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Abstract—JavaScript has become the most popular language 

for client-side web applications. Due to JavaScript’s highly-

dynamic features and event-driven design, it is not easy to debug 

web application errors. Record-replay techniques are widely 

used to reproduce errors in web applications. However, the key 

events related to an error are hidden in the massive event trace 

collected during a long running. As a result, error diagnosis with 

the long event trace is exhausting and time-consuming. 

We present a tool JSTrace that can effectively cut down the 

web application error reproducing time and facilitate the diagno-

sis. Based on the dynamic dependencies of JavaScript and DOM 

instructions, we develop a novel dynamic slicing technique that 

can remove events irrelevant to the error reproducing. In this 

process, many events and related instructions are removed with-

out losing the reproducing accuracy. Our evaluation shows that 

the reduced event trace can faithfully reproduce errors with an 

average reduction rate of 96%. 

Keywords—record-replay; dynamic slicing; event trace reduc-

tion; dependency analysis 

I. INTRODUCTION 

Web applications have been growing fast and brought un-
precedented convenience, yet come along with a variety of 
bugs. These bugs may cause varied errors, such as abnormal 
functionality, missing UI elements, and failing to handle asyn-
chronous events [1][2]. Specially, some errors can only be trig-
gered by a specific sequence of events in web applications. 

Record-replay techniques are used to faithfully reproduce 
the errors in web applications [3][4][5][6]. Event-based record-
replay approaches [3][4] record user interactions (user events) 
and use them to drive the execution during replay. The 
memory-based record-replay approach [6] records every value 
loaded from memory during an execution and uses these values 
to replace memory loads during replay. The above approaches 
work well in the short execution scenarios. 

Web applications are event-driven, and usually keep run-
ning for a long time. The current record-replay techniques 
[3][4][5][6] could generate a very long event trace. For exam-
ple, Mugshot [3] could generate 75-795KB uncompressed 
event trace per minute, which contains nearly 3000 events. In 
order to diagnose an error, users have to replay and inspect all 
the events, which is time-consuming and exhausting.  

In this paper, we focus on how to speed up the web applica-
tion error reproducing. Our key observation is that most of the 

events in an event trace are not related to the error, and only the 
key events in the event trace can reproduce the error properly. 
In order to speed up web application error reproducing, we 
need to know what the key events are and irrelevant events in 
the event trace. In order to facilitate debugging, we need to 
remove the irrelevant events and make sure that the remained 
key events are reproducible.  

The most related work with ours is EFF [7], which com-
bines dynamic slicing and checkpoint techniques to reduce the 
event trace for UNIX applications. EFF builds a Dynamic De-
pendency Graph (DDG) and an Event Dependency Graph 
(EDG) to trace dependencies by statically analyzing the use-
def relationship of executed statements. Their events refer to 
system calls rather than user interaction events. EFF is not suit-
able for complicated JavaScript features and DOM manipula-
tion interfaces. Firstly, JavaScript is a prototype-based, dynam-
ic, and weak-typing scripting language, which magnifies the 
difficulty to perform dynamic dependency analysis. Secondly, 
the APIs used for manipulating the DOM tree (tree-structure 
representation of a HTML page) are implemented by native 
code [8]. Treating these DOM APIs as general JavaScript code 
without knowing their semantics could miss dependencies. 
Thirdly, treating the whole DOM tree as a single global object 
is too coarse-grained and may cause many false dependencies. 

In order to reduce the event trace of a web application error 
precisely, we abstract the JavaScript instructions and DOM 
manipulation instructions to precisely capture dependencies 
and produce a dynamic dependency graph. Based on the dy-
namic dependency graph, we build an event dependency graph 
that describes the dependency relations of events. Then, a nov-
el event slicing approach is used to compute the key events. 
We also find that some key events are not always necessary for 
the error diagnosis. We present a more progressive event slic-
ing approach that allows developers to make assertions for the 
symptoms or specify the specific part of execution instead of 
tracing from the whole executed code when the erroneous 
event is triggered. Thus, we can get a slimmer event slice of 
the event trace. 

Our approach JSTrace is an enhanced record-replay tool 
that can significantly remove irrelevant events while keeping 
the trace reproducible. It is implemented in pure JavaScript, 
and enables easy integration into the client-side source code 
and execution on any browser. We have evaluated it on 10 
real-world errors from 7 popular web applications that belong 
to different domains. The evaluation shows that we can 
efficiently remove irrelevant events to the errors. 
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In summary, the contributions of this paper are as follows: 

 We propose a novel fine-grained approach to trace data 
dependencies by abstracting JavaScript and DOM 
instructions, and the dependency propagation rules. 

 We propose an effective approach to filter out irrelevant 
events in an event trace. Error-directed aggressive event 
reduction further removes irrelevant events, and 
facilitates the error diagnosis. 

 We have implemented our approach in the tool JSTrace. 
The evaluation on 10 real-world errors shows that 
JSTrace can remove about 96% irrelevant events, and 
reproduce the errors faithfully. 

The remaining of this paper is organized as follows. 
Section II presents our motivation. Section III introduces our 
approach. Section IV describes JSTrace implementation. In 
section V we study several real-world errors and evaluate our 
tool on these errors. Section VI describes the study on 
aggressive event reduction. Section VII discusses the related 
work and section VIII concludes the paper. 

II. MOTIVATION EXAMPLE AND OVERVIEW 

Fig. 1 shows the TodoList [9] web application that manages 
schedules in a calendar. When a user clicks the add button on a 
day view (Fig. 1(c)), a dialog pops up to create a to-do task 
(Fig. 1(d)). After the user fills up all necessary information, 
he/she clicks the save button. The program checks the title of 
the to-do task, and an error will occur if the title can be 
trimmed to an empty string (Fig. 1(e)). The simplified source 
code for TodoList can be found in Listing 1. 

