
Fast Reproducing Web Application Errors

Jie Wang†‡, Wensheng Dou†*, Chushu Gao†, Jun Wei†
†State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences

‡University of Chinese Academy of Sciences

{wangjie12, wsdou, gaochushu, wj}@otcaix.iscas.ac.cn

Abstract—JavaScript has become the most popular language

for client-side web applications. Due to JavaScript’s highly-

dynamic features and event-driven design, it is not easy to debug

web application errors. Record-replay techniques are widely

used to reproduce errors in web applications. However, the key

events related to an error are hidden in the massive event trace

collected during a long running. As a result, error diagnosis with

the long event trace is exhausting and time-consuming.

We present a tool JSTrace that can effectively cut down the

web application error reproducing time and facilitate the diagno-

sis. Based on the dynamic dependencies of JavaScript and DOM

instructions, we develop a novel dynamic slicing technique that

can remove events irrelevant to the error reproducing. In this

process, many events and related instructions are removed with-

out losing the reproducing accuracy. Our evaluation shows that

the reduced event trace can faithfully reproduce errors with an

average reduction rate of 96%.

Keywords—record-replay; dynamic slicing; event trace reduc-

tion; dependency analysis

I. INTRODUCTION

Web applications have been growing fast and brought un-
precedented convenience, yet come along with a variety of
bugs. These bugs may cause varied errors, such as abnormal
functionality, missing UI elements, and failing to handle asyn-
chronous events [1][2]. Specially, some errors can only be trig-
gered by a specific sequence of events in web applications.

Record-replay techniques are used to faithfully reproduce
the errors in web applications [3][4][5][6]. Event-based record-
replay approaches [3][4] record user interactions (user events)
and use them to drive the execution during replay. The
memory-based record-replay approach [6] records every value
loaded from memory during an execution and uses these values
to replace memory loads during replay. The above approaches
work well in the short execution scenarios.

Web applications are event-driven, and usually keep run-
ning for a long time. The current record-replay techniques
[3][4][5][6] could generate a very long event trace. For exam-
ple, Mugshot [3] could generate 75-795KB uncompressed
event trace per minute, which contains nearly 3000 events. In
order to diagnose an error, users have to replay and inspect all
the events, which is time-consuming and exhausting.

In this paper, we focus on how to speed up the web applica-
tion error reproducing. Our key observation is that most of the

events in an event trace are not related to the error, and only the
key events in the event trace can reproduce the error properly.
In order to speed up web application error reproducing, we
need to know what the key events are and irrelevant events in
the event trace. In order to facilitate debugging, we need to
remove the irrelevant events and make sure that the remained
key events are reproducible.

The most related work with ours is EFF [7], which com-
bines dynamic slicing and checkpoint techniques to reduce the
event trace for UNIX applications. EFF builds a Dynamic De-
pendency Graph (DDG) and an Event Dependency Graph
(EDG) to trace dependencies by statically analyzing the use-
def relationship of executed statements. Their events refer to
system calls rather than user interaction events. EFF is not suit-
able for complicated JavaScript features and DOM manipula-
tion interfaces. Firstly, JavaScript is a prototype-based, dynam-
ic, and weak-typing scripting language, which magnifies the
difficulty to perform dynamic dependency analysis. Secondly,
the APIs used for manipulating the DOM tree (tree-structure
representation of a HTML page) are implemented by native
code [8]. Treating these DOM APIs as general JavaScript code
without knowing their semantics could miss dependencies.
Thirdly, treating the whole DOM tree as a single global object
is too coarse-grained and may cause many false dependencies.

In order to reduce the event trace of a web application error
precisely, we abstract the JavaScript instructions and DOM
manipulation instructions to precisely capture dependencies
and produce a dynamic dependency graph. Based on the dy-
namic dependency graph, we build an event dependency graph
that describes the dependency relations of events. Then, a nov-
el event slicing approach is used to compute the key events.
We also find that some key events are not always necessary for
the error diagnosis. We present a more progressive event slic-
ing approach that allows developers to make assertions for the
symptoms or specify the specific part of execution instead of
tracing from the whole executed code when the erroneous
event is triggered. Thus, we can get a slimmer event slice of
the event trace.

Our approach JSTrace is an enhanced record-replay tool
that can significantly remove irrelevant events while keeping
the trace reproducible. It is implemented in pure JavaScript,
and enables easy integration into the client-side source code
and execution on any browser. We have evaluated it on 10
real-world errors from 7 popular web applications that belong
to different domains. The evaluation shows that we can
efficiently remove irrelevant events to the errors.

