig

repairs. 

 Choco [22] as 
For user friendliness, AmCheck

human-readable format

cell D2 in Figure 1(a).
results by three ann

ambiguous computation 
omments are added 

The meth-
in each group 

classifies functions by adding 
When it comes across a 

that cannot be classified into existing groups, it creates 
her 

Lines 
m-

two compatible 
) = 

������� 

by 
output pairs derived 

from incorrect data cells can result in unsuccessful synthesis of 
candidates, but we have no prior knowledge of which 

aints of input-
candi-

dates. In the first step, the algorithm utilizes the constraints pro-
vided by functions in each compatible group to synthesize 

. The 

based synthesis 
 It 

If the 

the set can con-
functions in the group 

������� 

he algorithm, therefore, includes a second step to en-
rich the specification with additional constraints given by the in-

. For each 
nappropriate 

of the given cell 
This re-

lieves us from the need to identify incorrect data cells and exclude 
process 

method returns an 
its 

Algorithm 

most as 

successfully if it can recover or syn-

End users can 

to repair the cells that it can cover in the 

 

, also named AmCheck for 
to read and modify 

analyzes its spreadsheet 
ambigu-

its 
AmCheck 

format, 

(a). 
three anno-

ambiguous computation 
are added 

to smelly cells for 
formance errors 
explaining
validate 
reported results

6. EVALUATION
We evaluate AmCheck and 

RQ1:
life 

RQ2:
smells precisely?

RQ3:
quality of 
ing

RQ4:

To answer 
the EUSES corpus
computation smells in this corpus, and manually validated 700 of 
them randomly selec
are true
a case study 
for research project 
nese Academy of Sciences. 
detect ambiguous computation smells in 
then interviewed 
spreadsheet
from their

____________________________________________________________________________

Algorithm 
_____________________________________________________________________________________________________________________________

Input:

Output
 1:  groups
 2:  pert
 3:  while
 4:    
 5:    
 6:    

 7:    
 8:      
 9:      
10:    
11:  end
12:  return
13: 
14:  method
15:    

16:   
17:      
18:      

19:        
20:          
21:        
22:      
23:      
24:    
25:    
26:  end

 

Figure 

to smelly cells for describing 
formance errors are colored 
explaining their reasons.
validate these reported 
reported results for our motivating example in 

EVALUATION
e evaluate AmCheck and 

RQ1: How common 
life spreadsheets? 

: Can AmCheck detect 
smells precisely? 

: Do end users find AmCheck useful 
quality of their spreadsheets
ing ambiguous computation smell

: Are ambiguous computation smell

o answer questions RQ1
EUSES corpus [11]

computation smells in this corpus, and manually validated 700 of 
randomly selected 

true smells (§6.1). 
a case study on real-life spreadsheets 

research project budget
nese Academy of Sciences. 
detect ambiguous computation smells in 

interviewed finance officers
spreadsheets to understand 

their spreadsheets (

_________________________________________________________________________________________________________________________________________________________________________________________________________

Algorithm 2. ��������
_____________________________________________________________________________________________________________________________

 IV (input variables
tions), IO (input

: F (target formula pattern
groups = Classify
pert = 0; F = NULL
while groups not EMPTY 

    group = groups
  formulas = SynFPattern 

    formula = Refine

    if (formulaNULL && 
      pert = Coverage(
      F = formula 
    end if 

end while 
return F 

method Classify(
    groups = EMPTY

 while (initFunc
      newGroup = {
      foreach func

        if (!fnnew
          newGroup
        end if 
      end for 
      groups.add(new
    end while 
    return groups 

end method 

Figure 3. AmCheck screenshot for

describing their corresponding 
are colored in red with

reasons. These annotations 
reported results. Figure 

our motivating example in 

EVALUATION 
e evaluate AmCheck and study the following

 are ambiguous computation smell
 

Can AmCheck detect and repair 
 

users find AmCheck useful 
spreadsheets in terms of detecting 

ambiguous computation smells?

ambiguous computation smell

RQ12, we conducted
[11]. We used AmCheck to detect ambiguous 

computation smells in this corpus, and manually validated 700 of 
ted from all results to 
). To answer question
life spreadsheets prepared
budgeting in the 

nese Academy of Sciences. In this study, we 
detect ambiguous computation smells in 

finance officers who created or main
to understand why and how 

spreadsheets (§6.2). 