Fig. 2 lists the real event trace that triggers the above error. 
The full event trace is shown in the left part of Fig. 2. In this 
trace, the user clicks add button on the view of day 11(event 5, 
Fig. 1(a)), then clicks close button to cancel this operation 
(event 11, Fig. 1(b)). He/she then performs a series of 
operations such as changing configurations (events 73~293). 
Afterwards, he/she clicks add button on the view of day 13 
(event 294, Fig. 1(c)), and types an empty string with a blank 
space as the title (event 301), fills in other fields in the form, 
and clicks save button (event 317), which finally triggers the 

serror. Replaying the entire execution with the full event trace 
could reproduce the error successfully. However, it is not 
efficient for debugging and error diagnosis. We observe that 
most of the events are irrelevant to the error. For example, 
events such as clicking the add button and then clicking close 
button to close the popup window (events 5~11, Fig. 1(a) and 
Fig. 1(b)), changing the settings (events 73~293) and filling the 
form field (events 302~316) are irrelevant to the error. 
Removing these events will not affect the occurrence of the 
error. The key events {1,294,301,317} can faithfully reproduce 
this error. 

In order to remove the irrelevant events, we need to identify 
the precise dependencies between events. In doing so, there are 
several challenges we should overcome. 

1) The DOM APIs are defined by the W3C and 
implemented as native code in modern browsers. We cannot 
easily obtain the dependencies among these DOM APIs and 
DOM elements. For example, the DOM API getElementById 
(line 30) suggests the data dependency between the DOM 
element title with JavaScript object todo.title. Without the 
semantics of getElementById, we would miss this key 
dependency. Even worse, JavaScript has some inconsistent 
DOM APIs. Listing 2 shows a classical example. In Listing 2, 
after changing the className for the element div by setting the 
field className, we can access the className field by the 
operation div.className. But, we could also access the 
className field by calling the native function getAttribute with 
the exact attribute name class. These inconsistent DOM APIs 
would make data dependency analysis challenging. 

2) DOM is a tree object. One modification on a node may 
affect its parent node or its subtree. Therefore, only analyzing 
general JavaScript code is insufficient—the dependency 
analysis must subtly model how one DOM manipulation 
depends on another to avoid missing dependencies. For 
example in Listing 1, the value attribute of DOM element title 
(line 30) depends on the operation that updates this field. 
Actually, it also depends on the operation that appends the 
DOM element title to the DOM element popup by assigning a 
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Fig. 1. Buggy application: TodoList 

Full event trace

1 load, target:"document"
...

5    click, target:"#todolist .day11 .add"

...

11  input, target:"#popup .close"

...

73    input, target:"#settings"

...

...

294 click, target:"#todolist .day13 .add"

...

301 input, target:"#popup .taskName"
...

305  click, target:"#popup .partOfDay.afternoon"

...

309  click, target:"#popup .prioriority.flag"

...

313  click, target:"#popup .color.red"

...

317 click, target:"#popup .color.save“

Click add task button and 

close the popup directly

Click settings tab and

change the onfigurations

Click add task button and fill 

the form in the popup window, 

The bug is triggered when 

click the ‘save’button

1   load, target:"document"

294  click, target:"#todolist .day13.add"

301  input, target:"#popup.taskName"

317  click, target:"#popup.color.save"

Reduced log

 
Fig. 2. Event trace reduction execution 



HTML code segment to the attribute innerHTML of DOM 
element popup (line 23). The operation (line 23) ensures that a 
node with id title exists. To precisely capture these 
dependencies, dependency analysis on the DOM model should 
be field-sensitive. In this way, we assume that modifying the 
attribute style (line 23) of the DOM element title (line 23) will 
not affect the reading of its attribute value. 

3) Due to the dynamic feature of JavaScript and event-
driven feature of web applications, it is hard to build the 
dependencies of events statically. For example, in Listing 1, 
the variable todo.tiltle (line 37) is defined at line 30 in the 
event handler function onSave. The event handler function 
onSave is registered at line 26, which can only be triggered 
when the add button is clicked. In this example, the error 
occurs only when onAdd is called before onSave. 

In this paper, we abstract the JavaScript instructions and 
DOM manipulation instructions to precisely capture data 
dependencies. We also build the dependency between 
JavaScript instructions and DOM elements. Based on the 
dynamic dependency graph, we build an event dependency 
graph that describes the dependent relations of events. Our 
slicing algorithm operates on the event dependency graph. 

We have two key insights to perform the event trace 
reduction. 1) If a recorded event never triggers any listeners 
registered by the user, we can safely remove it (section III.A). 
Fig. 3 represents the corresponding DOM tree for the TodoList 
example, dispatching the click event on the DOM element 
addBtn will trigger the handler onSave in Listing 1. However, 
dispatching a click event on DOM element dayView will not 
trigger any handlers and this event can be safely removed. 2) If 
an event e does not affect the variables that will be used by the 
erroneous event’s handler directly or indirectly, the event e can 
be removed. We may trace backward from the error behavior 
and identify the operations that affect the occurrence of this 
symptom. As shown in Listing 1, the error behavior is an 
exception thrown at line 38 that is affected by the value of 
variable todo.title. The function onSave (line 28) is triggered 
by event 317 with the value that is set by event 301. Therefore, 
event 317 depends on event 301. Since the event handler 
onSave is registered in function onAdd (line 26) that is the 
event handler triggered by event 294. Thus, event 317 depends 
on event 294 as well. Similarly, event 294 depends on the 
event 1 because event 1 defines the todolist.container variable, 

the DOM element day variable (line 15) and registers onAdd 
event handler (line 15) that will be used by event 294. Finally, 
we get the dependencies {317⟶[301,294], 294⟶1}. 
Therefore, we get the key events {1,294,301,317} and all the 
other irrelevant events can be removed. 

III. EVENT TRACE REDUCTION 

In this section, we describe our approach to remove the 
irrelevant events. The overall process consists of two steps: 

Step 1: Untriggered event analysis. If a recorded event 
never triggers any user-defined event handler, we can safely 
remove it (section A).  

