
Is Spreadsheet Ambiguity Harmful?

Detecting and Repairing Spreadsheet Smells

due to Ambiguous Computation
Wensheng Dou

State Key Laboratory of Computer
Science

Institute of Software
Chinese Academy of Sciences

Beijing, China

wsdou@otcaix.iscas.ac.cn

Shing-Chi Cheung
Department of Computer Science and

Engineering
The Hong Kong University of Science

and Technology
Hong Kong, China

scc@cse.ust.hk

Jun Wei
State Key Laboratory of Computer

Science
Institute of Software

Chinese Academy of Sciences
Beijing, China

wj@otcaix.iscas.ac.cn

ABSTRACT
Spreadsheets are widely used by end users for numerical compu-
tation in their business. Spreadsheet cells whose computation is
subject to the same semantics are often clustered in a row or col-
umn. When a spreadsheet evolves, these cell clusters can degener-
ate due to ad hoc modifications or undisciplined copy-and-pastes.
Such degenerated clusters no longer keep cells prescribing the
same computational semantics, and are said to exhibit ambiguous
computation smells. Our empirical study finds that such smells are
common and likely harmful. We propose AmCheck, a novel tech-
nique that automatically detects and repairs ambiguous computa-
tion smells by recovering their intended computational semantics.
A case study using AmCheck suggests that it is useful for discov-
ering and repairing real spreadsheet problems.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – restructuring, reverse engineering, and reengi-
neering

General Terms
Reliability, Experimentation, Human Factors

Keywords
Spreadsheet, ambiguous computation, smell, repair

1. INTRODUCTION
Spreadsheets are generally developed and maintained by end users
who are not familiar with appropriate software development prac-
tice. As a result, spreadsheets have been found to be error-prone
[28]. Spreadsheet errors can induce great financial losses [26].
Various techniques have been proposed to improve the quality of
spreadsheets. Some examples include testing [12][23][2], error or
smell detection [6][19][20], and debugging [3][30].

A spreadsheet comprises tables of cells arranged in rows and col-
umns. We refer to a cell cluster as a cell array when it is subject

to the same computational semantics. For example, the cells
[D2:D7] in Figure 1(b) refer to the semantics of “Total” and uni-
formly follow a formula pattern of Di = Bi + Ci, where 2 ≤ i ≤ 7. In
general, cell arrays can be specified manually or with tool assis-
tance. In this paper, we focus only on those cell arrays subject to
computational semantics expressed in formula patterns without
using “if” conditions. Our empirical study reports that there are
altogether 16,385 cell arrays among 993 (out of 4,037) spread-
sheets in the EUSES corpus [11]. This indicates that cell arrays
are common in real-life spreadsheets.

Spreadsheet smells can occur due to a distortion of, or an ambi-
guity in, the meaning of data or formulas [29]. Spreadsheet soft-
ware like Excel provides two useful features, copy-and-paste and
auto-fill, to reduce the chances of introducing smells during the
creation of new cells in a cell array. Both features can help auto-
matically deduce a formula pattern from selected sample cells
[35], and apply it to the new cells in a cell array.

Although the two features provide convenience in editing spread-
sheets, their application is restrictive in the sense that end users
have little control on the formula pattern deduction process. They
may not even be aware of deduced formula patterns. After editing,
there is no record in the new cells that they have been created
using these two features, and therefore have to be uniformly mod-
ified in future. Little provision is offered to warn end users from
modifying these cells arbitrarily. In principle, all cells in a cell
array should prescribe the same computational semantics. A cell
array is said to suffer from an ambiguous computation smell when
there is more than one computational semantic among the cells it
contains. Ad hoc modifications to these cells are one major cause
of ambiguous computation smells. For example, the cell array
[D2:D7] in Figure 1(a) could be a consequence of ad hoc cell
modifications that result in four different formula patterns, leading
to an ambiguous computation smell. Note that no warning can be
raised by spreadsheet software to alert end users of such a smell.
This smell can exist for a long time and even be replicated to oth-
er spreadsheets without being discovered. Even though this cell
array currently offers a correct value in each cell, it is error-prone
and susceptible to developing errors upon future data updates. For
example, the value in D2 would be incorrect if the value of C2 is
later updated to 1. As ambiguous computation smells are vulnera-
ble to errors, their early detection is important. It is particularly
the case for those spreadsheets subject to liability consequences
such as company reports for release to authorized third parties.

Spreadsheet software like Excel provides a mechanism to detect
cells with inappropriate formulas. However, the detection is appli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’14, May 31–June 7, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2756-5/14/05... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00
http://dx.doi.org/10.1145/2568225.2568316

848

cable
cally inconsistent with th
formulas of the two adjacent cells are syntactically consistent.
such
[D2:D7]
in
cannot be detected by
either

Like semantic bugs in program
to
this involves knowledge of intended s
quire
inappropriate cell formulas is another non

In this paper, we focus on
as well as detection and repair
smell
smell
tional semantics
appropriate
from
two observations
have
formula patterns
modified arbitrarily,
share an equivalent formula pattern
scribe a sub
observations allow us to identify candidate cell arrays effectively
using heuristics. We
tection
ous computation smell
existing work on
appropriate formula pattern
in a

We evaluated o
lyze
putation smell
formance of our
smell
with
the
evaluation
in the EUSES corpus suffer
which cover
putation smell
sheets
smell
computation smells
previously
can
the quality of

We summarize







cable only to the
cally inconsistent with th
formulas of the two adjacent cells are syntactically consistent.
such, Excel is not able to
[D2:D7] in Figure
in Figure 1(a) does not have
cannot be detected by
either.

Like semantic bugs in program
to identify which cell
this involves knowledge of intended s
quires human judgment
inappropriate cell formulas is another non

In this paper, we focus on
as well as detection and repair
smells. In order to detect and
smells, we need to know formula
tional semantics
appropriate formula
from ambiguous computation smell
two observations
have the same computational
formula patterns.
modified arbitrarily,
share an equivalent formula pattern
scribe a sub- or super
observations allow us to identify candidate cell arrays effectively
using heuristics. We
tection to a constraint satisfaction problem. To repair a
ous computation smell
existing work on
appropriate formula pattern
in an array that suffers

We evaluated our
lyzed the EUSES corpus
putation smells can
formance of our
smells. Second, we
with real-life spreadsheets
the Institute of Software, Chinese Academy of Sciences
evaluation report
in the EUSES corpus suffer
which cover 21.6
putation smells reveal weakness and
sheets. From randomly sampled
smells, 434 error
computation smells
previously created
can help end users
the quality of their

We summarize main contributions of this paper

 We propose a new
ambiguous computation smell

 We propose a
ambiguous computation smell
that are subject to the same computation
these cells’ formula patterns,
and synthesizing

 We evaluate our tool
EUSES corpus and real
experimental results
are common and

the situation where
cally inconsistent with those of its two adjacent cells, and (b) the
formulas of the two adjacent cells are syntactically consistent.

is not able to raise
Figure 1(a). Since each cell in the cell array [D2:D7]

does not have any
cannot be detected by UCheck

Like semantic bugs in programming
identify which cells contain inappropriate formula

this involves knowledge of intended s
human judgments or specification

inappropriate cell formulas is another non

In this paper, we focus on automated identification of cell arrays
as well as detection and repair

In order to detect and
s, we need to know formula

tional semantics in cell arrays. The key
formula patterns for

ambiguous computation smell
two observations: (1) Consecutive cells in a row

computational semantics
. (2) Even if some cells

modified arbitrarily, a majority of
share an equivalent formula pattern

or super-form of
observations allow us to identify candidate cell arrays effectively
using heuristics. We then map ambiguous computation smell

to a constraint satisfaction problem. To repair a
ous computation smell, we propose an algorithm adapted fro
existing work on program synthesis by Jha et al.
appropriate formula pattern that generalizes

that suffers from this smell

ur technique from two perspectives
the EUSES corpus [11] to

can occur, and
formance of our technique for detecting

Second, we conducted a
spreadsheets prepared
of Software, Chinese Academy of Sciences

reports that: (1) 27.3
in the EUSES corpus suffer from

1.6% of identified
reveal weakness and

randomly sampled
errors are found with these smells.

computation smells are often caused by
created by auto-fill and copy

users detect and repair such smells, thus
their spreadsheets.

main contributions of this paper

We propose a new and common
ambiguous computation smell
We propose a novel technique

computation smell
that are subject to the same computation

formula patterns,
zing new patterns to repair

evaluate our tool implem
EUSES corpus and real-life spreadsheets
xperimental results show that

are common and indeed vulnerable to

situation where: (a) a cell’s formula is syntact
of its two adjacent cells, and (b) the

formulas of the two adjacent cells are syntactically consistent.
ise any warning

Since each cell in the cell array [D2:D7]
any unit or dimension erro

UCheck [4] and dimension

ming languages [24]
contain inappropriate formula

this involves knowledge of intended semantics, which often r
or specifications. Automatic repair

inappropriate cell formulas is another non-trivial challenge.

automated identification of cell arrays
as well as detection and repairing of ambiguous computation

In order to detect and repair ambiguous computation
s, we need to know formula patterns that

. The key challenge
for repairing cell arrays that suffer

ambiguous computation smells. Our technique is based on
onsecutive cells in a row

semantics. They likely
some cells in a cell array have been

majority of cells in this
share an equivalent formula pattern, and other

form of this formula pattern. The
observations allow us to identify candidate cell arrays effectively

ambiguous computation smell
to a constraint satisfaction problem. To repair a

, we propose an algorithm adapted fro
program synthesis by Jha et al.

that generalizes the
this smell as many as

from two perspectives
to learn how often

and measured the precision and pe
technique for detecting ambiguous computation

a case study using
prepared by budget finance officers

of Software, Chinese Academy of Sciences
.3% of spreadsheets

from ambiguous computation smell
identified cell arrays. (2)

reveal weakness and have caused
randomly sampled 319 true ambiguous computation

with these smells.
caused by careless updates to cells
and copy-and-paste

detect and repair such smells, thus

main contributions of this paper as follows

and common type of spreadsheet
ambiguous computation smell, which is error

technique, AmCheck, to
computation smells by identifying arrays of cells

that are subject to the same computational semantics,
formula patterns, spotting incompatible patterns,

patterns to repair the smells.
implementation experimentally

spreadsheets used in practice
that ambiguous computation smell

vulnerable to errors.

cell’s formula is syntact
of its two adjacent cells, and (b) the

formulas of the two adjacent cells are syntactically consistent. As
 for the cell array

Since each cell in the cell array [D2:D7]
unit or dimension error, the smell

imension inference [7]

[24][33], it is hard
contain inappropriate formulas, because

emantics, which often r
. Automatic repairing
trivial challenge.