_____________________________________________________________________________________________________________________________

������� synthesis algorithm
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

variables), COMP (components), 
input–output pairs

formula pattern). 
lassify(FUNC);  // Get 

NULL 
not EMPTY do 

s.removeOne();  
SynFPattern (IV, COMP

= Refine(IV, COMP, formulas

NULL && Coverage(
Coverage(formula, CA

 

(FUNC) 
= EMPTY 

FuncFUNC. initFunc
{initFunc} 

func in FUNC\newGroup

newGroup. in. fn
Group.add(func) 

newGroup);  // All in newGroup classified

 

AmCheck screenshot for the e
 

their corresponding repairs
with spreadsheet 

These annotations can assist end users to 
Figure 3 gives a screen

our motivating example in Figure 1

the following research questions

ambiguous computation smell

and repair ambiguous computation 

users find AmCheck useful for improv
in terms of detecting 

? 

ambiguous computation smells harmful?  

conducted an empirical study
used AmCheck to detect ambiguous 

computation smells in this corpus, and manually validated 700 of 
from all results to determine whether they 

question RQ34, we 
prepared by finance officers
 Institute of Software, Ch

study, we used AmCheck to
detect ambiguous computation smells in these spreadsheets

who created or main
how these smells 

_____________________________________________________________________________________________________________________________

synthesis algorithm. 
_________________________________________________________________________________________________________________

(components), FUNC
output pairs), CA (cell array

 
et compatible group

 // Retrieve one
COMP, group) 

formulas, IO) 

Coverage(formula, CA)>pert
CA);  // Measure 

Func non-classif

newGroup do 

fn(in)func(in))

// All in newGroup classified

the example in Figure

repairs; (3) Con-
spreadsheet comments 

assist end users to 
screenshot of the 

1(a). 

research questions: 

ambiguous computation smells in real-

ambiguous computation 

improving the 
in terms of detecting and repair-

 

an empirical study on 
used AmCheck to detect ambiguous 

computation smells in this corpus, and manually validated 700 of 
determine whether they 

, we conducted 
finance officers 

of Software, Chi-
AmCheck to 

spreadsheets. We 
who created or maintained these 

smells have arisen 

__________________________________________________________________________________________________________________________________________________________________ 

_________________________________________________________________________________________________________________ 

FUNC (func-
cell array). 

compatible groups 

one group 

pert) then 
;  // Measure percentage 

classified) do 

)) then 

// All in newGroup classified 

 

Figure 1(a). 

853



6.1 Empirical Study on the EUSES Corpus 
We ran AmCheck on all spreadsheets in the EUSES corpus and 
got experimental results about ambiguous computation smells. 

6.1.1 Experimental Subjects 
The EUSES corpus consists of 4,037 real-life spreadsheets from 
11 categories. Since its creation in 2005, it has been widely used 
for spreadsheet research and evaluation. Table 1 gives the statis-
tics of the corpus. It lists the number of spreadsheets (Total), the 
number of our processed spreadsheets (Processed), the number of 
spreadsheets with formulas (With formulas), and the number of 
spreadsheets with cell arrays (With arrays) for each category 
(Category). We find that only 92.8% (3,746/4,037) of spread-
sheets in the corpus could be parsed by the Apache POI. 43.4% 
(1,626/3,746) of the processed spreadsheets contain cells with 
formulas. Out of them, 61.1% (993/1,626) contain cell arrays. 