1    document.onload(function(){ 
2        new TodoList().init(); 
3    }); 
 
4    function TodoList(){ 
5        this.container = { 
6            root: document.getElementById('#todolist'), 
7            dayView: ... 
8            popupView: ... 
9            settingView:... 
10      } 
11      ... 
12   } 
 
13   TodoList.prototype.init = function(){ 
14        //add onAdd handler for every day in the day view 
15        day.getElementByClassName('add')[0].addEventListner('click', 

onAdd); 
16        this.container.dayView.appendChild(day); 
17        ... 
18        defaultView.show(); 
19    } 
 
20    function onAdd(){ 
21        ... 
22        popup = document.createElement('div'); 
23        popup.innerHTML = '<div id="title" style=“tt”></div>...<div 

id="save"></div>'; 
24        this.container.popupView.appendChild(popup); 
25        ... 
26       popup.getElementById('save').addEventListener('click',onSave); 
27    } 
 
28    function onSave(){ 
29        var todo = new TODO();   // new a TODO object 
30        todo.title = this.popup.getElementbyId('title').value; 
31        ... 
32        if(check(todo)){ 
33            storage.save(todo);      // storage is an object for persistent 
34        } 
35    } 
36    function check(todo){ 
37        if(util.trimToEmpty(todo.title).length==0{ 
38            throw new Error("title of todo can’t be empty"); 
39        } 
40        return true; 
41    } 
 
Listing 1. Simplified source code for TodoList 

1 div.className=‘left’; 
2 class=div.getAttribute(‘class’);     //or class=div.className; 

 

Listing 2. Example of inconsistent DOM interfaces 
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dayView settingView popupView
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day13day11
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popup

title saveBtn

onmouseover

onclick

 
Fig. 3. DOM tree of TodoList 
 



Step 2: Event dependency analysis. We abstract the 
JavaScript operations into a series of intermediate instructions 
and design a dependency propagation model of web 
applications (section B). As we have mentioned, simply 
treating DOM manipulations as black box is insufficient. Thus, 
in order to avoid missing dependencies, we perform JavaScript 
dependency analysis (section B.1) and DOM dependency 
analysis (section B.2). Finally, we use these dependencies to 
build the Event Dependency Graph (EDG). We perform 
dynamic slicing on EDG (section B.3) to obtain the key events 
related to an error. 

A. Untriggered Event Analysis 

Some recorded events are fired by the user, but they never 
trigger any user-defined handlers registered by the user. 
According to the DOM3 event model [10], an event could be 
propagated from the root element along the tree structure to the 
target element, and then bubbles up to the root element. All the 
event handlers registered at the capture phase or bubble phase 
will be triggered if the event is not canceled in the middle (Fig. 
4). Thus, if there do not exist an event handler registered by the 
user from root element to the target element, the event can be 
safely removed. 

However, there is no DOM API that can be used to get the 
registered event handlers. To resolve this problem, we treat 
every registered handler as a special attribute of the 
corresponding DOM element. We keep a map for a DOM 
element to its corresponding event handlers. An event handler 
can be registered in 3 ways as Fig. 4 shows. For the first case, 
we override native addEventListener and removeEventListener 
functions to intercept the event registering or unregistering 
handlers. This could be done by taking advantage of 
JavaScript’s dynamic feature. For the second and third cases, 
our instrumented code could intercept such operations and 
identify handlers registered. Thus, we can associate all the 
registered event handlers to their corresponding DOM elements. 
Based on this information, we can identify that an event will 
never trigger any event handler if all the DOM elements along 
the event flow path do not contain any event handler of the 
event type. In Fig. 3, a mouseover event on addBtn can trigger 
the event handler binding to its ancestor dayView, so this 
mouseover event should not be removed. A keypress event on 
addBtn will never trigger any event handlers, so this keypress 
event can be removed. 

B. Event Dependency Analysis 

If an event ei depends on another event ej, one of the 
following two conditions should be satisfied. (1) The event 
handler of ei reads some JavaScript variables defined or written 
by the event handler of ej. (2) The event handler of ei reads 
some DOM elements appended or modified by the event 
handler of ej. For these two cases, we perform JavaScript 
dependency analysis and DOM dependency analysis separately. 

1) JavaScript dependency analysis 
In Fig. 5, we summarize the abstract JavaScript instructions 

that can affect JavaScript dependency. A constant value cons 
can be a number num, a string str, and the special constant 
undefined or null. The variable v can represent the object in 
JavaScript, such as a common object, a function object. The 
instructions include constant assignment, variable assignment, 
function definition, property variable reading and writing, 
binary operation, unary operation and function call. Each 
instruction (op) is assigned a unique instruction id (op.id). 

A DOM API could be either property access or function 
call to read or write the DOM tree. Therefore, each DOM 
instruction is also a JavaScript instruction, which is Get 
Property, Put Property or Function Call. In this section, we 
only consider the dependencies among JavaScript instructions, 
without considering the DOM dependencies. 

JavaScript dependency analysis builds the dependencies 
among JavaScript instructions. If a JavaScript instruction op1 
uses an input variable that is defined or modified by another 
instruction op2, we say that op1 depends on op2. 

Table I lists all the rules for JavaScript dependency analysis. 
The first column shows JavaScript instructions. The second 
columns shows the dependency rules JSDep(op). We use def(v) 
to denote the instruction op that changes the variable v, and 
dp(op) to denote the instruction op’s dependencies. 

For example, def(x)=5 denotes that an reference x is 
modified by an instruction with id=5. We then execute the 
instruction “y = x” (with id=10). According to the rules in 
Table I, def(y)=10, and dp(10)={5}. Thus, we build the 
dependency between instruction 10 and 5. 

For an event handler, it should depend on the instruction 
that registers the event handler. Losing this dependency may 
cause mistakenly pruning the registering events and finally fail 
to replay. We treat each registered event handler as a property 
of the related DOM element. It is initialized when it is 

1) div.addEventListener(‘click’, f); (DOM2)

2) div.onclick=function(){…} (DOM1)

3) <div onclick=’…’></div> (DOM1)

document

body

div

Standard DOM event flow

capture

bubble

 
Fig. 4. Standard event flow model 

JavaScript abstract instructions 
cons ::= num | str | bool | undefined | null 
v ::= object variable 

op ::= v = cons  // Assign a constant to v 

     | v1 = v2   // Assign variable v2 to variable v1 

     | v = {op*}  // Assign a function object to v 

     | v1 = v2.v3  // Get property v3 of object v2 

     | v1.v2 = v3  // Put property v2 of object v1 

     | v1 = v2 ⨂ v3  // Binary operation, ⨂∈{+, −, ∗, /, etc.} 

     | v1 = ⨀ v2  // Unary operation, ⨀∈{!, etc.} 
     | v1.v2 ({vp1, …, vpn}) // Call object v1’s function v2 without return 
     | v = v1.v2 ({vp1, …, vpn }) // Call object v1’s function v2 with return 

 

Fig. 5. JavaScript abstract instructions 



registered and accessed when the event handler is triggered. So, 
we can resolve this in DOM dependency analysis. 