* Corresponding author

In summary, the contributions of this paper are as follows:

 We propose a novel fine-grained approach to trace data
dependencies by abstracting JavaScript and DOM
instructions, and the dependency propagation rules.

 We propose an effective approach to filter out irrelevant
events in an event trace. Error-directed aggressive event
reduction further removes irrelevant events, and
facilitates the error diagnosis.

 We have implemented our approach in the tool JSTrace.
The evaluation on 10 real-world errors shows that
JSTrace can remove about 96% irrelevant events, and
reproduce the errors faithfully.

The remaining of this paper is organized as follows.
Section II presents our motivation. Section III introduces our
approach. Section IV describes JSTrace implementation. In
section V we study several real-world errors and evaluate our
tool on these errors. Section VI describes the study on
aggressive event reduction. Section VII discusses the related
work and section VIII concludes the paper.

II. MOTIVATION EXAMPLE AND OVERVIEW

Fig. 1 shows the TodoList [9] web application that manages
schedules in a calendar. When a user clicks the add button on a
day view (Fig. 1(c)), a dialog pops up to create a to-do task
(Fig. 1(d)). After the user fills up all necessary information,
he/she clicks the save button. The program checks the title of
the to-do task, and an error will occur if the title can be
trimmed to an empty string (Fig. 1(e)). The simplified source
code for TodoList can be found in Listing 1.

Fig. 2 lists the real event trace that triggers the above error.
The full event trace is shown in the left part of Fig. 2. In this
trace, the user clicks add button on the view of day 11(event 5,
Fig. 1(a)), then clicks close button to cancel this operation
(event 11, Fig. 1(b)). He/she then performs a series of
operations such as changing configurations (events 73~293).
Afterwards, he/she clicks add button on the view of day 13
(event 294, Fig. 1(c)), and types an empty string with a blank
space as the title (event 301), fills in other fields in the form,
and clicks save button (event 317), which finally triggers the

serror. Replaying the entire execution with the full event trace
could reproduce the error successfully. However, it is not
efficient for debugging and error diagnosis. We observe that
most of the events are irrelevant to the error. For example,
events such as clicking the add button and then clicking close
button to close the popup window (events 5~11, Fig. 1(a) and
Fig. 1(b)), changing the settings (events 73~293) and filling the
form field (events 302~316) are irrelevant to the error.
Removing these events will not affect the occurrence of the
error. The key events {1,294,301,317} can faithfully reproduce
this error.

In order to remove the irrelevant events, we need to identify
the precise dependencies between events. In doing so, there are
several challenges we should overcome.

1) The DOM APIs are defined by the W3C and
implemented as native code in modern browsers. We cannot
easily obtain the dependencies among these DOM APIs and
DOM elements. For example, the DOM API getElementById
(line 30) suggests the data dependency between the DOM
element title with JavaScript object todo.title. Without the
semantics of getElementById, we would miss this key
dependency. Even worse, JavaScript has some inconsistent
DOM APIs. Listing 2 shows a classical example. In Listing 2,
after changing the className for the element div by setting the
field className, we can access the className field by the
operation div.className. But, we could also access the
className field by calling the native function getAttribute with
the exact attribute name class. These inconsistent DOM APIs
would make data dependency analysis challenging.

2) DOM is a tree object. One modification on a node may
affect its parent node or its subtree. Therefore, only analyzing
general JavaScript code is insufficient—the dependency
analysis must subtly model how one DOM manipulation
depends on another to avoid missing dependencies. For
example in Listing 1, the value attribute of DOM element title
(line 30) depends on the operation that updates this field.
Actually, it also depends on the operation that appends the
DOM element title to the DOM element popup by assigning a

...(a) (b)

(c)

(e)

(d)

5
11

294

317

313

301

309305

Fig. 1. Buggy application: TodoList

Full event trace

1 load, target:"document"
...

5 click, target:"#todolist .day11 .add"

...

11 input, target:"#popup .close"

...

73 input, target:"#settings"

...

...

294 click, target:"#todolist .day13 .add"

...

301 input, target:"#popup .taskName"
...

305 click, target:"#popup .partOfDay.afternoon"

...

309 click, target:"#popup .prioriority.flag"

...

313 click, target:"#popup .color.red"

...