automated identification of cell arrays
ambiguous computation
ambiguous computation

 capture comput
challenge is how to infer

cell arrays that suffer
Our technique is based on

onsecutive cells in a row or column often
likely share similar

in a cell array have been
this array could still
ther cells could pr

formula pattern. These two
observations allow us to identify candidate cell arrays effectively

ambiguous computation smell d
to a constraint satisfaction problem. To repair an ambig

, we propose an algorithm adapted fro
program synthesis by Jha et al. [21] to infer an

the formulas of cells
many as possible.

from two perspectives. First, we an
often ambiguous com-
the precision and pe

ambiguous computation
using our technique

finance officers
of Software, Chinese Academy of Sciences. Our

spreadsheets with formulas
ambiguous computation smell

(2) Ambiguous com-
d errors in sprea

ambiguous computation
with these smells. (3) Ambiguous

careless updates to cells
paste. Our technique

detect and repair such smells, thus improving

as follows:

spreadsheet smell,
error-prone.

to detect and repair
by identifying arrays of cells

semantics, inferring
spotting incompatible patterns,

smells.
entation experimentally on the

used in practice. The
ambiguous computation smell

.

cell’s formula is syntacti-
of its two adjacent cells, and (b) the

As
cell array

Since each cell in the cell array [D2:D7]
r, the smell

[7],

hard
because

emantics, which often re-
 of

automated identification of cell arrays
ambiguous computation
ambiguous computation

computa-
is how to infer

cell arrays that suffer
Our technique is based on

often
similar

in a cell array have been
could still

pre-
two

observations allow us to identify candidate cell arrays effectively
de-

ambigu-
, we propose an algorithm adapted from

to infer an
mulas of cells

. First, we ana-
m-

the precision and per-
ambiguous computation

technique
 in

Our
with formulas

ambiguous computation smells,
m-

in spread-
ambiguous computation

mbiguous
careless updates to cells

technique
ing

smell,

repair
by identifying arrays of cells

inferring
spotting incompatible patterns,

on the
The

ambiguous computation smells

The remainder of
motivating example
defines
detection and repairing
tation.
cusses related work, and finally

2. MOTIVATION
In this section, we
an example
We then

2.1 Example
Figure
It exhibits

Missing formula smell
curs when s
Such smell can be introduced to a
ride the formula in a cell with
ray1 [F2:F7]
an intended for
like cells F2, F3 and F4, the values of
computed by formulas.

Inconsistent formula smell
occurs when the cells in a cell array prescribe different formula
patterns.
users specify
without
lArray2
intended formula pattern of
users may
and thus
at D2, and a
la pattern. A similar smell

Although CellArray2 and CellArray3 in
ambiguous computation smell
cells are appropriate. However, the smells can lead to
and C9 if C2
problems
to-fill to
would also
any formula pattern

(a)

(b) A spreadsheet

The remainder of this
motivating example and explains the use
defines ambiguous computation
detection and repairing
tation. §6 evaluates AmCheck
cusses related work, and finally

MOTIVATION
In this section, we illustrate ambiguous computation smells using

example spreadsheet
then explain how to detect and repair

Example
 1(a) is a spreadsheet

exhibits two kinds of

Missing formula smell
curs when some cells in a
Such smell can be introduced to a
ride the formula in a cell with
ray1 [F2:F7] is subject
an intended formula pattern
like cells F2, F3 and F4, the values of
computed by formulas.

Inconsistent formula smell
occurs when the cells in a cell array prescribe different formula
patterns. Such smell can

specify the formula of a
without realizing its computational semantic
lArray2 [D2:D7] is subject to
intended formula pattern of
users may understand

thus leave C2 empty.
and as a result CellArray2 prescribe

la pattern. A similar smell

Although CellArray2 and CellArray3 in
ambiguous computation smell
cells are appropriate. However, the smells can lead to
and C9 if C2 is updated
problems can arise when

to these cell arrays
would also likely contain

formula pattern that

(a) A spreadsheet

A spreadsheet without
Figure

 paper is organized as follows.
and explains the use

ambiguous computation smell
detection and repairing technique. §5 presents

AmCheck with real
cusses related work, and finally §8 conclude

MOTIVATION
illustrate ambiguous computation smells using

spreadsheet extracted from the
to detect and repair

spreadsheet computing
two kinds of ambiguous computation smell

Missing formula smell. This ambiguous computation smell
in a cell array do not

Such smell can be introduced to a cell array
ride the formula in a cell with a plain value

is subject to the computation of
mula pattern of Fi = Di

like cells F2, F3 and F4, the values of
computed by formulas.

Inconsistent formula smell. This ambiguous computation smell
occurs when the cells in a cell array prescribe different formula

smell can be introduced
the formula of a cell in the

its computational semantic
is subject to the computation of

intended formula pattern of Di = Bi +
 that there is no orange

C2 empty. They specify a formula that
s a result CellArray2 prescribe

la pattern. A similar smell also occurs to

Although CellArray2 and CellArray3 in
ambiguous computation smells, the value
cells are appropriate. However, the smells can lead to

is updated later with any
when end users apply

cell arrays later. An ambiguous computation smell
likely contain an error (e.g., F7)

that can lead to values in

spreadsheet with ambiguous computation smells

without ambiguous computation smells
Figure 1. A motivating example

is organized as follows.

and explains the use of our technique
smell. §4 proposes

presents our tool
with real-life spreadsheets.

concludes this paper.

illustrate ambiguous computation smells using
extracted from the EUSES corpus

to detect and repair these smells.

ing monthly harvest of fruits.
ambiguous computation smells

ambiguous computation smell
do not prescribe a

cell array when end
value. For example,

computation of “Total Price

i * Ei, where 2 ≤
like cells F2, F3 and F4, the values of cells F5, F6 and F7

ambiguous computation smell
occurs when the cells in a cell array prescribe different formula

be introduced to a cell array
the cell array inappropriately

its computational semantics. For exam
computation of “Total

+ Ci, where 2 ≤
no orange output in February,

hey specify a formula that
s a result CellArray2 prescribes more than one form

to CellArray3 [B9:C9].

Although CellArray2 and CellArray3 in Figure 1(a)
s, the values given by their

cells are appropriate. However, the smells can lead to error
ny non-zero value.

apply copy-and-paste and a
ambiguous computation smell

(e.g., F7) if one is un
values in such a cell

with ambiguous computation smells

ambiguous computation smells
otivating example.

is organized as follows. §2 gives a
technique. §3

proposes our smell
our tool implemen-

life spreadsheets. §7 dis-
this paper.

illustrate ambiguous computation smells using
EUSES corpus [11].

harvest of fruits.
s:

ambiguous computation smell oc-
prescribe any formula.

end users over-
For example, CellAr-

Total Price” with
≤ i ≤ 7. Un-

and F7 are not

ambiguous computation smell
occurs when the cells in a cell array prescribe different formula

to a cell array when end
inappropriately

For example, Cel-
Total” with an

≤ i ≤ 7. End
in February,

hey specify a formula that ignores C2
more than one formu-

CellArray3 [B9:C9].

 suffer from
by their member

errors in D2
ro value. Besides,

paste and au-
ambiguous computation smell

one is unable to find
cell array.

with ambiguous computation smells.

ambiguous computation smells.

849

2.2
Several
and repairing of
We explain
cell (e.g.,
of
ly
consider two formula patterns
rived from these patterns offer the same computation
and 2*
pattern for a cell array
tern
none of cells in
e.g.,
cell array
D4 and D5 in CellArray2
array
may even conflict with the

Our
two steps.
underlying
array
mula pattern
sis
biguous computation smell
cope with
and
struct
repair
also use its
cell arrays.

3.
In t
explain
smell

3.1
A spreadsheet
by two
be partitioned into
whether they contain formulas.
expression
address
be
�
(�
include basic opera
spreadsheet software
ly, an express

We define a
dress
references in

�

Relative
spreadsheet programming
columns
The bracket for

2.2 AmCheck
Several technical
and repairing of
We explain them
cell (e.g., F5) belong to a cell array? If
of such a cell array?
ly prescribe semantically
consider two formula patterns
rived from these patterns offer the same computation
and 2*x. Third,
pattern for a cell array
tern? This is a challenging question because there are chances that
none of cells in such
e.g., cells B9 and C9 in CellArray3.
cell array may prescribe
D4 and D5 in CellArray2
array may prescribe
may even conflict with the

Our AmCheck infer
two steps. First, it uses
underlying constraints
array. Second, it
mula patterns. AmCheck
sis [21] to construct
biguous computation smell
cope with noises
and potential errors
struct a candidate formula pattern
repairing the ambiguous computation smell
also use its inferred
cell arrays.

3. AMBIGUOUS COMPUTATION SMELL
In this section, w
explain key concepts like
smell to be used in subsequent discussions

3.1 Spreadsheet Program
A spreadsheet can be modeled as
by two-dimensional cell
be partitioned into
whether they contain formulas.
expression of that
address references
be the set of plain values.
� ∈ �, an address
�) applied to one or more

include basic opera
spreadsheet software
ly, an expression

We define a function
dress references
references in �(���

�(���) = 	 �

∅
{���

�(���

Relative R1C1 is a widely
spreadsheet programming
columns on the
The bracket for the

AmCheck Overview
technical challenges need to be addressed in the detection

and repairing of ambiguous computation smell
m using the example in

) belong to a cell array? If
cell array? Second, do cells in a cell array

semantically different formula patterns? Note that we
consider two formula patterns to be
rived from these patterns offer the same computation

 how may one
pattern for a cell array that prescribe

? This is a challenging question because there are chances that
such a cell array

cells B9 and C9 in CellArray3.
prescribe conflicting

D4 and D5 in CellArray2. Fourth,
prescribe no formula. The value

may even conflict with their appropriate formula

infers formula patterns by means of constraints in
it uses values and

straints of formula patterns
 uses the inferred

AmCheck uses component
construct candidate formula

biguous computation smells. To
noises induced by conflicting formulas

errors (e.g., F7). For
a candidate formula pattern

ambiguous computation smell
inferred formula pattern

AMBIGUOUS COMPUTATION SMELL
we introduce spreadsheet programming model, and

key concepts like cell array and
to be used in subsequent discussions

Spreadsheet Program
can be modeled as

dimensional cell addresses
be partitioned into data cells and
whether they contain formulas.

at cell is its formula. Let
references, EXP be the set of

the set of plain values. An expression
address reference (� ∈

) applied to one or more expression
include basic operators (e.g., +, 
spreadsheet software (e.g., SUM,

ion exp is:

��� = �	|	�	|	�

function � ∶ ���	 →
 used by an expression

(���) are referred to as the

�

∅																												
{���}																					
(����) ∪ … ∪ �(���

is a widely used notation for referencing cells
spreadsheet programming [34]. A cell at

on the right of the current cell is notated as R[
the row (or column) can be omitted when

Overview
need to be addressed in the detection

ambiguous computation smells
using the example in Figure 1

) belong to a cell array? If yes, what
o cells in a cell array

different formula patterns? Note that we
to be the same if the formulas d

rived from these patterns offer the same computation
 construct an appropriate formula

prescribes more than one formula
? This is a challenging question because there are chances that

a cell array is using an appropriate formula
cells B9 and C9 in CellArray3. Even worse, c

conflicting formulas patterns, e.g., cells
Fourth, some cells (e.g., F5) in a cell

formula. The values of these cells (e.g., F7)
appropriate formula

formula patterns by means of constraints in
values and formulas in a
of formula patterns prescribed by this cell

the inferred constraints to
component-based
formula patterns

To achieve this, AmCheck
by conflicting formulas

For example, AmCheck
a candidate formula pattern (Bi + Ci, where 2

ambiguous computation smell in CellArray2
formula patterns to detect errors

AMBIGUOUS COMPUTATION SMELL
spreadsheet programming model, and

cell array and ambiguous
to be used in subsequent discussions.