2) DOM dependency analysis 
The DOM APIs are designed for manipulating web pages 

by the organization W3C, which is integrated to the browser 
environment but not the ECMAScript standard or JavaScript 
itself. Since the DOM tree cannot be simply treated as a 
general variable, our JavaScript dependency rules are 
insufficient to analyze these APIs. We summarize the problems 
as follows: 

 Inconsistent ways to modify the DOM tree. The DOM 
tree can be modified by assigning statement or a native 
function call. Dependencies may be lost without know-
ing the semantics of DOM APIs. As shown in our moti-
vation example, an attribute of a DOM element may be 
set by a name className but accessed by a native func-
tion call with the attribute name class. 

 We need to scan the DOM tree to make sure whether 
there is dependency relationship between two 
operations on the DOM tree. In Fig. 6, after adding a 
node div to the root body in step 1, step 2 adds a new 
node p to the node div. Therefore, step 2 depends step 1. 
Step 3 depends on step 1 because the operated DOM 
element div must already exist, and step 3 depends on 
step 2 because the reading innerHTML operation on the 
node div will get the serialization string of the subtree. 

To resolve these problems, we abstract the DOM 
manipulations and extend the JavaScript dependency analysis 
to propagate DOM-specific dependencies. We summarize the 
DOM APIs into eight instructions in Fig. 7. DOM instructions 

can read, add, remove, and replace a DOM element; modifies a 
subtree of a DOM element; read, write, and remove an attribute 
of a DOM element. Each DOM instruction dop associates with 
a JavaScript instruction op. 

DOM dependency analysis builds the dependencies among 
DOM instructions. If a DOM instruction dop1 uses a DOM 
element that is defined or modified by another DOM 
instruction dop2, we say that dop1 depends on dop2. Table II 
presents the dependency propagation rules of DOM 
dependency analysis. The first column shows DOM 
instructions. The second column shows the DOM dependency 
rules DOMDep(dop). We treat the DOM tree as a fine-grained 
variable that contains nodes and attributes. We associate the 
DOM elements with the instruction id that defines or modifies 
the DOM elements. In Table II, we use the functions bind(op, 
ele, dop) and bind(op, ele, attr, dop) to build the association, 
clearBind(ele), clearBind(ele, attr) and clearSubTreeBind(ele) 
to clear the association when necessary, and dp(op) to denote 
the instruction op’s DOM dependencies. 

To trace DOM-specific dependencies, we introduce the 
function SearchDOMDep to search for DOM-specific depend-
encies. Algorithm 1 presents our searching algorithm for 
SearchDOMDep. The algorithm firstly searches the ancestors 
of ele for the DOM instructions that have the types of DNAdd, 
DNRm, DNReplace and DSubtreeMod (line 1). Thus, we can 
guarantee the structural integrity (all its ancestor nodes already 
exist) when we get access to ele. Next, if the operation dop is 
reading an attribute attr of ele, then current dop will depends 
on the operations that modified this attribute (line 3). Finally, if 
the current DOM instruction dop is related to the subtree (such 
as reading innerHTML), the subtree nodes will be searched 

TABLE I. JAVASCRIPT DEPENDENCY ANALYSIS 

op JSDep(op) Description 

v = cons def(v)=op.id; dp(op)=∅ Constant variables do not depend on others. 

v1 = v2 def(v1)=op.id; dp(op)={def(v2)} Assign operation depends on the definition of v2. 

v = {op*} def(v1)=op.id; dp = ∅ Function variables do not depend on others. 

v1 = v2.v3 def(v1)=op.id; dp(op)={def (v2), def (v3), def (v2.v3)} 
Get property operation depends on object v2, property name v3, and the 

property value v2.v3. 

v1.v2 = v3 def(v1.v2)=op.id; dp(op)={def (v1), def (v2), def (v3)} Set property operation depends on object v1, property name v2, and value v3. 

v1 = v2 ⨂ v3 def(v1)=op.id; dp(op)={def (v2), def (v3)} Binary operation depends on the two input values v1, and v2. 

v1 = ⨀ v2 def(v1)=op.id; dp(op)={def (v2)} Unary operation depends on the input value v2. 

v1.v2 ({vp1,…,vpn}) dps(op)={def (v1), def (v1.v2), def (vp1), …, def (vpn)} 
Function call operation depends on object v1, the function object v2, and the 
input parameters vp1, …, vpn. 

v=v1.v2({vp1,…, vpn}) 
def(v1)=op.id; dp(op)={def (v1), def (v1.v2), def 

(vp1), …, def (vpn), def(ret)} 

Function call operation depends on object v1, the function object v2, and the 

input parameters vp1, …, vpn. ret represents the return value of function v2. 

 

body

table div

p

Step1: add node div

Step2: add node p

Step3: read innerHTML of div

 
Fig. 6. Dependency example for DOM manipulations 

DOM abstract instructions 
ele ::= DOM element 

attr ::= DOM element attribute 

dop ::= 

     | DNRead ele  // Read a node ele 
     | DNAdd pEle, ele  // Add node ele to parent node pEle 

     | DNRm ele  // Remove node ele from DOM tree 

     | DNReplace ele1, ele2 // Replace node ele1 with node ele2 
     | DSubTreeMod ele // Modify the subtree of node ele 

     | DAttrRead ele attr // Read attribute attr of node ele 

     | DAttrWrite ele attr // Write attribute attr of node ele 

     | DAttrRm ele attr  // Remove attribute attr of node ele 

Fig. 7. DOM abastract instructions 



(line 5). We have manually inspected the DOM APIs according 
to DOM3 specification [11] to decide the DOM instruction 
type and whether it is necessary to search the subtree of ele. 

Since a DOM instruction dop is also a JavaScript 
instruction op, the dependency of a DOM instruction dop 
includes two parts: JavaScript dependencies calculated by 
JSDep(op) and DOM dependencies calculated by 
DOMDep(dop). 