6.1.2 Ambiguous Computation Smells 
Table 1 also gives the number of spreadsheets suffering from 
ambiguous computation smells (Smelly), the number of spread-
sheets with missing formula smells (Missing), the number of 
spreadsheets with inconsistent formula smells (Inconsistent), and 
the percentage of smelly spreadsheets against all those with cell 
arrays. Note that a smelly spreadsheet can suffer from both types 
of smells simultaneously. As shown in Table 1, 44.7% (444/993) 
of the spreadsheets with cell arrays and 27.3% (444/1,626) of the 
spreadsheets with formulas suffer from at least one kind of am-
biguous computation smell. This discloses that ambiguous compu-
tation smells are common in real-life spreadsheets. 

Table 2 lists the number of cell arrays (CA), the number of well-
formed cell arrays (WCA), and the number of smelly cell arrays 
(SCA). It also lists the number of cell arrays suffering from miss-
ing formula smells (MISS), inconsistent formula smells (INCO), 
and both smells (BO). It omits filby and jackson since they do not 
contain cell arrays. We observe that ambiguous computation 
smells occur commonly in the corpus: 21.6% (3,535/16,385) of 
identified cell arrays suffer from ambiguous computation smells. 
Among these smelly cell arrays, 75.3% (2,663/3,535) suffer from 
missing formula smells, 31.5% (1,113/3,535) suffer from incon-
sistent formula smells, and 6.8% (241/3,535) suffer from both 
smells. Therefore, we draw the following conclusion: 

Ambiguous computation smells commonly occur in real-
life spreadsheets, with missing formula smells occurring 
more often than inconsistent formula smells. 

6.1.3 Quality of AmCheck Analysis 
AmCheck is based on cell array identification and �������� infer-

ence. This process partly relies on heuristics, so AmCheck may be 

imprecise and cause false positives. Thus, we are interested in its 
analysis quality. 

We partition detected smelly cell arrays into seven categories 
according to how much the inferred ��������  can cover cells in 

these arrays. These seven categories are: {100%, [90%, 100%), 
[80%, 90%), [70%, 80%), [60%, 70%), [50%, 60%) and [0%, 
50%)}. Table 3 lists the number of smelly cell arrays (SCA) and 
the number of cells with conformance errors (CE1) for each cate-
gory. We observe that the �������� inferred by AmCheck is able to 

cover all cells in 903 smelly cell arrays (i.e., a coverage of 100%) 
and 90% or more (but not 100%) of cells in another 108 smelly 
cell arrays. This suggests that values and formulas in these 1,011 
cell arrays are highly compatible with the inferred �������� . In 

other words, each of these 1,011 cell arrays that suffer from miss-
ing formulas or different formula patterns very likely prescribes a 
well-defined computational semantic expressible by the �������� 

inferred by AmCheck. It is thus very likely that detected ambigu-
ous computation smells in these cell arrays (1,011/3,535 = 28.6%) 
are probably true. This provides an alternative for assessing the 
quality of AmCheck’s automatically detected spreadsheet smells. 
We can use these seven categories to rank the likeliness of a 
smelly cell array being true. Those cell arrays falling into the    
100% category are considered most likely. 

Next, we evaluate the precision of AmCheck’s smell detection for 
the seven categories. We randomly selected 100 smelly cell arrays 
(CA) in each category and manually validated their quality. This 
accounts for 700 smelly cell arrays, which occupy 19.8% 
(700/3,535) of the whole. In each category, Table 3 lists the num-
ber of true smelly cell arrays (TP), the number of true smelly cell 
arrays that AmCheck can repair (RE), the number of true smelly 
cell arrays warned by Excel 2010 (EX), and the number of cells 
with true conformance errors (CE2). We explain these data below. 

True positives and repairability. Out of the 700 sampled smelly 
cell arrays, we manually confirmed that 319 (45.6%) of them are 
true smelly cell arrays. We observe from the CA and TP columns 

Table 1. Statistics of the EUSES corpus (n.a.: not applicable). 