Spreadsheet Programming Model
can be modeled as a set of expressions

addresses [5]. Cells in a spread
and formula cells

whether they contain formulas. If a cell contains
its formula. Let A be the set of

the set of possible expression
expression exp is either a plain

∈ �) to another
expressions. Functions in spreadsheets

, *, /) and built-
, AVERAGE and

�(����, … , ����)

→ 	 2�, which gives
expression exp. The cell

referred to as the input cells

													��� ∈ �;

													��� ∈ �;
(����)			��� = �

used notation for referencing cells
. A cell at n rows below and

current cell is notated as R[
row (or column) can be omitted when

need to be addressed in the detection
ambiguous computation smells in spreadsheets

1(a). First, does a
, what is the boundary

o cells in a cell array inappropriat
different formula patterns? Note that we

the same if the formulas d
rived from these patterns offer the same computation, e.g., x +

an appropriate formula
more than one formula pa

? This is a challenging question because there are chances that
using an appropriate formula

Even worse, cells in such
patterns, e.g., cells

ome cells (e.g., F5) in a cell
of these cells (e.g., F7)

appropriate formula patterns.

formula patterns by means of constraints in
a cell array to infer

prescribed by this cell
to derive target fo

based program synth
 for repairing am-

AmCheck needs to
by conflicting formulas (e.g., D4 and D5)

AmCheck can co
, where 2 ≤ i ≤ 7) for

CellArray2. It can
errors (e.g., F7) in

AMBIGUOUS COMPUTATION SMELL
spreadsheet programming model, and

ambiguous computation

ming Model
a set of expressions referenced

Cells in a spreadsheet can
formula cells, depending on

contains a formula, the
the set of possible
expressions, and

is either a plain value
 cell, or a function

Functions in spreadsheets
-in functions from

and MAX). Forma

).

gives the set of a
. The cells indexed by

input cells of exp:

;																										

;																											

�(����, … , ����)

used notation for referencing cells
rows below and

current cell is notated as R[n]C[m
row (or column) can be omitted when a refe

need to be addressed in the detection
in spreadsheets.

oes a
boundary

inappropriate-
different formula patterns? Note that we

the same if the formulas de-
+ x

an appropriate formula
pat-

? This is a challenging question because there are chances that
using an appropriate formula,

such a
patterns, e.g., cells

ome cells (e.g., F5) in a cell
of these cells (e.g., F7)

formula patterns by means of constraints in
to infer

prescribed by this cell
for-

program synthe-
m-

needs to
(e.g., D4 and D5)

con-
for
can

(e.g., F7) in

AMBIGUOUS COMPUTATION SMELLS
spreadsheet programming model, and

computation

referenced
sheet can

on
a formula, the

possible
, and V

value
cell, or a function

Functions in spreadsheets
from

Formal-

ad-
by

).
	

used notation for referencing cells in
rows below and m

m].
refer-

enced cell is on the same row (or
cell references
the cell containing
formulas
R1C1 expression
in Figure
using this
values. The first value is given by a cell at the same row but two
columns left. The second value is given by a cell at the same
but one column left.
expressions
1(a). A referenced cell with
constant.
means relative R1C1 notation

3.2 Cell
In a spreadsheet, c
usually

Definition
CellArray1, CellArray2 and CellArray3
column
computational semantic

Since cells in a cell array often use formulas to express such co
putational semantics,
mantics its

cells in a
following condition holds

Intuitively, a
contain
that any
references
condition states that
to the same value
example
2]C + 2
different
solver
expressions equivalent
��������

from an

There are

Row-based cell array
Each of these cells
the same column as input
a row-based cell array

Column
umn. Each
cells in the same row as inputs. For example,
1(b) is a

Figure

enced cell is on the same row (or
references in a formula to be

the cell containing this
ormulas prescribing the same pattern have equivalent relative

R1C1 expressions. For exam
Figure 1(a) can be

this relative R1C1 notation.
values. The first value is given by a cell at the same row but two
columns left. The second value is given by a cell at the same
but one column left. Figure
expressions for all formulas contained

A referenced cell with
constant. In subsequent discussions
means relative R1C1 notation

Cell Array and Smell
In a spreadsheet, cells
usually grouped together in a row or column.

Definition 1: A cell array
CellArray1, CellArray2 and CellArray3
column prescribing one
computational semantic

Since cells in a cell array often use formulas to express such co
putational semantics, we name a cell array
mantics its formula pattern

cells in a cell array. We say that a
following condition holds

∀��, �� ∈ ���������
⋀

Intuitively, a cell array
contain equivalent R1C1

any two cell expression
references (i.e., cell addresses in R1C1
condition states that any
to the same value given the same
example, two expressions

+ 2 * R[-1]C” are equivalent
different. Our AmCheck checks well

Choco [22]. Since a
expressions equivalent,

�������. If a cell array

an ambiguous computation smell

There are two common

based cell array.
of these cells often

the same column as input
based cell array.

Column-based cell array
Each of these cells

cells in the same row as inputs. For example,
) is a column-based cell array.

Figure 2. Motivating

enced cell is on the same row (or column). Th
in a formula to be expressed

this formula. An interesting
the same pattern have equivalent relative

For example, the formula B5
 rewritten as RC[

relative R1C1 notation. It means
values. The first value is given by a cell at the same row but two
columns left. The second value is given by a cell at the same

Figure 2 gives corresponding
formulas contained

A referenced cell with absolute
In subsequent discussions,

means relative R1C1 notation for ease of presentation

and Smell
ells with the same computational

grouped together in a row or column.

cell array is a consecutive
CellArray1, CellArray2 and CellArray3

one business concept
computational semantics.

Since cells in a cell array often use formulas to express such co
we name a cell array

formula pattern (��������).

We say that a cell array is
following condition holds (in R1C1 notation)

���������, �(��. ���
⋀	��. ��� = 	 ��.

cell array is well-formed when
R1C1 expressions.

expressions in this cell
(i.e., cell addresses in R1C1

any two cell expressions
given the same bindings of

, two expressions “2 * (R[-2]C
are equivalent although they are syntactically

AmCheck checks well-formedness using
Since a well-formed cell array has all its cell

, we can take any of
cell array is not well-formed

ambiguous computation smell

common types of cell arrays in spreadsheets

. It comprises consecutive
often has a formula

the same column as inputs. For example,

based cell array. It comprises
of these cells often has a formula

cells in the same row as inputs. For example,
based cell array.

otivating example with relative R1C1 notation

column). This notation allows
expressed as indexes

interesting observation is that
the same pattern have equivalent relative

ple, the formula B5 + C5
written as RC[-2] + RC[-1]

means a summation of two
values. The first value is given by a cell at the same row but two
columns left. The second value is given by a cell at the same

corresponding relative R1C1
formulas contained in the spreadsheet in

 R1C1 can be treated
, “R1C1 notation

for ease of presentation.

computational semantics

grouped together in a row or column.

is a consecutive range of cells
CellArray1, CellArray2 and CellArray3 in Figure 1(a)) in

business concept and subject to

Since cells in a cell array often use formulas to express such co
we name a cell array’s computational s

 Let CellArray be

cell array is well-formed
(in R1C1 notation):

(���) = 	�(��. ���
. ���.

formed when all its member cell
. The first condition states

cell array have the same set of
(i.e., cell addresses in R1C1 notation). The

expressions should be
bindings of their input cells

C + R[-1]C)” and
although they are syntactically

formedness using
formed cell array has all its cell

any of them as the
formed, we say that

 or it is smelly.

cell arrays in spreadsheets

consecutive cells
a formula referencing other cells in

. For example, [B9:C9] in Figure

comprises consecutive cells in a co
a formula referencing

cells in the same row as inputs. For example, [D2:D7]

with relative R1C1 notation

notation allows
indexes relative to
observation is that

the same pattern have equivalent relative
C5 in cell D5

 in Figure 2
a summation of two

values. The first value is given by a cell at the same row but two
columns left. The second value is given by a cell at the same row

relative R1C1
the spreadsheet in Figure

treated as a
R1C1 notation” always

semantics are

of cells (e.g.,
(a)) in a row or

subject to certain

Since cells in a cell array often use formulas to express such com-
s computational se-

be the set of

formed if the

���)

member cells
condition states

have the same set of
The second

should be evaluated
input cells. For

and “2 * R[-
although they are syntactically

formedness using constraint
formed cell array has all its cell

e cell array’s
we say that it suffers

cell arrays in spreadsheets:

cells in a row.
other cells in
Figure 1(b) is

consecutive cells in a col-
referencing other

[D2:D7] in Figure

with relative R1C1 notation.

850

Smells can occur in a cell array when end users make ad hoc mod-
ifications to its cells. Such modifications can be made by inexpe-
rienced end users to accommodate last-minute modifications un-
der tight deadlines. We find two common types of ambiguous
computation smell: missing formula smell and inconsistent formu-
la smell, as explained earlier. A missing formula smell occurs in a
not well-formed cell array when it contains a data cell. An incon-
sistent formula smell occurs in a not well-formed cell array when
it has two formula cells with semantically different R1C1 expres-
sions. A cell array of more than two cells can suffer from missing
formula and inconsistent formula smells at the same time.

Definition 2: A conformance error occurs when the value of a
cell in a cell array does not conform to that computed by this cell
array’s ��������:

∃� ∈ ���������, �. �����	 ≠ ��������(�. ������).

A conformance error may be caused by improper modifications to
a cell array such that it suffers from ambiguous computation
smells. Conformance errors reflect true data discrepancies in
spreadsheets, such as F7 in Figure 1(a).