3) DDG and EDG 
In this section, we describe how to build the Dynamic 

Dependence Graph (DDG) and the Event Dependency Graph 
(EDG), and calculate the final key events. 

The Dynamic Dependency Graph DDG(N, E) consists of a 
set of nodes N and a set of directed edges E. Nodes N are 
JavaScript instructions or DOM instructions, and edges E are 
the directed dependencies among instruction nodes N. We can 
trace these dependencies by JavaScript dependency analysis or 
DOM dependency analysis. 

We can build the Event Dependency Graph EDG(N, E) 
based on DDG. EDG consists of a set of event nodes N and a 
set of directed edges E. Each edge ei → ej in E denotes that 
there is at least one instruction in event ei that depends on an 
instruction in event ej. 

The example in Fig. 8 illustrates DDG and EDG including 
JavaScript dependency analysis and DOM dependency analysis. 
The original code is part of our motivation example, which has 
an onAdd event handler and an onSave event handler. The 
dashed boxes are executed events. The solid boxes are 

executed instructions and the arrows between them denote 
dependency relationship. The rectangles denote JavaScript 
instructions and the rounded rectangles denote DOM 
instructions. Each DOM instruction is associated with its 
manipulating DOM element and the dependencies are retrieved 
by searching the DOM tree. As Fig. 8 shows, the set property 
innerHTML of popup at line 2 (op4) depends on op2 and op3 
(the literal string) according to the DAttrWrite rule by resolving 
JSDep. The operation getElementById (line 5) implies the 
reading of id attribute of title (op11). Thus, according to the 
DAttrRead rule, op11 depends on op2 (by resolving JSDep) 
and op4 (by resolving DOMDep). A reading property value of 
title element at line 5 (op12) depends on op11 (JSDep), op4 
and op7 (DOMDep) according to the DAttrRead rule. The 
registering event handler onSave is treated as an attribute with 
a unique name (op9), while implicitly triggering the event, an 
access to this event handler is recorded (op11), and this access 
depends on the registering operation. EDG is built based on the 
DDG. For example, the event that triggers onSave handler 
depends on the event that triggers onAdd, because there are 
edges between them. As we can see, the resulted DDG of 
combined JavaScript dependency analysis and DOM 
dependency analysis consists 4 kinds of dependencies in the 
graph, JS node to DOM node, DOM node to JS node, JS node 
to JS node, and DOM node to DOM node. The result of 
JavaScript dependency analysis or DOM dependency analysis 
alone is only a subgraph of this DDG in Fig. 8. 

Calculating the key events related to the error is a graph 
reaching problem. Algorithm 2 gives the slicing algorithm DS. 

TABLE II. DOM DEPENDENCY ANALYSIS 

Id dop DOMDep(dop) Description 

1 DNRead ele dp(dop.op)={SearchDOMDep(ele)} DOM element read depends on instructions that create/modify ele. 

2  DNAdd pEle, ele 
dp(dop.op)={SearchDOMDep(pEle)} 

bind(dop.op, ele, DNAdd) 

DOM element add depends on instructions that create/modify ele’s parent 

node pEle. It also binds a new operation on ele. 

3  DNRm ele 
dp(dop.op)={SearchDOMDep(ele)} 
clearBind(ele) 

DOM element remove depends on instructions that create/modify ele. It also 
clear operations on ele. 

4  DNReplace ele1, ele2 

dp(dop.op)={SearchDOMDep(ele1)} 

clearBind(ele1) 
bind(dop.op, ele2, DNReplace) 

DOM element replace depends on instructions that create/modify the origi-

nal ele1. It also clears original operations on ele, and binds a new operation 
on ele. 

5  DSubTreeMod ele 

dp(dop.op)={SearchDOMDep(ele)} 

clearSubTreeBind(ele) 

bind(dop.op, ele, DSubTreeMod) 

DOM subtree modify depends on instructions that create/modify the original 

ele. It also clears original operations on ele and its subtree, and binds a new 

operation on ele 

6 DAttrRead ele, attr dp(dop.op)={SearchDOMDep(ele, attr)} DOM attribute read depends on instructions that create/modify ele and attr. 

7  DAttrWrite ele, attr 

dp(dop.op)={SearchDOMDep(ele, attr)} 

clearBind(ele, attr) 
bind(dop.op, ele, attr, DAttrWrite ) 

DOM attribute write depends on instructions that create/modify the original 

ele and attr. It also clears original operations on ele and attr, and binds a new 
operation on ele.attr. 

8  DAttrRm ele, attr 
dp(dop.op)={SearchDOMDep(ele, attr)} 

clearBind(ele, attr) 

DOM attribute remove depends on instructions that create/modify the origi-

nal ele and attr. It also clears original operations on ele and attr. 

 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 1. Searching algorithm for SearchDOMDep 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Input: dop (the DOM instruction), ele (the DOM element), 

attr (the attribute, if ncecssary) 

Output: ids (dependent instruction ids) 

//search ancestor nodes to make sure existence of ele, attr 

//searching types: DNAdd, DNRm, DNReplace, DSubtreeMod 

1. ids = searchAncestors(ele, attr); 

2: if attr != NULL   //if accesses ele.attr 

//get the instruction ids that modify ele.attr 

3:    ids = ids ∪ getMutations(ele, attr); 
4: if needSearchSubtree(dop) 

5:    ids = ids ∪  searchSubtree(ele); 
6: return ids; 

 

________________________________________________________________________________________________________________________________________________________________________________________________________ ______________________________ 

Algorithm 2. Slicing algorithm DS 
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Input: g (event dependency graph), e (erroneous event node 

to trace from) 

Output: result (key events) 

1: Set result = {} 

2: Queue q = {e}; //initialized as the erroneous event 

3: while q.length>0 

4:    ei = q.deQueue(); 

5:    if ei is not in result 

6:       result.add(ei); 

//adjacentNodes can find adjacent nodes of ei in graph g 

7:       for each ej in adjacentNodes(g, ei) 

8:           if !result.contains(ej) 

9:  q.enQueue(ej); 



The algorithm is a breadth-first algorithm. q is a queue that 
contains the nodes that need to trace back, and is initialized as 
the erroneous event (line 2). If q contains at least one node, 
then q dequeues a node ei and add it to the result set result (line 
6), and add all the nodes that ei can reach in the EDG to the 
queue q (lines 7~9). Therefore, we can iteratively trace from 
these nodes and find more reachable nodes. As the example 
given in Fig. 9, we can calculate the key events as [e1, e2, e3, 
e4, e5, e6]. 