Category 
Spreadsheets Spreadsheets with ambiguous computation smells 

Total Processed With formulas With arrays Smelly Missing Inconsistent Percentage 
cs101 8 8 8 7 3 2 1 42.9% 

database 678 632 202 103 56 45 29 54.4% 
filby 45 2 2 0 0 0 0 n.a. 

financial 720 692 358 245 126 81 79 51.4% 
forms3 26 19 18 10 4 3 1 40.0% 
grades 588 557 285 201 88 66 42 43.8% 

homework 576 535 278 163 54 35 30 33.1% 
inventory 699 643 278 173 75 47 44 43.4% 
jackson 13 0 0 0 0 0 0 n.a. 

modeling 679 653 192 88 38 29 21 43.2% 
personal 5 5 5 3 0 0 0 0% 

Total 4,037 3,746 1,626 993 444 308 247 44.7% 

 

Table 2. Smelly cell arrays in the EUSES corpus. 

Category CA WCA SCA MISS INCO BO 
cs101 31 21 10 7 3 0 

database 2,252 1,714 538 438 113 13 
financial 4,899 4,221 678 415 294 31 
forms3 229 62 167 166 127 126 
grades 1,893 1,426 467 381 111 25 

homework 2,162 1,456 706 555 176 25 
inventory 3,210 2,589 621 433 205 17 
modeling 1,585 1,237 348 268 84 4 
personal 124 124 0 0 0 0 

Total 16,385 12,850 3,535 2,663 1,113 241 
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in Table 3 that the number of true smelly cell arrays decreases 
with the reduction in coverage. We recommend to select 80% as a 
coverage threshold for reliable detection of smelly cell arrays with 
an experimental precision of 73.7% (221/300). 

AmCheck is able to repair 316 (99.1%) of the 319 true smelly cell 
arrays. It shows that AmCheck is effective for detecting and re-
pairing smelly cell arrays automatically. Figure 4 elaborates the 
effectiveness with respect to the two different types of smells 
under various coverage categories. For each coverage category, it 
gives the number of true smelly cell arrays (True) and the number 
of true smelly cell arrays that can be repaired (Repaired) using an 
inferred �������� for missing formula smells (Figure 4(a)) and 

inconsistent formula smells (Figure 4(b)). There are totally 10 cell 
arrays suffering from both missing formula and inconsistent for-
mula smells. They are counted in both charts. AmCheck is able to 
repair 214 out of the 216 missing formula smells, and 112 out of 
the 113 inconsistent formula smells. The three smelly cell arrays 
that AmCheck failed to repair involves sophisticated library func-
tions, incomplete input variables and complex structures. There is 
no enough evidence to suggest that AmCheck’s repairing effec-
tiveness and coverage categories are correlated. 

We draw the following conclusion: 

AmCheck can effectively repair true ambiguous computa-
tion smells. One may use a coverage threshold of 80% for 
reliable detection of ambiguous computation smells. 

False positives. The differences of values in the CA and TP col-
umns in Table 3 give the number of false positives, which arise 
mostly because the cells concerned do not form a cell array as 
identified by AmCheck using the heuristics in §4.1. Two main 
causes are found: (1) Some spreadsheets use numbers as labels. 
For example, in financial reports end users often use years like 
2011 and 2013 as labels but represented in a number format. Our 
heuristics can misinterpret them as data cells. 69.2% (92/133) of 
false positives in the coverage range of [70%, 100%] belong to 
this case. It should be easy for end users to recognize such false 
positives. (2) The heuristics incorrectly identify some cells with 
distinct formula patterns as those subject to the same computa-
tional semantics (but actually not). 13.5% (18/133) of false posi-
tives in the coverage range of [70%, 100%] belong to this case. 
End users can manually confirm or reject them in our current 
AmCheck implementation. For the remaining 23 (17.3%) false 
positives, the concerned cell arrays contain data cells with varying 
complex semantics, which AmCheck cannot effectively distin-
guish. We leave this to future work. 