4. DETECTING AND REPAIRING
AMBIGUOUS COMPUTATION SMELLS
Given a spreadsheet, our AmCheck analyzes it and reports all
detected ambiguous computation smells with repair suggestions.
AmCheck heuristically identifies cell arrays (§4.1), and detects
ambiguous computation smells via constraint solving (§4.2). To
repair ambiguous computation smells, AmCheck infers an
�������� in two steps. First, AmCheck uses values and formulas in

a cell array to derive constraints associated with its underlying
formula pattern (§4.3). Second, AmCheck infers an �������� based

on these constraints. In order to expedite the inference process,
AmCheck combines heuristics (§4.4) and program synthesis tech-
niques (§4.5). After the inference, AmCheck reports a conform-
ance error if any cell in a cell array has a value not conforming to
the one computed by the inferred ��������.

4.1 Extracting Cell Arrays
The first challenge of ambiguous computation smell detection is
to identify cell arrays from a given spreadsheet, which has no
record about cells previously prepared by copy-and-paste and
auto-fill. We observe that a spreadsheet snippet usually provides
useful hints about boundaries of cell arrays. Besides, the formula
of a cell in a cell array often references other cells in the same row
or column as this cell. These two observations facilitate our cell
array identification and extraction.

The first step is to identify potential snippets. Related data and
formulas in a spreadsheet are often clustered together in a rectan-
gle circumscribed by empty cells or labels [16]. We refer to such
rectangles of cells as snippets. Examples of spreadsheet snippets
in Figure 1(a) include two rectangles comprising cells [B2:F7]
and [B9:D9], respectively.

To identify snippets, we adopt a cell classification strategy, simi-
lar to what Abraham and Erwig [4] suggested. We define a fence
as a row or column of cells that comprises only empty cells or
labels in a spreadsheet. We use fences to identify boundaries for
each spreadsheet snippet. Other cells inside the identified bounda-
ries are considered as cells of this spreadsheet snippet.

We describe our spreadsheet snippet identification algorithm
briefly as follows. Initially, each spreadsheet is considered as one
snippet. We then identify fences in this snippet, and divide this
snippet into more ones by the identified fences. For each newly

identified snippet, we repeat this refinement until no further snip-
pet can be identified.

The second step is to extract cell arrays from identified spread-
sheet snippets. As mentioned, the formula of a cell in a cell array
often references other cells in the same row or column as this cell.
Our cell array extraction algorithm works as follows. For each
snippet, it examines consecutive cells clustered in a row or col-
umn, and considers a cluster as a cell array if: (1) the cluster is not
a subset of another cell array, and (2) the formula of each cell in
the cluster consistently references input cells from the same col-
umn or row as this cell. The algorithm may encounter the follow-
ing four scenarios in its extraction process:

 Row-based cell array: For a cluster of consecutive cells in a
row, some cells contain formulas, and for each cell with a
formula, its formula only references input cells from the same
column as this cell. We then consider this cluster as a row-
based cell array. One example is [B9:C9] in Figure 1(a).

 Column-based cell array: For a cluster of consecutive cells
in a column, some cells contain formulas, and for each cell
with a formula, its formula only references input cells from
the same row as this cell. We then consider this cluster as a
column-based cell array. One example is [D2:D7] in Figure
1(a).

 Pure value: It is hard to judge whether a row or column con-
taining only data cells prescribes one business concept and is
subject to certain computational semantics. We do not consid-
er such rows or columns as cell arrays.

 Other cases: If a row or column does not belong to any of the
above cases, we also do not consider it as a cell array.

4.2 Detecting Ambiguous Computation Smells
By Definition 1, a cell array is well-formed if it satisfies: (1) it
contains only formula cells, (2) all its formulas use the same in-
puts (in R1C1 notation), and (3) all its formulas give the same
outputs given the same input values. Thus, we can map ambigu-
ous computation smell detection to a constraint satisfaction prob-
lem, and rewrite the above three conditions as follows:

∀��, �� ∈ ���������, �(��. ���) = 	�(��. ���)
∧	∄	�����, ��. ���(�����) ≠ ��. ���(�����).

Here, we use input to denote any possible input values to cells c1’s
and c2’s expressions. If a cell array does not satisfy any of the
above conditions, it suffers from ambiguous computation smells.

4.3 Extracting Formula Cell Constraints
Given a smelly cell array, we expect AmCheck to detect any ex-
istence of conformance errors as defined in Definition 2. To do
that, AmCheck needs to recover an R1C1 expression from exist-
ing cells to represent this cell array’s ��������.

Our construction technique is inspired by component-based pro-
gram synthesis, which synthesizes a loopless program from com-
ponents, input-output pairs and specifications used by this pro-
gram [14][21]. The construction is based on three assumptions: (1)
Components in formulas used by a cell array are often compo-
nents used by this cell array’s ��������; (2) Most values should be

correct for this cell array, and they can serve as input-output pairs;
(3) Existing formulas in the cell array are good hints of ��������.

Under these assumptions, AmCheck recovers an R1C1 expression
by extracting its constraints from cells of a smelly cell array, and
combining them appropriately. The extraction process consists of
four parts, i.e., extracting input variables, components, input-
output pairs and functions from a smelly cell array, as follows:

851

1) All cells referenced by formulas in a cell array are considered
as input variables for this cell array’s ��������. For example,

input variables for CellArray1 are RC[-2] and RC[-1], input
variables for CellArray2 are RC[-2] and RC[-1], and input
variables for CellArray3 are R[-7]C, R[-6]C, …, R[-2]C (in
Figure 1 (a)). The process may extract irrelevant input varia-
bles, which can be removed at a later stage. Let IV be the set
of all input variables of a cell array. After extracting n input
variables for �������� , we can model �������� as a function

�(��, ��, … ��). Formally, IV is defined as follows:

�� = �(��. ���) ∪ �(��. ���) … ∪ �(��. ���),
where	��, ��, … �� ∈ ���������.

2) All operators used by formulas in the cell array are considered
as components. For example, components from CellArray1
include “*”, components from CellArray2 include “+” and “–
”, and components from CellArray3 include “+” and SUM.
Some components may be irrelevant, but we can skip them at
a later stage. If AmCheck fails to find any operator from a cell
array, it would add basic operators (e.g., +, –, *, /) as compo-
nents.

3) All data in the cell array are considered as input-output pairs.
For example, in CellArray2, <(1, 0), 1>, <(2, 0), 2>, <(3, 0),
3>, <(4, 1), 5>, <(0, 5), 5> and <(0, 6), 6> are considered as
input-output pairs.

4) Existing formulas in the cell array can be modeled as func-
tions. For example, one can extract from CellArray2 four
functions, namely, f(x1, 0) = x1, f(x1, x2) = x1 + x2, f(x1, x2) = x1
– x2 and f(0, x2) = x2. These functions are treated as specifica-
tions in component-based program synthesis [14][21].

All these extracted input variables, components, input-output pairs
and functions are constraints used for recovering ��������.

4.4 Recovering ��������
We observe that a cell array’s �������� can exist in functions ex-

tracted from the cell array’s formula cells. For example, function
f(x1, x2) = x1 * x2 extracted from formula cells in CellArray1 in
Figure 1(a) is a good candidate for recovering CellArray1’s
�������� . This observation enables us to recover a cell array’s

�������� based on a candidate set of functions obtained from its

formula cells. This can significantly reduce the cost of formula
pattern inference since program synthesis [21] is expensive. We
aim to select a function that contains all input variables and covers
all cells in a cell array as its ��������. We say that a function co-

vers a data cell when the cell’s value can be computed by the
function. For example, the value of F5 in CellArray1 in Figure 1(a)
can be computed by f(x1, x2) = x1 * x2. We say that a function co-
vers a formula cell if the function is compatible with the one ex-
tracted from the cell’s formula in the sense that both of them can
produce the same outputs given the same inputs. For example,
function f(x1, x2) = x1 + x2 is compatible with function f(x1, 0) = x1

extracted from D2 in Figure 1(a). Note that the second parameter
binds to zero for the two functions to have the same inputs. How-
ever, f(x1, x2) = x1 + x2 is incompatible with another function f(x1,
x2) = x1 – x2 extracted from D4 in CellArray2 in Figure 1(a) be-
cause their outputs are different when x1 is 0 and x2 is 1.

Algorithm 1 gives our �������� recovery algorithm. The algorithm

returns NULL if it fails to recover any �������� from functions

extracted from a given cell array, which contains at least one for-
mula cell. If only one function can be extracted from a given cell
array, it is treated as the cell array’s �������� (Lines 13). Other-

wise, a function that can cover (by the Coverage method) all val-
ues and formulas in the given cell array (Lines 410) is treated as
the ��������. The Coverage method (Lines 1327) computes the

ratio of the number of cells a function can cover over the total
number of cells in the cell array. Lines 17-19 (and Lines 21-23)
check whether a formula (and data) cell is covered by a function.

4.5 Synthesizing ��������
The �������� recovery algorithm returns NULL when it fails to

identify an appropriate �������� of a smelly cell array from its

extracted functions. When this happens, AmCheck synthesizes the
�������� using component-based program synthesis [14][21].

Let us review the basic mechanism of component-based program
synthesis to construct a program before explaining the ��������

synthesis algorithm. Program synthesis first derives constraints
(constraintsps) for a program to be synthesized based on a set of
components and input-output pairs (generated by specifications
[14] or provided by users [21]). It then solves constraintsps to
synthesize the program. If the input-output pairs provided are not
sufficiently restrictive, multiple candidate programs can be syn-
thesized (all satisfying constraintsps). More input-output pairs can
be used to provide additional constraints to strengthen con-
straintsps until a unique program is synthesized.

Algorithm 2 gives the pseudo-code of our �������� synthesis algo-

rithm. There are three challenges in synthesizing the ��������: (1)

Component-based program synthesis [14][21] requires users to
explicitly provide components and input-output pairs [21]. The
algorithm addresses this using constraints extracted from values
and formulas in a smelly cell array (§4.3). (2) Functions extracted
from a smelly cell array’s formulas can be incompatible with one
another. For example, two functions f(x1, x2) = x1 + x2 and f(x1, x2)
= x1 – x2 extracted from CellArray2 in Figure 1(a) are incompati-
ble. Such incompatibility can make our �������� synthesis fail. (3)

Data cells may contain incorrect values, which cannot be comput-
ed by an appropriate �������� of the cell array. Such incorrect

values can also make our �������� synthesis fail.

To tackle the second challenge, Algorithm 2 classifies extracted
functions into compatible groups using the Classify method (Line

__

Algorithm 1. �������� recovery algorithm.
__

Input: IV (input variables), FUNC (functions), IO (input–
output pairs), CA (cell array).