C. Replayable 

We classify symptoms of web application errors into the 
following three cases. 1) The rendering errors, such as missing 
UI components. The symptoms of such errors can always be 
observed on the web pages. 2) Unhandled exception thrown by 
the program. Such errors can cause the code termination or be 
observed by the debugging tools. 3) A specific piece of code 
specified at source code. This are often functional anomalies 
such as the inoperative UI components caused by program 
logic error or the wrongly computed result. It can also be the 
specific piece of code that is expected to be executed. 

The criterion for web application error reproducibility is 
whether the assertions of the above symptoms hold. Our tool 
can automatically insert user-defined assertions for a given 
event when replaying the event trace. 

IV. IMPLEMENTATION 

Our implementation of the record-replay system is similar 
to Mugshot [3] that provides the essential functionality to trace 
events and replay the event trace. We extend the replay phase 

to support event trace reduction as shown in the dashed box in 
Fig. 10. Our event trace reduction approach has taken 
advantage of shadow execution and instruments JavaScript 
code using Jalangi [6] to capture instructions and support 
annotated value. Our implementation is entirely in JavaScript 
which is transparent to users and easy to deploy. 

Architecture. At the record phase, the record proxy 
retrieves the original web page and instruments it to record 
event trace. The event trace is periodically updated to the 
server and stored in a log file. It supports manually submitting 
of the error by users or automatically submitting when an 
exception is thrown. The Cache is used to store web pages and 
nondeterministic data, which makes sure that the replaying 
phase will get the same data at the recording phase. The replay 
proxy is designed to replay a given event trace. Dynamic 
analysis module can perform event trace reduction at several 
levels by separately applying untriggered event handler 
analysis, JavaScript dependency analysis, combination analysis 
(combination of JavaScript and DOM dependency analysis), 
and aggressive analysis (section VI) accordingly. 

Instrumentation. The instrumentation is patched to the 
client side code, thus the dynamically generated code can be 
instrumented as well, such as eval, setTimeout and 
setTimeinterval that can run or schedule a task to execute a 
piece of string code. All the JavaScript code in libraries is 
instrumented. All the concerned JavaScript instructions and 
DOM instructions are intercepted by the instrumentation. 

JavaScript dependency analysis. To trace data 
dependencies dynamically, we incorporate the idea of shadow 
execution [6] in which the analysis can update and access the 
shadow value of a variable v. The shadow value records the 
value of def(v). For simplicity, we define a shadow member for 
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each value taking advantage of the JavaScript API 
defineProperties with the option enumerable configured as 
false, since this added shadow member should not be seen by 
the original code. When the value is modified, the shadow 
value is updated with the id of the operating instruction. 

DOM dependency analysis. We regard a JavaScript 
instruction as a DOM instruction if the operating object or 
returned value is DOM element. We manually inspect the APIs 
to decide the information that are used by SearchDOMDep. 

Limitations. Arrays are treated as an integrity to avoid 
missing dependencies. However, this may cause unexpected 
event dependencies. The functions setTimeinterval and 
setTimeout that periodically execute a scheduled task may 
cause iterative event dependencies, and greatly lower the 
reduction rate of our approach. 

V. EVALUATION 

We evaluated JSTrace on 10 real-world errors from 7 
different open source web applications in GitHub. In order to 
select the representative applications, we first used the 
condition “language:JavaScript tag:bug comment:>2” to filter 
the applications that are written in JavaScript and the issues are 
marked as bugs with multiple comments. We used the 
keywords repro, sample or bug to filter the errors that may 
have reproducing steps. From the result, we made further study 
on the errors, and made sure that they can be manually 
reproduced and has certain difficulty to diagnose (with 
multiple steps to reproduce). Finally, we classify them to 
different categories and bias the applications that are more 
popular, weighed by the number of stargazers in GitHub. We 
have selected 10 real-world errors form all the filtered issues. 

Table III provides an overview of our evaluated web 
applications. These web applications are designed for different 

purpose and functionality. For example chart.js [12] is a 
drawing library that uses canvas, Handsontable [13] is an 
excel-like application, and TodoList is an offline HTML5 
application that works like a calendar. These web applications 
are very complicated, and all of them use many JavaScript. For 
example, Handsontable uses 4.7M JavaScript code. 

In the evaluation, we measure reproducibility and 
efficiency of our tool. Specifically, we investigate the 
following research questions: 

RQ1: Can the reduced event trace faithfully reproduce the 
errors? 

RQ2: Can our tool efficiently reduce the event trace? 

RQ3: Is the performance acceptable? 

As far as we know, there is no similar work that aims to 
reduce event trace for web applications. Thus, we have not 
compared our work to others. 

A. RQ1: Reproducibility 

To address the first research question, we evaluated 
whether the reduced trace can faithfully reproduce the errors. 

Table IV shows the result on 10 errors. The column issueID 
shows the issue id in GitHub. The column ALL shows the 
number of events in the event trace. The columns Handler, JS 
show the reduced result for untriggered event analysis, and 
JavaScript dependency analysis. Comb_L* is the combination 
of JavaScript dependency analysis and DOM dependency 
analysis but with different granularity of DOM analysis. 
Comb_L1 simply treats the DOM tree as an integrity variable, 
Comb_L2 further manually identifies whether the operation is 
writing or reading and then simply build DOM dependencies 
by the read-after-write rule. While Comb_L3 uses our fine-
grained DOM analysis (section III.2). The R flag with value Y 
or N represents whether the reduced trace can successfully 
reproduce the errors or not. 

The untriggered event analysis may significantly reduce 
event trace. However, the remained event trace is still quite 
long to diagnose. For example, the bug 2 and bug 9 remove 
only less than a half irrelevant events, but the expected event 
number is no more than 6.  