6.1.4 Conformance Errors 
Cells that do not conform to the inferred �������� in a cell array 

are considered as conformance errors. In Table 3, AmCheck de-
tected a total of 8,481 conformance errors (CE1) in the EUSES 
corpus. We manually validated the 1,423 detected conformance 
errors in the 700 sampled cell arrays. We confirmed that 30.5% 
(434/1,423) of them are true conformance errors (CE2), and all of 
them occur at the 319 true smelly cell arrays. Note that there can 
be multiple conformance errors in one smelly cell array. We also 
observe that conformance errors occurring at the cell arrays with 
higher coverage are more likely to be true. For example, 70.5% 
(179/254) of detected conformance errors are true in the coverage 
range of [80%, 100%]. 

6.1.5 Comparison with Excel 
Although Microsoft Excel has built-in support for inconsistency 
detection in cell arrays, its detection is subject to a few limitations. 
First, Excel considers only cell arrays of three adjacent cells. Se-
cond, it detects only those smells that a cell’s formula is syntacti-
cally different from those of its two adjacent cells when these two 
cells’ formulas are identical. The EX column in Table 3 shows 
that Excel detected inconsistencies in only 3.8% (12/319) of the 
true smelly cell arrays. 

6.1.6 Runtime Overhead 
Running AmCheck over the whole EUSES corpus took about 116 
minutes. It thus took about 1.7 seconds to analyze one spreadsheet 
on average. This good performance is attributed to the use of our 
two-stage analysis (��������  recovery and ��������  synthesis). If 

we use �������� synthesis only to infer formula patterns, it would 

take 861 minutes (12.8 seconds for each spreadsheet on average). 
Our two-stage analysis significantly reduces the computational 
time by 86.5%. Among the 3,535 detected smelly cell arrays,  
93.2% (3,296/3,535) of them have their ��������  successfully 

recovered at the first stage, and the remaining 6.8% (239/3,535) 
have their �������� synthesized at the second stage. 

Table 3. Smelly cell arrays with different coverages. 

 All Sampled 
SCA CE1 CA TP RE EX CE2 

100% 903 0 100 
95/ 
100 

95/ 
100 

2/ 
100 

0/ 
0 

[90%, 100%) 108 133 100 
73/ 
100 

73/ 
100 

7/ 
100 

94/ 
121 

[80%, 90%) 197 338 100 
53/ 
100 

52/ 
100 

3/ 
100 

85/ 
133 

[70%, 80%) 120 242 100 
46/ 
100 

46/ 
100 

0/ 
100 

101/ 
190 

[60%, 70%) 211 363 100 
38/ 
100 

36/ 
100 

0/ 
100 

103/ 
192 

[50%, 60%) 917 1,392 100 
9/ 

100 
9/ 

100 
0/ 

100 
37/ 
135 

[0%, 50%) 1,079 6,013 100 
5/ 

100 
5/ 

100 
0/ 

100 
14/ 
652 

Total 3,535 8,481 700 
319/ 
700 

316/ 
700 

12/ 
700 

434/ 
1,423 

 

 

(a) Cell arrays with missing formula smells. 

 

(b) Cell arrays with inconsistent formula smells. 

Figure 4. Sampled smelly cell arrays with different coverages 
(x-axis: coverage category, y-axis: the number of cell arrays 

concerned). 
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6.2 Case Study on Real-life Spreadsheets 
To evaluate the usefulness of AmCheck to end users, we conduct-
ed a case study on ten real-life spreadsheets currently used by 
finance officers. We studied three questions: (1) Why do ambigu-
ous computation smells occur in spreadsheets? (2) Is AmCheck 
helpful for detecting and repairing ambiguous computation smells? 
(3) How harmful are ambiguous computation smells? 

Setup. We conducted our study in the Institute of Software, Chi-
nese Academy of Sciences. We collected ten real-life spreadsheets 
professionally prepared by finance officers for research project 
budgeting. These spreadsheets involve seven departments or units, 
and have been used for more than three years. Most spreadsheets 
are maintained by more than two officers. 

We invited three officers who have participated in maintaining 
these spreadsheets for an interview. We explained ambiguous 
computation smells to these officers, and told them our plan of 
using their spreadsheets in the study. We gave a list of Am-
Check’s detected ambiguous computation smells in these spread-
sheets as well as suggested repairs with brief explanations. We let 
the officers study these smells before our interview. 