Output: F (target formula pattern) or NULL.
 1: if (FUNC.length == 1)
 2: return FUNC.get(0)
 3: end if
 4: foreach fn in FUNC do
 5: if fn contains all input variables in IV then
 6: if (Coverage(fn, CA) == 100%) then
 7: return fn
 8: end if
 9: end if
10: end for
11: return NULL
12:
13: method Coverage(fn, CA)
14: coveredCells = 0
15: foreach cell in CA do
16: if (cell.type == FORMULA) then

17: if (!input. fn(input)cell.exp(input)) then
18: coveredCells ++
19: end if
20: else // Plain value case
21: if (fn(cell.input) == cell.value) then
22: coveredCells ++
23: end if
24: end if
25: end for
26: return coveredCells / CA.length
27: end method

852

1)
od classifies as many
as
them iteratively into compatible groups
function
a new
functions
18
patible groups
groups
x

To tackle

candidates
two observations: (1) the inclusion of input
from incorrect data cells can result in unsuccessful synthesis of
�

data cells are incorrect; (2) the additional constr
output pairs are useful

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize
�

method is implemented to follow
technique
gives an

functions in
tain
collectively constitute only a partial specification for

synthesis.
rich the specification with additional constraints given by the i
put
�

candidates
array while i
lieves us from the need to identify incorrect data cells and exclude
their associated input
can be found in related work
arbitrary one of

result.

2
the

AmCheck infers an

thesize the

use the

cell array.

5.
Our tool implementation of
convenience,
Excel files
smells
ous computation smells and

We implemented AmCheck
underlying
transform

e.g.,
For visualization
tations
smell

1

1) such that all functions in each group
od classifies as many
as possible. The
them iteratively into compatible groups
function f that cannot be classified into existing groups, it creates
a new compatible
functions compatible with
1822). Note that a
patible groups.
groups from CellArray2
x1 + x2 and f(0, x2

To tackle the third challenge,

candidates in two steps. The two
two observations: (1) the inclusion of input
from incorrect data cells can result in unsuccessful synthesis of
�������� candidates, but we have no prior knowledge of which

data cells are incorrect; (2) the additional constr
output pairs are useful

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize
�������� candidates with the

method is implemented to follow
technique [14] by treating functions as specification inputs.
gives an ��������

functions in one
tain multiple candidates.
collectively constitute only a partial specification for

synthesis. The algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i
put-output pairs using the
�������� candidate

candidates in the set using the input
array while ignor
lieves us from the need to identify incorrect data cells and exclude
their associated input
can be found in related work
arbitrary one of

result. Finally, among all

2 selects the one
the synthesized �

AmCheck infers an

thesize the ��������

use the inferred �

cell array. Remaining cells that it cannot cover

5. IMPLEMENTATION
Our tool implementation of
convenience, uses
Excel files. AmCheck
smells, and generates
ous computation smells and

We implemented AmCheck
underlying constraint solver.
transforms an inferred

e.g., x1 + x2 is transformed into
For visualization
tations: (1) Cell arrays
smells are colored

 Apache POI: http://poi.apache.org/

functions in each group
od classifies as many distinct compatible functions

. The Classify method
them iteratively into compatible groups

that cannot be classified into existing groups, it creates
compatible group (Lines 16

compatible with this new group
Note that a function can

 For example, we can
CellArray2 in Figure

2) = x2; (2) f(x1, 0) =

the third challenge, Algorithm

in two steps. The two
two observations: (1) the inclusion of input
from incorrect data cells can result in unsuccessful synthesis of

candidates, but we have no prior knowledge of which

data cells are incorrect; (2) the additional constr
output pairs are useful for prun

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize

candidates with the SynFPa

method is implemented to follow
by treating functions as specification inputs.

������� candidate set for each compatible group.

one group are not restrictive
multiple candidates. In other words, th

collectively constitute only a partial specification for

he algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i

output pairs using the Refine
candidate set, the method

in the set using the input
gnoring those pairs

lieves us from the need to identify incorrect data cells and exclude
their associated input-output pairs.
can be found in related work [21]
arbitrary one of �������� candidates left behind in each set as

mong all returned

one that covers cells in th
�������� (Lines 7

AmCheck infers an �������� successfully if it can recover or sy

������� for a given

�������� to repair the cells that it can cover in the

Remaining cells that it cannot cover

IMPLEMENTATION
Our tool implementation of AmCheck

uses the Apache POI
. AmCheck loads an Excel file

, and generates related comments
ous computation smells and corresponding

We implemented AmCheck in Java
straint solver. For user friendliness,

inferred �������� back to a

is transformed into B
For visualization, AmCheck marks

ell arrays that suffer
are colored in yellow; (2)

http://poi.apache.org/

functions in each group are compatible
distinct compatible functions

method classifies functions by adding
them iteratively into compatible groups. When it comes across a

that cannot be classified into existing groups, it creates
group (Lines 1617) and iteratively

this new group to this
can be classified into

For example, we can obtain
Figure 1(a): (1) f(x1, 0) =

, 0) = x1 and f(x1,

Algorithm 2 synthesizes

in two steps. The two-step synthesis is motivated
two observations: (1) the inclusion of input-output pairs derived
from incorrect data cells can result in unsuccessful synthesis of

candidates, but we have no prior knowledge of which

data cells are incorrect; (2) the additional constr
pruning inappropriate

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize

SynFPattern method

method is implemented to follow the component
by treating functions as specification inputs.

candidate set for each compatible group.

group are not restrictive enough,
In other words, the functions in the group

collectively constitute only a partial specification for

he algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i

Refine method (Line 6)
method iteratively prunes

in the set using the input-output pairs
pairs that lead to no solution

lieves us from the need to identify incorrect data cells and exclude
output pairs. Details of this

[21]. The Refine method returns an
candidates left behind in each set as

returned �������� candidates,

that covers cells in the given cell array
(Lines 710).

successfully if it can recover or sy

given smelly cell array.

to repair the cells that it can cover in the

Remaining cells that it cannot cover are

IMPLEMENTATION
AmCheck, also named AmCheck for

Apache POI1 library to read and modif
s an Excel file, analyzes its spreadsheet

comments explaining these
corresponding repairs

Java 7 and used
For user friendliness,
back to a human

B2 + C2 for cell
marks analysis results
suffer from ambiguous computation

 Spreadsheet comments

http://poi.apache.org/.

are compatible. The met
distinct compatible functions in each group

classifies functions by adding
When it comes across a

that cannot be classified into existing groups, it creates
iteratively adds other

 new group (Lines
be classified into multiple com-

obtain two compatible
, 0) = x1, f(x1, x2) =
, x2) = x1 – x2.

synthesizes ��������

step synthesis is motivated by
output pairs derived

from incorrect data cells can result in unsuccessful synthesis of
candidates, but we have no prior knowledge of which

data cells are incorrect; (2) the additional constraints of input
inappropriate �������� cand

dates. In the first step, the algorithm utilizes the constraints pr
vided by functions in each compatible group to synthesize

method (Line 5). The

component-based synthesis
by treating functions as specification inputs.

candidate set for each compatible group. If the

enough, the set can co
functions in the group

collectively constitute only a partial specification for �������

he algorithm, therefore, includes a second step to e
rich the specification with additional constraints given by the i

method (Line 6). For each
prunes inappropriate

output pairs of the given cell
that lead to no solution. This r

lieves us from the need to identify incorrect data cells and exclude
Details of this pruning process

method returns an
candidates left behind in each set as

candidates, Algorithm

e given cell array most

successfully if it can recover or sy

smelly cell array. End users can

to repair the cells that it can cover in the

are error-prone.

, also named AmCheck for
to read and modif

analyzes its spreadsheet
explaining these ambig

repairs.

 Choco [22] as
For user friendliness, AmCheck

human-readable format

cell D2 in Figure 1(a).
results by three ann

ambiguous computation
omments are added

The meth-
in each group

classifies functions by adding
When it comes across a

that cannot be classified into existing groups, it creates
her

Lines
m-

two compatible
) =

�������

by
output pairs derived

from incorrect data cells can result in unsuccessful synthesis of
candidates, but we have no prior knowledge of which

aints of input-
candi-

dates. In the first step, the algorithm utilizes the constraints pro-
vided by functions in each compatible group to synthesize

. The

based synthesis
 It

If the

the set can con-
functions in the group

�������

he algorithm, therefore, includes a second step to en-
rich the specification with additional constraints given by the in-

. For each
nappropriate

of the given cell
This re-

lieves us from the need to identify incorrect data cells and exclude
process

method returns an
its

Algorithm

most as

successfully if it can recover or syn-

End users can

to repair the cells that it can cover in the

, also named AmCheck for
to read and modify

analyzes its spreadsheet
ambigu-

its
AmCheck

format,

(a).
three anno-

ambiguous computation
are added

to smelly cells for
formance errors
explaining
validate
reported results

6. EVALUATION
We evaluate AmCheck and

RQ1:
life

RQ2:
smells precisely?

RQ3:
quality of
ing

RQ4:

To answer
the EUSES corpus
computation smells in this corpus, and manually validated 700 of
them randomly selec
are true
a case study
for research project
nese Academy of Sciences.
detect ambiguous computation smells in
then interviewed
spreadsheet
from their

__

Algorithm

Input:

Output
 1: groups
 2: pert
 3: while
 4:
 5:
 6:

 7:
 8:
 9:
10:
11: end
12: return
13:
14: method
15:

16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26: end

Figure

to smelly cells for describing
formance errors are colored
explaining their reasons.
validate these reported
reported results for our motivating example in

EVALUATION
e evaluate AmCheck and

RQ1: How common
life spreadsheets?

: Can AmCheck detect
smells precisely?

: Do end users find AmCheck useful
quality of their spreadsheets
ing ambiguous computation smell

: Are ambiguous computation smell

o answer questions RQ1
EUSES corpus [11]

computation smells in this corpus, and manually validated 700 of
randomly selected

true smells (§6.1).
a case study on real-life spreadsheets

research project budget
nese Academy of Sciences.
detect ambiguous computation smells in

interviewed finance officers
spreadsheets to understand

their spreadsheets (

Algorithm 2. ��������

 IV (input variables
tions), IO (input

: F (target formula pattern
groups = Classify
pert = 0; F = NULL
while groups not EMPTY

 group = groups
 formulas = SynFPattern

 formula = Refine

 if (formulaNULL &&
 pert = Coverage(
 F = formula
 end if

end while
return F

method Classify(
 groups = EMPTY

 while (initFunc
 newGroup = {
 foreach func

 if (!fnnew
 newGroup
 end if
 end for
 groups.add(new
 end while
 return groups

end method

Figure 3. AmCheck screenshot for

describing their corresponding
are colored in red with

reasons. These annotations
reported results. Figure

our motivating example in

EVALUATION
e evaluate AmCheck and study the following

 are ambiguous computation smell

Can AmCheck detect and repair

users find AmCheck useful
spreadsheets in terms of detecting

ambiguous computation smells?

ambiguous computation smell

RQ12, we conducted
[11]. We used AmCheck to detect ambiguous

computation smells in this corpus, and manually validated 700 of
ted from all results to
). To answer question
life spreadsheets prepared
budgeting in the

nese Academy of Sciences. In this study, we
detect ambiguous computation smells in

finance officers who created or main
to understand why and how

spreadsheets (§6.2).