JS analysis and Comb analysis are applied to further reduce 
the event trace. However the result of JS analysis may not be 
reproducible. For JS analysis, 2 out of 10 errors failed to replay. 
The Comb_L* performs best with respect to reproducibility, all 

TABLE IV. EVALUATED ERRORS 

Apps BugId IssueID #All  #Handler/R  #JS/R #Comb_L1/R  #Comb_L2/R #Comb_L3/R #Expected Rate  

Chart.js 
1 503 1139 351/Y 52/N 342/Y 79/Y 74/Y 6 94.0% 

2 920 1168 770/Y 139/Y 757/Y 139/Y 139/Y 6 88.60% 

HandsonTable 

3 1366 403 345/Y 29/Y 344/Y 297/Y 29/Y 5 94.0% 

4 638 694 668/Y 28/Y 388/Y 31/Y 28/Y 3 96.4% 

5 2231 606 462/Y 34/Y 67/Y 51/Y 34/Y 6 95.0% 

JPushMenu 6 1 342 6/Y 2/Y 6/Y 6/Y 2/Y 2 100.0% 

TodoList 7  1410 851/Y 21/N 53/Y 43/Y 24/Y 3 98.5% 

FullPage 8 146 398 39/Y 30/Y 39/Y 36/Y 30/Y 3 93.2% 

Editor.md 9 18 1023 791/Y 9/Y 97/Y 72/Y 9/Y 2 99.3% 

My-mind 10 12 1454 351/Y 8/Y 40/Y 22/Y 8/Y 6 99.9% 

 

TABLE III. REAL-WORLD APPLICATIONS 

Apps Description JS size Popularity 

Chart.js [12] basic charts 105K 14803 

Handsontable [13] 
Excel-like data grid 

editor 
4.7M 4989 

TodoList [9] Offline calendar 312K 19 

JPushMenu [14] A menu library 1.5M 134 

FullPage [15] 
To create full screen 

scrolling websites 
882K 9518 

Editor.md [16] A markdown editor 257K 530 

 My-mind [17] 
Online mindmapping 

software 
223K 1449 

 



the errors are successfully replayed. The result of fine-grained 
Comb_L3 analysis is closer to the expected event traces. 

The reason why the reduced event trace of JS analysis 
failed to replay is the missing DOM dependencies. The failing 
number is not high because our evaluated applications are 
highly-cohesive, and the applications have much shared data 
and JS dependencies are very common. This result also 
explains why the DOM analysis is necessary. Bug 1 is a 
division by zero error triggered when the user add data to a line 
chart right after clearing the chart. The JS analysis failed to 
trace the DOM dependency while executing add data. Fig. 11 
shows how a DOM dependency is missing. It uses an img to 
render a checkbox and its value is represented by the class 
attribute of its ancestor DOM element. That means that reading 
the value will search for modification of its ancestor elements. 
Without our DOM analysis, the dependency cannot be 
established. 

B. RQ2: Efficiency 

We use reduction rate to evaluate the efficiency. Table IV 
presents the result. The column Expected is the number of the 
actual key events to reproduce the error. The column Rate is 
the reduction rate that calculated by (#ALL-#Comb_L3) / 
(#ALL-#Expected). 

In Table IV, the average reduction rate is 96%. Untrig-
gered event analysis may significantly reduce event trace such 
as bugs 1, 6, 8 and 10 that have sparsely registered handlers 
and rarely use event delegation programming pattern, but the 
other bugs only remove few irrelevant events. Comb_L3 (with 
reduction rate of 87% relative to the untriggered event analysis) 
can remove more irrelevant events compared to the coarse-
grained Comb_L1 analysis (40%) and Comb_L2 (65%). This 
result proves the necessary of our fine-grained DOM analysis.  

However, the result of fine-grained analysis contains 
irrelevant events. We dig into the errors and find that the 
unremoved irrelevant events are mostly caused by: 1) Array 
operation, since we treat array as an integrity object. The 
application char.js and HandsonTable suffer from this problem. 
2) Calls to setTimeout and setTimeInterval. Such calls are 
often used to periodically check and modify a shared data or 
showing animations which result in large amount of 
dependencies and lower the reduction rate. The application 
char.js and fullPage suffer from this problem. 3) Redundant 
data dependencies. For example, an event reads the value of 
variable guid set by the handler of a previous event ei and adds 
it by 1. There is a JavaScript dependency between them. 
However, the error may not care about the exact value of guid 
and the user cannot feel the existence of it. Thus, the event ei is 
not expected to appear in the result from the user side. Almost 
all of the applications suffer from this problem. We try to solve 
this issue with the aggressive event reduction in section VI. 

C. RQ3: Performance 

The performance of the record and replay (without 
analyzing) is the same as Mugshot [3]. Since our analyzing is 
performed offline on the server side, we assume that the 
slowdown of analyzing is acceptable. In this section, we 
evaluated the memory usage. 

We have evaluated the memory usage of the 10 errors on 
Google Chrome and taken a heap snapshot on the profiles tab 
of the developer tool when the execution is ended. We use this 
profiler to take snapshot of JavaScript heap only, thus this size 
does not include the images, canvas, audio files, plugin data or 
native memory. 

Table V compares the memory usage of the original and the 
Comb_L3 analysis. The extra memory is used to record shadow 
values and DOM searching information. The result shows that 
the overhead of memory is 1.4~13.3X. 

D. Discussion 

A threat to our evaluation is that the 10 errors come from 
only 7 applications. However, the applications considered are 
randomly selected from real-world open source projects. They 
have detailed descriptions for the reproducing of the errors, and 
make our evaluation repeatable. Hence, they have reasonable 
representativeness. Besides, multiple steps are needed to 
reproduce the errors, thus they also have reasonable complexity. 
Finally, the applications are developed for different purposes. 

Non-determinism may make our approach fail. Our 
approach can record all the non-deterministic sources. This 
makes the replaying and analyzing deterministic and repeatable. 