In the interview, we asked the officers three questions: (1) Can 
you explain how these ambiguous computation smells arise? (2) 
Do you agree that these smells are indeed problems? (3) Are the 
suggested repairs helpful? 

Overall results. For each spreadsheet, Table 4 lists the number of 
cell arrays (CA), the number of well-formed cell arrays (WCA), 
the number of smelly cell arrays (SCA), the number of cell arrays 
suffering from missing formula smells (MISS), the number of cell 
arrays suffering from inconsistent formula smells (INCO), and the 
number of cells with conformance errors (CE). The numbers in 
brackets are confirmed data by officers. We observe that 80.0% 
(8/10) of the spreadsheets suffer from ambiguous computation 
smells. We detected 55 smelly cell arrays (40 suffering from miss-
ing formula smells and 17 suffering from inconsistent formula 
smells; some suffering from both smells), and 23 cells contain 
conformance errors. The results reveal that ambiguous computa-
tional smells are common to financial spreadsheets that have been 
rigorously prepared and maintained by end users for over three 
years. 40% of the spreadsheets contain even confirmed errors. 
20.4% (55/270) of identified cell arrays suffer from ambiguous 
computation smells, and this percentage is comparable to that for 
the EUSES corpus (21.6%). The ratio 2.4 (40/17) between number 
of smelly cell arrays suffering from missing formula smells and 
number of smelly cell arrays suffering from inconsistent formula 
smells is also comparable to that for the EUSES corpus, 2.4 
(2,663/1,113). Ratios of true positives are higher than those in the 
EUSES corpus. This is because the aforementioned false positives 
are rare in these spreadsheets. Therefore, we draw the following 
conclusion: 

The ratio of smelly cell arrays in real-life spreadsheets is 
comparable to that for the EUSES corpus. 

Causes of ambiguous computation smells. From the interview 
with officers, we obtained interesting answers about how missing 
formula smells arose. They recalled: “I copied some data from 
another place, and did not notice that they can be computed from 
related cells”, “I just wrote down these data as plain values”, or 
“after I used the auto-fill feature to generate these cells (in a cell 
array), I noticed that there was an error of ‘division by zero’, and 
so I set its value to 0”. From these answers, missing formula 
smells have been usually caused by carelessly ignoring necessary 
computation. 

When coming to the question of how inconsistent formula smells 
arose, they recalled: “I copied formulas from another spreadsheet, 
and I really do not know why smells occur”, or “I wrote formulas 
by myself and did not use any auto-fill feature, but I missed some 
input cells”. For example, function SUM has been used inconsist-
ently when some cells contain a value of zero. Another example is: 
a cell array should have a formula pattern of R[-3]C * R[-2]C * 
R[-1]C, but some of its cells have a formula like R[-3]C * R[-1]C. 
This occurs when R[-2]C’s value happens to be 1. From these 
interview answers, we draw the following conclusion: 

Ambiguous computation smells have been often caused by 
carelessly using the auto-fill and copy-and-paste features. 
AmCheck can effectively detect and repair such smells. 

Harmfulness of ambiguous computation smells. Interestingly, 
the officers were surprised by so many detected ambiguous com-
putation smells. Although some concerned cells had temporarily 
correct values, they still decided to take our repair suggestions. 
They said: “these cells (suffering from ambiguous computation 
smells) are risky, and are difficult to maintain in future”. 

Although the studied spreadsheets have been verified by our fi-
nancial officers carefully during their daily jobs, conformance 
errors still exist. When such errors were presented to them, they 
said: “the final result is balanced, and it should be impossible!”. 
After we repaired the conformance errors, we noticed that the 
final result now became unbalanced. Weird! Finally, we figured 
out why: there was another missing formula smell in a related cell. 
Although this missing formula (not related to cell arrays) could 
not be detected by the current AmCheck implementation, its re-
ported smell warning enables end users to eventually find the 
hidden problem successfully. These conformance errors have been 
caused by careless updates to cells in cell arrays. With Am-
Check’s repairs, our officers realized that existing values of some 
cells are indeed faulty. From these interview interactions, we draw 
the following conclusion: 

Table 4. Detected smelly cell arrays in the case study. 