������� synthesis algorithm
__

variables), COMP (components),
input–output pairs

formula pattern).
lassify(FUNC); // Get

NULL
not EMPTY do

s.removeOne();
SynFPattern (IV, COMP

= Refine(IV, COMP, formulas

NULL && Coverage(
Coverage(formula, CA

(FUNC)
= EMPTY

FuncFUNC. initFunc
{initFunc}

func in FUNC\newGroup

newGroup. in. fn
Group.add(func)

newGroup); // All in newGroup classified

AmCheck screenshot for the e

their corresponding repairs
with spreadsheet

These annotations can assist end users to
Figure 3 gives a screen

our motivating example in Figure 1

the following research questions

ambiguous computation smell

and repair ambiguous computation

users find AmCheck useful for improv
in terms of detecting

?

ambiguous computation smells harmful?

conducted an empirical study
used AmCheck to detect ambiguous

computation smells in this corpus, and manually validated 700 of
from all results to determine whether they

question RQ34, we
prepared by finance officers
 Institute of Software, Ch

study, we used AmCheck to
detect ambiguous computation smells in these spreadsheets

who created or main
how these smells

synthesis algorithm.

(components), FUNC
output pairs), CA (cell array

et compatible group

 // Retrieve one
COMP, group)

formulas, IO)

Coverage(formula, CA)>pert
CA); // Measure

Func non-classif

newGroup do

fn(in)func(in))

// All in newGroup classified

the example in Figure

repairs; (3) Con-
spreadsheet comments

assist end users to
screenshot of the

1(a).

research questions:

ambiguous computation smells in real-

ambiguous computation

improving the
in terms of detecting and repair-

an empirical study on
used AmCheck to detect ambiguous

computation smells in this corpus, and manually validated 700 of
determine whether they

, we conducted
finance officers

of Software, Chi-
AmCheck to

spreadsheets. We
who created or maintained these

smells have arisen

__

FUNC (func-
cell array).

compatible groups

one group

pert) then
; // Measure percentage

classified) do

)) then

// All in newGroup classified

Figure 1(a).

853

6.1 Empirical Study on the EUSES Corpus
We ran AmCheck on all spreadsheets in the EUSES corpus and
got experimental results about ambiguous computation smells.

6.1.1 Experimental Subjects
The EUSES corpus consists of 4,037 real-life spreadsheets from
11 categories. Since its creation in 2005, it has been widely used
for spreadsheet research and evaluation. Table 1 gives the statis-
tics of the corpus. It lists the number of spreadsheets (Total), the
number of our processed spreadsheets (Processed), the number of
spreadsheets with formulas (With formulas), and the number of
spreadsheets with cell arrays (With arrays) for each category
(Category). We find that only 92.8% (3,746/4,037) of spread-
sheets in the corpus could be parsed by the Apache POI. 43.4%
(1,626/3,746) of the processed spreadsheets contain cells with
formulas. Out of them, 61.1% (993/1,626) contain cell arrays.

6.1.2 Ambiguous Computation Smells
Table 1 also gives the number of spreadsheets suffering from
ambiguous computation smells (Smelly), the number of spread-
sheets with missing formula smells (Missing), the number of
spreadsheets with inconsistent formula smells (Inconsistent), and
the percentage of smelly spreadsheets against all those with cell
arrays. Note that a smelly spreadsheet can suffer from both types
of smells simultaneously. As shown in Table 1, 44.7% (444/993)
of the spreadsheets with cell arrays and 27.3% (444/1,626) of the
spreadsheets with formulas suffer from at least one kind of am-
biguous computation smell. This discloses that ambiguous compu-
tation smells are common in real-life spreadsheets.

Table 2 lists the number of cell arrays (CA), the number of well-
formed cell arrays (WCA), and the number of smelly cell arrays
(SCA). It also lists the number of cell arrays suffering from miss-
ing formula smells (MISS), inconsistent formula smells (INCO),
and both smells (BO). It omits filby and jackson since they do not
contain cell arrays. We observe that ambiguous computation
smells occur commonly in the corpus: 21.6% (3,535/16,385) of
identified cell arrays suffer from ambiguous computation smells.
Among these smelly cell arrays, 75.3% (2,663/3,535) suffer from
missing formula smells, 31.5% (1,113/3,535) suffer from incon-
sistent formula smells, and 6.8% (241/3,535) suffer from both
smells. Therefore, we draw the following conclusion:

Ambiguous computation smells commonly occur in real-
life spreadsheets, with missing formula smells occurring
more often than inconsistent formula smells.

6.1.3 Quality of AmCheck Analysis
AmCheck is based on cell array identification and �������� infer-

ence. This process partly relies on heuristics, so AmCheck may be

imprecise and cause false positives. Thus, we are interested in its
analysis quality.

We partition detected smelly cell arrays into seven categories
according to how much the inferred �������� can cover cells in

these arrays. These seven categories are: {100%, [90%, 100%),
[80%, 90%), [70%, 80%), [60%, 70%), [50%, 60%) and [0%,
50%)}. Table 3 lists the number of smelly cell arrays (SCA) and
the number of cells with conformance errors (CE1) for each cate-
gory. We observe that the �������� inferred by AmCheck is able to

cover all cells in 903 smelly cell arrays (i.e., a coverage of 100%)
and 90% or more (but not 100%) of cells in another 108 smelly
cell arrays. This suggests that values and formulas in these 1,011
cell arrays are highly compatible with the inferred �������� . In

other words, each of these 1,011 cell arrays that suffer from miss-
ing formulas or different formula patterns very likely prescribes a
well-defined computational semantic expressible by the ��������

inferred by AmCheck. It is thus very likely that detected ambigu-
ous computation smells in these cell arrays (1,011/3,535 = 28.6%)
are probably true. This provides an alternative for assessing the
quality of AmCheck’s automatically detected spreadsheet smells.
We can use these seven categories to rank the likeliness of a
smelly cell array being true. Those cell arrays falling into the
100% category are considered most likely.

Next, we evaluate the precision of AmCheck’s smell detection for
the seven categories. We randomly selected 100 smelly cell arrays
(CA) in each category and manually validated their quality. This
accounts for 700 smelly cell arrays, which occupy 19.8%
(700/3,535) of the whole. In each category, Table 3 lists the num-
ber of true smelly cell arrays (TP), the number of true smelly cell
arrays that AmCheck can repair (RE), the number of true smelly
cell arrays warned by Excel 2010 (EX), and the number of cells
with true conformance errors (CE2). We explain these data below.

True positives and repairability. Out of the 700 sampled smelly
cell arrays, we manually confirmed that 319 (45.6%) of them are
true smelly cell arrays. We observe from the CA and TP columns

Table 1. Statistics of the EUSES corpus (n.a.: not applicable).

Category
Spreadsheets Spreadsheets with ambiguous computation smells

Total Processed With formulas With arrays Smelly Missing Inconsistent Percentage
cs101 8 8 8 7 3 2 1 42.9%

database 678 632 202 103 56 45 29 54.4%
filby 45 2 2 0 0 0 0 n.a.

financial 720 692 358 245 126 81 79 51.4%
forms3 26 19 18 10 4 3 1 40.0%
grades 588 557 285 201 88 66 42 43.8%

homework 576 535 278 163 54 35 30 33.1%
inventory 699 643 278 173 75 47 44 43.4%
jackson 13 0 0 0 0 0 0 n.a.

modeling 679 653 192 88 38 29 21 43.2%
personal 5 5 5 3 0 0 0 0%

Total 4,037 3,746 1,626 993 444 308 247 44.7%

Table 2. Smelly cell arrays in the EUSES corpus.

Category CA WCA SCA MISS INCO BO
cs101 31 21 10 7 3 0

database 2,252 1,714 538 438 113 13
financial 4,899 4,221 678 415 294 31
forms3 229 62 167 166 127 126
grades 1,893 1,426 467 381 111 25

homework 2,162 1,456 706 555 176 25
inventory 3,210 2,589 621 433 205 17
modeling 1,585 1,237 348 268 84 4
personal 124 124 0 0 0 0

Total 16,385 12,850 3,535 2,663 1,113 241

854

in Table 3 that the number of true smelly cell arrays decreases
with the reduction in coverage. We recommend to select 80% as a
coverage threshold for reliable detection of smelly cell arrays with
an experimental precision of 73.7% (221/300).

AmCheck is able to repair 316 (99.1%) of the 319 true smelly cell
arrays. It shows that AmCheck is effective for detecting and re-
pairing smelly cell arrays automatically. Figure 4 elaborates the
effectiveness with respect to the two different types of smells
under various coverage categories. For each coverage category, it
gives the number of true smelly cell arrays (True) and the number
of true smelly cell arrays that can be repaired (Repaired) using an
inferred �������� for missing formula smells (Figure 4(a)) and

inconsistent formula smells (Figure 4(b)). There are totally 10 cell
arrays suffering from both missing formula and inconsistent for-
mula smells. They are counted in both charts. AmCheck is able to
repair 214 out of the 216 missing formula smells, and 112 out of
the 113 inconsistent formula smells. The three smelly cell arrays
that AmCheck failed to repair involves sophisticated library func-
tions, incomplete input variables and complex structures. There is
no enough evidence to suggest that AmCheck’s repairing effec-
tiveness and coverage categories are correlated.

We draw the following conclusion:

AmCheck can effectively repair true ambiguous computa-
tion smells. One may use a coverage threshold of 80% for
reliable detection of ambiguous computation smells.

False positives. The differences of values in the CA and TP col-
umns in Table 3 give the number of false positives, which arise
mostly because the cells concerned do not form a cell array as
identified by AmCheck using the heuristics in §4.1. Two main
causes are found: (1) Some spreadsheets use numbers as labels.
For example, in financial reports end users often use years like
2011 and 2013 as labels but represented in a number format. Our
heuristics can misinterpret them as data cells. 69.2% (92/133) of
false positives in the coverage range of [70%, 100%] belong to
this case. It should be easy for end users to recognize such false
positives. (2) The heuristics incorrectly identify some cells with
distinct formula patterns as those subject to the same computa-
tional semantics (but actually not). 13.5% (18/133) of false posi-
tives in the coverage range of [70%, 100%] belong to this case.
End users can manually confirm or reject them in our current
AmCheck implementation. For the remaining 23 (17.3%) false
positives, the concerned cell arrays contain data cells with varying
complex semantics, which AmCheck cannot effectively distin-
guish. We leave this to future work.

6.1.4 Conformance Errors
Cells that do not conform to the inferred �������� in a cell array

are considered as conformance errors. In Table 3, AmCheck de-
tected a total of 8,481 conformance errors (CE1) in the EUSES
corpus. We manually validated the 1,423 detected conformance
errors in the 700 sampled cell arrays. We confirmed that 30.5%
(434/1,423) of them are true conformance errors (CE2), and all of
them occur at the 319 true smelly cell arrays. Note that there can
be multiple conformance errors in one smelly cell array. We also
observe that conformance errors occurring at the cell arrays with
higher coverage are more likely to be true. For example, 70.5%
(179/254) of detected conformance errors are true in the coverage
range of [80%, 100%].