Additionally, all the errors considered occur in a single 
page that may be a potential source of bias. However, our 
approach to replay an event trace that has recorded all the non-

<a href="#" id="1" class="selected"> 

<span class="icon"> 

<img alt="" src="images/radio-sel.png"> 

</span> 

<span class="text afternoon">Afternoon</span> 

</a> 
 

Fig. 11. HTML code snippet for TodoList 

TABLE V. MEMORY OVERHEAD 

BugId 
Original 

(MB) 

Comb_L3 analysis 

(MB) 
Overhead (X) 

1 4.5 12.2 2.71 

2 4.7 30.5 6.49 

3 10.3 64.1 6.22 

4 7.5 74.4 9.92 

5 23.4 45.3 1.94 

6 12.5 21.3 1.70 

7 12.4 161 12.98 

8 4.8 64 13.33 

9 11.2 144 12.90 

10 11.6 16.3 1.41 

 
TABLE VI. AGGRESSIVE EVENT REDUCTION 

App BugId #Comb_L3/R #Aggressive/R #Expected 

Chart.js 
1 74/Y 4/N 6 

2 139/Y 28/Y 6 

HandsonTable 

3 29/Y 24/N 5 

4 28/Y 9/N 3 

5 34/Y 13/N 6 

JPushMenu 6 2/Y 2/Y 2 

Todolist 7 24/Y 5/Y 3 

FullPage 8 30/Y 21/Y 3 

Editor.md 9 9/Y 2/Y 2 

My-mind 10 8/Y 7/Y 6 

 



determinism to make sure that the replaying starts with a 
determined environment and the execution will load the same 
data [3]. Therefore, from the point of reproducibility, there is 
no need to trace events across pages. Each execution of one 
page will generate one event trace. 

VI. CASE STUDY FOR AGGRESSIVE EVENT REDUCTION 

As we have mentioned in our evaluation, almost all the 
applications have dependencies that cannot be removed. In this 
section, we setup a study to make further event reduction. 

Our insight is that developers may not concern all the 
instructions triggered by an erroneous event, but a subset. If we 
only trace from a small part of instructions, we may gain a 
slimmer event trace. We call this as an aggressive event 
analysis. To calculate this slice, we first give the expected 
piece of code to replay, and use the execution of this code as 
the reproducible criterion. Then we trace from the variables 
that are involved in the given piece of code and find the event 
set that directly affect these variables, this event set is called 
event cut. Finally we use this event cut to run our DS algorithm 
and get the final event trace. For the example shown in Fig. 9, 
according to the EDG, we can get the final event set [e1, e2, e3, 
e4, e5, e6]. If the error is triggered by the execution marked as 
12 and we only concern the reproducing of that execution, then 
we do not need to keep track on the execution of 10 and 11. 
Based on the EDG, we can get the final event set as [e2, e3, e5, 
e6]. 

This approach is similar to EFF’s meta slicing [7], EFF has 
proved its correctness. However, in the case of web 
applications, events often refer to user interaction events that 
are associated with multiple event handlers. Thus, the result of 
our aggressive event reduction analysis cannot guarantee the 
reproducibility, but is enough to diagnose the expected code. 

Experiment. We perform the aggressive event reduction 
analysis for all the 10 errors. We compare with Comb_L3 
analysis, since the Comb_L3 analysis has high reproducibility 
but with many irrelevant events. 

Table VI shows the result of aggressive event reduction 
analysis. Comparing to Comb_L3 analysis, the reduction result 
is closer to the expected result, but 4 errors cannot be 
reproduced. This aggressive event reduction analysis requires 
that the user is familiar with the source code. Thus, this 
analysis is more helpful for developers to diagnose an error. 

VII. RELATED WORK 

Record and replay in web applications. Mugshot [3] is a 
high performance record-replay system that captures all events 
in JavaScript applications and all the nondeterministic 
information such as AJAX request, random calls and timers to 
make sure the replaying phase loads the same data. DoDOM 
[19] records user interaction events, then the web application 
can be repeatedly executed under the captured event sequence. 
WaRR [20] records user interactions with a web application 
and uses the recorded interaction trace to perform high-fidelity 
replay of the web application. Ripley [21] replicates execution 
of the client-side JavaScript application on the server replica to 
automatically preserve the integrity of a distributed 

computation. Reducing event trace are out of their scope. Our 
basic record-replay approach applies the same technique as 
Mugshot [3]. 

Dynamic slicing. Dynamic slicing [22][23][24] is more 
useful in program debugging and testing than static slicing, 
several approaches for computing dynamic slicing through 
building a reachability-graph or a dynamic dependency graph 
[7][25]. Our work differs from their work for DOM-specific 
challenges and in the way the graph is constructed. We 
combine the dynamic slicing technique and shadow execution 
technique to trace JavaScript programs. Thus, we can avoid 
resolving all the complex dynamic features of JavaScript. 

Event-based application debugging and testing. 
CLEMATIS [5] records all the event-based interactions and 
execution context information such as DOM events, timeouts 
and function traces, to analyze the dynamic behavior of web 
applications. EFF [7] combines dynamic slicing technique and 
checkpoint technique to provide a record-replay tool that can 
reduce event trace and thus support long executions. They also 
build an EDG to calculate the event slice, however, their 
approach does not fit our cases. The word ‘event’ in their 
context refers to system calls and their way to build data 
dependencies is not suitable for web applications. Josip’s work 
[26][27] extract client-side web application code for the 
purpose of program understanding, debugging and feature 
extraction. They use the expected behavior as slicing criteria 
and perform dynamic program slicing to identify the related 
CSS, HTML, and JavaScript source. However, their work does 
not care which event the execution is performed, their 
approach of capturing dependencies is inefficient to resolve our 
challenges. They use parent-child relation to form structural 
dependency edges between DOM nodes and use the parsed 
AST to build dependencies between JavaScript statements. 
AppDoctor [28] uses heuristic rules to reduce the event 
sequence. It takes advantage of the specific characteristics of 
Android events and compares the states of Android UI that is 
relatively simple. Their rules are simple and the approach will 
fall back to the worst cases if the rules do not work. Our work 
presents the fine-grained rules to build and propagate 
dependencies. The work [29] aims to reduce event traces using 
delta debugging technique that treats the operations as black 
boxes. The approach relies on trial and error to decide which 
inputs to discard, not the data dependency analysis. 

VIII. CONCLUSION 

In this paper, we propose a tool JSTrace to identify the key 
events related to a web application error. Given the expected 
symptoms or code snippet that we should reproduce, we 
precisely trace the dependencies between JavaScript 
instructions and DOM instructions, and develop a novel 
dynamic slicing to filter out irrelevant events. The evaluation 
on real-world web application errors shows that JSTrace can 
greatly reduce the event trace, and achieve 100% 
reproducibility. 
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