ID CA WCA SCA MISS INCO CE 
1 12 12 0 (0) 0 (0) 0 (0) 0 (0) 
2 24 24 0 (0) 0 (0) 0 (0) 0 (0) 
3 17 9 8 (8) 7 (7) 3 (3) 4 (4) 
4 32 12 20 (20) 14 (14) 6 (6) 8 (8) 
5 32 29 3 (3) 2 (2) 1 (1) 0 (0) 
6 32 29 3 (3) 2 (2) 1 (1) 0 (0) 
7 10 9 1 (0) 1 (0) 0 (0) 1 (0) 
8 32 29 3 (3) 2 (2) 1 (1) 0 (0) 
9 50 45 5 (3) 3 (1) 2 (2) 1 (1) 
10 29 17 12 (10) 9 (9) 3 (1) 9 (7) 

Total 270 215 55 (50) 40 (37) 17 (15) 23 (20) 

 
Table 5. Undetected cell arrays in the case study (numbers in 

brackets are false positives). 

ID CA 
Undetected cell arrays 

DRC PV INS CC CON DS 
1 12 5  

 
1 
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2 24   
   

 
3 17  6 

   
 

4 32   2 
 

1  
5 32   

 
1 
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6 32   
   

9 
7 10 (1)   

   
 

8 32   
   

9 
9 50 (2)   1 

  
 

10 29 (2)  2    1 
Total 270 (5) 5 8 3 2 1 31 
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Ambiguous computation smells are harmful and have 
caused data discrepancies in real-life spreadsheets.  

6.3 Discussions 
While the evaluation shows that our AmCheck is promising for 
detecting and repairing ambiguous computation smells in real-life 
spreadsheets, we discuss some of its limitations. 

6.3.1 False Negatives 
False negatives in detecting smelly cell arrays are mainly caused 
by undetected cell arrays. With help from finance officers, we 
further measured such undetected cell arrays in our case study. 

For each spreadsheet, Table 5 lists the number of detected cell 
arrays (CA) and the number of undetected cell arrays (Undetected 
cell arrays). AmCheck misses 15.9% (50 / (270 – 5 + 50)) of all 
cell arrays in total. The recall rate of cell array extraction in Am-
Check is 84.1% ((270 – 5) / (270 – 5 + 50)). Several reasons 
caused such false negatives: (1) Some cells reference other cells at 
different rows or columns (DRC); (2) Some cell arrays contain 
plain values only (PV); (3) Some cell arrays have in-line space 
(INS); (4) Some cell arrays contain constant cells without being 
labeled with “$” (a special annotation indicating a constant cell) 
(CC); (5) Some cell arrays contain conditional formulas (CON); 
(6) Some cells reference other cells in different spreadsheets (DS). 
AmCheck needs extensions for handling these cases. 

6.3.2 Threats to Validity 
One threat to internal validity of our evaluation is that we were 
unable to validate analysis results of spreadsheets in the EUSES 
corpus by their original users. As such, we validated the results by 
ourselves partially and manually in due diligence. Another threat 
to external validity of our evaluation concerns the representative-
ness of spreadsheets in the EUSES corpus and collected in our 
case study. We chose the EUSES corpus because it is by far the 
largest corpus that has been widely used for evaluation by previ-
ous spreadsheet research studies. Spreadsheets collected in our 
case study are those used in practice and maintained by profes-
sional finance officers. We made best effort in choosing repre-
sentative and real-life experimental subjects. 

7. RELATED WORK 
In this section, we review related work in recent years. 

Spreadsheet errors. Spreadsheet errors are common [27][28][29]. 
They can cause serious financial losses. Ambiguous computation 
smells may not cause errors immediately but degrade spreadsheet 
quality gradually. Spreadsheets suffering from ambiguous compu-
tation smells contain unclear computational semantics, which 
make them difficult to maintain in a correct way. 