6.1.5 Comparison with Excel
Although Microsoft Excel has built-in support for inconsistency
detection in cell arrays, its detection is subject to a few limitations.
First, Excel considers only cell arrays of three adjacent cells. Se-
cond, it detects only those smells that a cell’s formula is syntacti-
cally different from those of its two adjacent cells when these two
cells’ formulas are identical. The EX column in Table 3 shows
that Excel detected inconsistencies in only 3.8% (12/319) of the
true smelly cell arrays.

6.1.6 Runtime Overhead
Running AmCheck over the whole EUSES corpus took about 116
minutes. It thus took about 1.7 seconds to analyze one spreadsheet
on average. This good performance is attributed to the use of our
two-stage analysis (�������� recovery and �������� synthesis). If

we use �������� synthesis only to infer formula patterns, it would

take 861 minutes (12.8 seconds for each spreadsheet on average).
Our two-stage analysis significantly reduces the computational
time by 86.5%. Among the 3,535 detected smelly cell arrays,
93.2% (3,296/3,535) of them have their �������� successfully

recovered at the first stage, and the remaining 6.8% (239/3,535)
have their �������� synthesized at the second stage.

Table 3. Smelly cell arrays with different coverages.

 All Sampled
SCA CE1 CA TP RE EX CE2

100% 903 0 100
95/
100

95/
100

2/
100

0/
0

[90%, 100%) 108 133 100
73/
100

73/
100

7/
100

94/
121

[80%, 90%) 197 338 100
53/
100

52/
100

3/
100

85/
133

[70%, 80%) 120 242 100
46/
100

46/
100

0/
100

101/
190

[60%, 70%) 211 363 100
38/
100

36/
100

0/
100

103/
192

[50%, 60%) 917 1,392 100
9/

100
9/

100
0/

100
37/
135

[0%, 50%) 1,079 6,013 100
5/

100
5/

100
0/

100
14/
652

Total 3,535 8,481 700
319/
700

316/
700

12/
700

434/
1,423

(a) Cell arrays with missing formula smells.

(b) Cell arrays with inconsistent formula smells.

Figure 4. Sampled smelly cell arrays with different coverages
(x-axis: coverage category, y-axis: the number of cell arrays

concerned).

66

54

35
28

23

6 4

66
54

35
28

21

6 4
0

20

40

60

80

100% [90%,
100%)

[80%,
90%)

[70%,
80%)

[60%,
70%)

[50%,
60%)

[0%,
50%)

True Repaired

32

22
20 19

16

3
1

32

22 19 19
16

3
1

0
5

10
15
20
25
30
35

100% [90%,
100%)

[80%,
90%)

[70%,
80%)

[60%,
70%)

[50%,
60%)

[0%,
50%)

True Repaired

855

6.2 Case Study on Real-life Spreadsheets
To evaluate the usefulness of AmCheck to end users, we conduct-
ed a case study on ten real-life spreadsheets currently used by
finance officers. We studied three questions: (1) Why do ambigu-
ous computation smells occur in spreadsheets? (2) Is AmCheck
helpful for detecting and repairing ambiguous computation smells?
(3) How harmful are ambiguous computation smells?

Setup. We conducted our study in the Institute of Software, Chi-
nese Academy of Sciences. We collected ten real-life spreadsheets
professionally prepared by finance officers for research project
budgeting. These spreadsheets involve seven departments or units,
and have been used for more than three years. Most spreadsheets
are maintained by more than two officers.

We invited three officers who have participated in maintaining
these spreadsheets for an interview. We explained ambiguous
computation smells to these officers, and told them our plan of
using their spreadsheets in the study. We gave a list of Am-
Check’s detected ambiguous computation smells in these spread-
sheets as well as suggested repairs with brief explanations. We let
the officers study these smells before our interview.

In the interview, we asked the officers three questions: (1) Can
you explain how these ambiguous computation smells arise? (2)
Do you agree that these smells are indeed problems? (3) Are the
suggested repairs helpful?

Overall results. For each spreadsheet, Table 4 lists the number of
cell arrays (CA), the number of well-formed cell arrays (WCA),
the number of smelly cell arrays (SCA), the number of cell arrays
suffering from missing formula smells (MISS), the number of cell
arrays suffering from inconsistent formula smells (INCO), and the
number of cells with conformance errors (CE). The numbers in
brackets are confirmed data by officers. We observe that 80.0%
(8/10) of the spreadsheets suffer from ambiguous computation
smells. We detected 55 smelly cell arrays (40 suffering from miss-
ing formula smells and 17 suffering from inconsistent formula
smells; some suffering from both smells), and 23 cells contain
conformance errors. The results reveal that ambiguous computa-
tional smells are common to financial spreadsheets that have been
rigorously prepared and maintained by end users for over three
years. 40% of the spreadsheets contain even confirmed errors.
20.4% (55/270) of identified cell arrays suffer from ambiguous
computation smells, and this percentage is comparable to that for
the EUSES corpus (21.6%). The ratio 2.4 (40/17) between number
of smelly cell arrays suffering from missing formula smells and
number of smelly cell arrays suffering from inconsistent formula
smells is also comparable to that for the EUSES corpus, 2.4
(2,663/1,113). Ratios of true positives are higher than those in the
EUSES corpus. This is because the aforementioned false positives
are rare in these spreadsheets. Therefore, we draw the following
conclusion:

The ratio of smelly cell arrays in real-life spreadsheets is
comparable to that for the EUSES corpus.

Causes of ambiguous computation smells. From the interview
with officers, we obtained interesting answers about how missing
formula smells arose. They recalled: “I copied some data from
another place, and did not notice that they can be computed from
related cells”, “I just wrote down these data as plain values”, or
“after I used the auto-fill feature to generate these cells (in a cell
array), I noticed that there was an error of ‘division by zero’, and
so I set its value to 0”. From these answers, missing formula
smells have been usually caused by carelessly ignoring necessary
computation.

When coming to the question of how inconsistent formula smells
arose, they recalled: “I copied formulas from another spreadsheet,
and I really do not know why smells occur”, or “I wrote formulas
by myself and did not use any auto-fill feature, but I missed some
input cells”. For example, function SUM has been used inconsist-
ently when some cells contain a value of zero. Another example is:
a cell array should have a formula pattern of R[-3]C * R[-2]C *
R[-1]C, but some of its cells have a formula like R[-3]C * R[-1]C.
This occurs when R[-2]C’s value happens to be 1. From these
interview answers, we draw the following conclusion:

Ambiguous computation smells have been often caused by
carelessly using the auto-fill and copy-and-paste features.
AmCheck can effectively detect and repair such smells.

Harmfulness of ambiguous computation smells. Interestingly,
the officers were surprised by so many detected ambiguous com-
putation smells. Although some concerned cells had temporarily
correct values, they still decided to take our repair suggestions.
They said: “these cells (suffering from ambiguous computation
smells) are risky, and are difficult to maintain in future”.

Although the studied spreadsheets have been verified by our fi-
nancial officers carefully during their daily jobs, conformance
errors still exist. When such errors were presented to them, they
said: “the final result is balanced, and it should be impossible!”.
After we repaired the conformance errors, we noticed that the
final result now became unbalanced. Weird! Finally, we figured
out why: there was another missing formula smell in a related cell.
Although this missing formula (not related to cell arrays) could
not be detected by the current AmCheck implementation, its re-
ported smell warning enables end users to eventually find the
hidden problem successfully. These conformance errors have been
caused by careless updates to cells in cell arrays. With Am-
Check’s repairs, our officers realized that existing values of some
cells are indeed faulty. From these interview interactions, we draw
the following conclusion:

Table 4. Detected smelly cell arrays in the case study.

ID CA WCA SCA MISS INCO CE
1 12 12 0 (0) 0 (0) 0 (0) 0 (0)
2 24 24 0 (0) 0 (0) 0 (0) 0 (0)
3 17 9 8 (8) 7 (7) 3 (3) 4 (4)
4 32 12 20 (20) 14 (14) 6 (6) 8 (8)
5 32 29 3 (3) 2 (2) 1 (1) 0 (0)
6 32 29 3 (3) 2 (2) 1 (1) 0 (0)
7 10 9 1 (0) 1 (0) 0 (0) 1 (0)
8 32 29 3 (3) 2 (2) 1 (1) 0 (0)
9 50 45 5 (3) 3 (1) 2 (2) 1 (1)
10 29 17 12 (10) 9 (9) 3 (1) 9 (7)

Total 270 215 55 (50) 40 (37) 17 (15) 23 (20)

Table 5. Undetected cell arrays in the case study (numbers in

brackets are false positives).

ID CA
Undetected cell arrays

DRC PV INS CC CON DS
1 12 5

1

4

2 24

3 17 6

4 32 2

1
5 32

1

8

6 32

9
7 10 (1)

8 32

9
9 50 (2) 1

10 29 (2) 2 1
Total 270 (5) 5 8 3 2 1 31

856

Ambiguous computation smells are harmful and have
caused data discrepancies in real-life spreadsheets.

6.3 Discussions
While the evaluation shows that our AmCheck is promising for
detecting and repairing ambiguous computation smells in real-life
spreadsheets, we discuss some of its limitations.

6.3.1 False Negatives
False negatives in detecting smelly cell arrays are mainly caused
by undetected cell arrays. With help from finance officers, we
further measured such undetected cell arrays in our case study.

For each spreadsheet, Table 5 lists the number of detected cell
arrays (CA) and the number of undetected cell arrays (Undetected
cell arrays). AmCheck misses 15.9% (50 / (270 – 5 + 50)) of all
cell arrays in total. The recall rate of cell array extraction in Am-
Check is 84.1% ((270 – 5) / (270 – 5 + 50)). Several reasons
caused such false negatives: (1) Some cells reference other cells at
different rows or columns (DRC); (2) Some cell arrays contain
plain values only (PV); (3) Some cell arrays have in-line space
(INS); (4) Some cell arrays contain constant cells without being
labeled with “$” (a special annotation indicating a constant cell)
(CC); (5) Some cell arrays contain conditional formulas (CON);
(6) Some cells reference other cells in different spreadsheets (DS).
AmCheck needs extensions for handling these cases.

6.3.2 Threats to Validity
One threat to internal validity of our evaluation is that we were
unable to validate analysis results of spreadsheets in the EUSES
corpus by their original users. As such, we validated the results by
ourselves partially and manually in due diligence. Another threat
to external validity of our evaluation concerns the representative-
ness of spreadsheets in the EUSES corpus and collected in our
case study. We chose the EUSES corpus because it is by far the
largest corpus that has been widely used for evaluation by previ-
ous spreadsheet research studies. Spreadsheets collected in our
case study are those used in practice and maintained by profes-
sional finance officers. We made best effort in choosing repre-
sentative and real-life experimental subjects.