Detecting faults in spreadsheets. Various techniques have been 
proposed to detect faults in spreadsheets. UCheck [4] and dimen-
sion inference [7] use the type system to check unit faults and 
dimension faults, respectively. They focus on whether units can 
be combined correctly into one cell. Smellsheet Detective [9][10] 
detects statistical smells, type smells, content smells and function-
al dependency smells. Hermans et al. proposed visualizing spread-
sheets by dataflow graphs [17], and detected inter-worksheet 
smells in these graphs [18]. They proposed detecting smells from 
data clones [20] and in spreadsheet formulas [19]. In these pieces 
of work, Hermans et al.’s [19] and Smellsheet Detective [10] fo-
cus on syntactic faults, while our work focus on missing formula 
and inconsistent formula smells, which concern semantic faults. 
Our work also detects conformance errors caused by ambiguous 
computation smells. Its scope is thus orthogonal to existing work. 

Program synthesis. Our work is based on component-based pro-
gram synthesis [14][21]. Typically, end users should provide 
components and input-output pairs for program synthesis [21]. 
Regarding our problem, we automatically extract such compo-
nents and input-output pairs from spreadsheets and alleviate their 
noises. Program synthesis has also been used for other purposes in 
spreadsheet research, e.g., string transformation from examples 
[13], table transformation [15], and number transformation [32]. 
In this paper, we apply program synthesis in a novel way to detect 
and repair ambiguous computation smells in spreadsheets by re-
covering hidden computational semantics. 

Modeling and testing for spreadsheets. Construction of rigorous 
models for spreadsheets [1][8][16] can help end users reduce 
chances of introducing ambiguous computation smells. Inferring 
such models from spreadsheets can be challenging. Its effective-
ness depends on correctness of spreadsheets, and ambiguous 
computation smells can reduce its precision. Our work addresses 
the problem effectively by using both heuristics and formula pat-
tern synthesis. Spreadsheet testing [5][12][23] is another interest-
ing topic, whose most challenge may be the lack of test oracles. 
Our work extracts partial computational semantics from cell con-
tents and recovers hidden formula patterns. It does not require 
explicit test oracles. Ambiguous computation smells may also 
mislead spreadsheet testing, and our work can assist the testing by 
repairing smelly spreadsheets. 

Semantic faults in software. Similar to smells in spreadsheets, 
semantic faults are also dominant root causes of software failures 
[24][33]. Most semantic faults require domain knowledge to un-
derstand, detect and repair [24]. MUVI [25] and DefUse [31] can 
detect semantic faults related to inconsistent updates to correlated 
multi-variables and dataflow intentions, respectively, in software. 
They rely on invariant mining and detection techniques. Our work 
uses a different approach by inferring hidden computational se-
mantics by heuristics and program synthesis techniques. 

8. CONCLUSION 
In this paper, we study ambiguous computation smells in spread-
sheets, which are caused by end users’ ad hoc modifications to 
spreadsheet cells that should stick to certain computational seman-
tics. We propose a novel approach, AmCheck, to detect and repair 
ambiguous computation smells by inferring formula patterns for 
smelly cell arrays in spreadsheets. This also helps detect challeng-
ing conformance errors in spreadsheets. Our evaluation with real-
life spreadsheets reports that ambiguous computation smells are 
common and harmful, and end users do care about such smells 
and conformance errors caused by such smells, and value Am-
Check for its ability of automatically detecting and repairing 
smelly spreadsheets. 

We have identified several future research directions. First, detect-
ing smelly cell arrays can be improved by more precise cell array 
extraction and formula pattern inference. Second, AmCheck can 
be improved by implementing more features like handling condi-
tional formula patterns. Third, we plan to conduct more real-life 
case studies and investigate mechanisms to prevent ambiguous 
computation smells in spreadsheets. 
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