7. RELATED WORK
In this section, we review related work in recent years.

Spreadsheet errors. Spreadsheet errors are common [27][28][29].
They can cause serious financial losses. Ambiguous computation
smells may not cause errors immediately but degrade spreadsheet
quality gradually. Spreadsheets suffering from ambiguous compu-
tation smells contain unclear computational semantics, which
make them difficult to maintain in a correct way.

Detecting faults in spreadsheets. Various techniques have been
proposed to detect faults in spreadsheets. UCheck [4] and dimen-
sion inference [7] use the type system to check unit faults and
dimension faults, respectively. They focus on whether units can
be combined correctly into one cell. Smellsheet Detective [9][10]
detects statistical smells, type smells, content smells and function-
al dependency smells. Hermans et al. proposed visualizing spread-
sheets by dataflow graphs [17], and detected inter-worksheet
smells in these graphs [18]. They proposed detecting smells from
data clones [20] and in spreadsheet formulas [19]. In these pieces
of work, Hermans et al.’s [19] and Smellsheet Detective [10] fo-
cus on syntactic faults, while our work focus on missing formula
and inconsistent formula smells, which concern semantic faults.
Our work also detects conformance errors caused by ambiguous
computation smells. Its scope is thus orthogonal to existing work.

Program synthesis. Our work is based on component-based pro-
gram synthesis [14][21]. Typically, end users should provide
components and input-output pairs for program synthesis [21].
Regarding our problem, we automatically extract such compo-
nents and input-output pairs from spreadsheets and alleviate their
noises. Program synthesis has also been used for other purposes in
spreadsheet research, e.g., string transformation from examples
[13], table transformation [15], and number transformation [32].
In this paper, we apply program synthesis in a novel way to detect
and repair ambiguous computation smells in spreadsheets by re-
covering hidden computational semantics.

Modeling and testing for spreadsheets. Construction of rigorous
models for spreadsheets [1][8][16] can help end users reduce
chances of introducing ambiguous computation smells. Inferring
such models from spreadsheets can be challenging. Its effective-
ness depends on correctness of spreadsheets, and ambiguous
computation smells can reduce its precision. Our work addresses
the problem effectively by using both heuristics and formula pat-
tern synthesis. Spreadsheet testing [5][12][23] is another interest-
ing topic, whose most challenge may be the lack of test oracles.
Our work extracts partial computational semantics from cell con-
tents and recovers hidden formula patterns. It does not require
explicit test oracles. Ambiguous computation smells may also
mislead spreadsheet testing, and our work can assist the testing by
repairing smelly spreadsheets.

Semantic faults in software. Similar to smells in spreadsheets,
semantic faults are also dominant root causes of software failures
[24][33]. Most semantic faults require domain knowledge to un-
derstand, detect and repair [24]. MUVI [25] and DefUse [31] can
detect semantic faults related to inconsistent updates to correlated
multi-variables and dataflow intentions, respectively, in software.
They rely on invariant mining and detection techniques. Our work
uses a different approach by inferring hidden computational se-
mantics by heuristics and program synthesis techniques.

8. CONCLUSION
In this paper, we study ambiguous computation smells in spread-
sheets, which are caused by end users’ ad hoc modifications to
spreadsheet cells that should stick to certain computational seman-
tics. We propose a novel approach, AmCheck, to detect and repair
ambiguous computation smells by inferring formula patterns for
smelly cell arrays in spreadsheets. This also helps detect challeng-
ing conformance errors in spreadsheets. Our evaluation with real-
life spreadsheets reports that ambiguous computation smells are
common and harmful, and end users do care about such smells
and conformance errors caused by such smells, and value Am-
Check for its ability of automatically detecting and repairing
smelly spreadsheets.

We have identified several future research directions. First, detect-
ing smelly cell arrays can be improved by more precise cell array
extraction and formula pattern inference. Second, AmCheck can
be improved by implementing more features like handling condi-
tional formula patterns. Third, we plan to conduct more real-life
case studies and investigate mechanisms to prevent ambiguous
computation smells in spreadsheets.

9. ACKNOWLEDGMENTS
We sincerely thank Chang Xu, Yepang Liu and Rongxin Wu for
their valuable comments and careful proofreading. The work was
supported in part by Research Grants Council (611811) of Hong
Kong, and by National High Technology Research & Develop-
ment 863 Program (2012AA011204) and National Natural Sci-
ence Foundation (61173005, 61100038) of China.

857

10. REFERENCES
[1] R. Abraham and M. Erwig. Inferring templates from spread-

sheets. In Proceedings of the 28th International Conference
on Software Engineering (ICSE), pages 182–191. 2006.

[2] R. Abraham and M. Erwig. AutoTest: A Tool for Automatic
Test Case Generation in Spreadsheets. In IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC), pages 43 –50. September 2006.

[3] R. Abraham and M. Erwig. GoalDebug: A Spreadsheet De-
bugger for End Users. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE), pages
251–260. 2007.

[4] R. Abraham and M. Erwig. UCheck: A spreadsheet type
checker for end users. J. Vis. Lang. Comput., 18(1):71–95,
February 2007.

[5] R. Abraham and M. Erwig. Mutation Operators for Spread-
sheets. IEEE Trans. Softw. Eng., 35(1):94 –108, February
2009.

[6] M. Burnett and M. Erwig. Visually customizing inference
rules about apples and oranges. In IEEE Symposia on Human
Centric Computing Languages and Environments (HCC),
pages 140–148. 2002.

[7] C. Chambers and M. Erwig. Automatic detection of dimen-
sion errors in spreadsheets. J. Vis. Lang. Comput.,
20(4):269–283, August 2009.

[8] J. Cunha, M. Erwig, and J. Saraiva. Automatically Inferring
ClassSheet Models from Spreadsheets. In IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC), pages 93–100. 2010.

[9] J. Cunha, J.P. Fernandes, P. Martins, J. Mendes, and J. Sarai-
va. SmellSheet detective: A tool for detecting bad smells in
spreadsheets. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 243–244. 2012.

[10] J. Cunha, J.P. Fernandes, H. Ribeiro, and J. Saraiva. Towards
a Catalog of Spreadsheet Smells. In Computational Science
and Its Applications, pages 202–216. Springer Berlin Heidel-
berg, 2012.

[11] M. Fisher and G. Rothermel. The EUSES spreadsheet corpus:
a shared resource for supporting experimentation with
spreadsheet dependability mechanisms. SIGSOFT Softw Eng
Notes, 30(4):1–5, May 2005.

[12] G. Rothermel, L. Li, C. Dupuis, and M. Burnett. What you
see is what you test: a methodology for testing form-based
visual programs. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), pages 198–207. April
1998.

[13] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. SIGPLAN, 46(1):317–330, Jan-
uary 2011.

[14] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. SIGPLAN, 46(6):62–73, June 2011.

[15] W.R. Harris and S. Gulwani. Spreadsheet table transfor-
mations from examples. SIGPLAN, 46(6):317–328, June
2011.

[16] F. Hermans, M. Pinzger, and A. van Deursen. Automatically
extracting class diagrams from spreadsheets. In Proceedings
of the 24th European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 52–75. Springer-Verlag, 2010.

[17] F. Hermans, M. Pinzger, and A. van Deursen. Supporting
professional spreadsheet users by generating leveled data-
flow diagrams. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE), pages 451–460.
2011.

[18] F. Hermans, M. Pinzger, and A. van Deursen. Detecting and
visualizing inter-worksheet smells in spreadsheets. In Pro-
ceedings of the International Conference on Software Engi-
neering (ICSE), pages 441–451. 2012.

[19] F. Hermans, M. Pinzger, and A.V. Deursen. Detecting Code
Smells in Spreadsheet Formulas. In Proceedings of the Inter-
national Conference on Software Maintenance (ICSM), pag-
es 409–418. 2012.

[20] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data
clone detection and visualization in spreadsheets. In Pro-
ceedings of the International Conference on Software Engi-
neering (ICSE), pages 292–301. 2013.

[21] S. Jha, S. Gulwani, S.A. Seshia, and A. Tiwari. Oracle-
guided component-based program synthesis. In ACM/IEEE
32nd International Conference on Software Engineering
(ICSE), pages 215–224. 2010.

[22] N. Jussien, G. Rochart, and X. Lorca. The CHOCO con-
straint programming solver. In CPAIOR workshop on Open-
Source Software for Integer and Contraint Programming
(OSSICP). 2008.

[23] K.J. Rothermel, C.R. Cook, M.M. Burnett, J. Schonfeld,
T.R.G. Green, and G. Rothermel. WYSIWYT testing in the
spreadsheet paradigm: an empirical evaluation. In Proceed-
ings of the International Conference on Software Engineer-
ing (ICSE), pages 230 –239. 2000.

[24] L. Lu, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, and S.
Lu. A Study of Linux File System Evolution. In Proceedings
of the 11th USENIX Conference on File and Storage Tech-
nologies (FAST). 2013.

[25] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R.A. Popa, and
Y. Zhou. MUVI: automatically inferring multi-variable ac-
cess correlations and detecting related semantic and concur-
rency bugs. In Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles (SOSP), pages
103–116. 2007.

[26] R. Panko. Facing the problem of spreadsheet errors. Decis.
Line, 37(5)2006.

[27] R.R. Panko and S. Aurigemma. Revising the Panko–
Halverson taxonomy of spreadsheet errors. Decis. Support
Syst., 49(2):235–244, May 2010.

[28] S.G. Powell, K.R. Baker, and B. Lawson. A critical review of
the literature on spreadsheet errors. Decis. Support Syst.,
46(1):128–138, December 2008.

[29] K. Rajalingham, D.R. Chadwick, and B. Knight. Classifica-
tion of Spreadsheet Errors. CoRR, 2008.

[30] J. Reichwein, G. Rothermel, and M. Burnett. Slicing spread-
sheets: an integrated methodology for spreadsheet testing and
debugging. SIGPLAN, 35(1):25–38, December 1999.

[31] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W.
Zheng. Do I use the wrong definition?: DefUse: definition-
use invariants for detecting concurrency and sequential bugs.
In Proceedings of the ACM international conference on Ob-
ject oriented programming systems languages and applica-
tions (OOPSLA), pages 160–174. 2010.

[32] R. Singh and S. Gulwani. Synthesizing Number Transfor-
mations from Input-Output Examples. In Computer Aided
Verification (CAV), pages 634–651. January 2012.

[33] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug
characteristics in open source software. Empir. Softw.
Eng., :1–41, 2013.

[34] J. Walkenbach. Excel 2013 Power Programming with VBA.
Wiley. com, 2013.

[35] How to use the Auto Fill Options button in Excel.
http://support.microsoft.com/kb/291359 .

858