317 click, target:"#popup .color.save“

Click add task button and

close the popup directly

Click settings tab and

change the onfigurations

Click add task button and fill

the form in the popup window,

The bug is triggered when

click the ‘save’button

1 load, target:"document"

294 click, target:"#todolist .day13.add"

301 input, target:"#popup.taskName"

317 click, target:"#popup.color.save"

Reduced log

Fig. 2. Event trace reduction execution

HTML code segment to the attribute innerHTML of DOM
element popup (line 23). The operation (line 23) ensures that a
node with id title exists. To precisely capture these
dependencies, dependency analysis on the DOM model should
be field-sensitive. In this way, we assume that modifying the
attribute style (line 23) of the DOM element title (line 23) will
not affect the reading of its attribute value.

3) Due to the dynamic feature of JavaScript and event-
driven feature of web applications, it is hard to build the
dependencies of events statically. For example, in Listing 1,
the variable todo.tiltle (line 37) is defined at line 30 in the
event handler function onSave. The event handler function
onSave is registered at line 26, which can only be triggered
when the add button is clicked. In this example, the error
occurs only when onAdd is called before onSave.

In this paper, we abstract the JavaScript instructions and
DOM manipulation instructions to precisely capture data
dependencies. We also build the dependency between
JavaScript instructions and DOM elements. Based on the
dynamic dependency graph, we build an event dependency
graph that describes the dependent relations of events. Our
slicing algorithm operates on the event dependency graph.

We have two key insights to perform the event trace
reduction. 1) If a recorded event never triggers any listeners
registered by the user, we can safely remove it (section III.A).
Fig. 3 represents the corresponding DOM tree for the TodoList
example, dispatching the click event on the DOM element
addBtn will trigger the handler onSave in Listing 1. However,
dispatching a click event on DOM element dayView will not
trigger any handlers and this event can be safely removed. 2) If
an event e does not affect the variables that will be used by the
erroneous event’s handler directly or indirectly, the event e can
be removed. We may trace backward from the error behavior
and identify the operations that affect the occurrence of this
symptom. As shown in Listing 1, the error behavior is an
exception thrown at line 38 that is affected by the value of
variable todo.title. The function onSave (line 28) is triggered
by event 317 with the value that is set by event 301. Therefore,
event 317 depends on event 301. Since the event handler
onSave is registered in function onAdd (line 26) that is the
event handler triggered by event 294. Thus, event 317 depends
on event 294 as well. Similarly, event 294 depends on the
event 1 because event 1 defines the todolist.container variable,

the DOM element day variable (line 15) and registers onAdd
event handler (line 15) that will be used by event 294. Finally,
we get the dependencies {317⟶[301,294], 294⟶1}.
Therefore, we get the key events {1,294,301,317} and all the
other irrelevant events can be removed.

III. EVENT TRACE REDUCTION

In this section, we describe our approach to remove the
irrelevant events. The overall process consists of two steps:

Step 1: Untriggered event analysis. If a recorded event
never triggers any user-defined event handler, we can safely
remove it (section A).

1 document.onload(function(){
2 new TodoList().init();
3 });

4 function TodoList(){
5 this.container = {
6 root: document.getElementById('#todolist'),
7 dayView: ...
8 popupView: ...
9 settingView:...
10 }
11 ...
12 }

13 TodoList.prototype.init = function(){
14 //add onAdd handler for every day in the day view
15 day.getElementByClassName('add')[0].addEventListner('click',

onAdd);
16 this.container.dayView.appendChild(day);
17 ...
18 defaultView.show();
19 }

20 function onAdd(){
21 ...
22 popup = document.createElement('div');
23 popup.innerHTML = '<div id="title" style=“tt”></div>...<div

id="save"></div>';
24 this.container.popupView.appendChild(popup);
25 ...
26 popup.getElementById('save').addEventListener('click',onSave);
27 }

28 function onSave(){
29 var todo = new TODO(); // new a TODO object
30 todo.title = this.popup.getElementbyId('title').value;
31 ...
32 if(check(todo)){
33 storage.save(todo); // storage is an object for persistent
34 }
35 }
36 function check(todo){
37 if(util.trimToEmpty(todo.title).length==0{
38 throw new Error("title of todo can’t be empty");
39 }
40 return true;
41 }

Listing 1. Simplified source code for TodoList

1 div.className=‘left’;
2 class=div.getAttribute(‘class’); //or class=div.className;

Listing 2. Example of inconsistent DOM interfaces

root

dayView settingView popupView

addBtn

day13day11

todoView

popup

title saveBtn

onmouseover

onclick

Fig. 3. DOM tree of TodoList

Step 2: Event dependency analysis. We abstract the
JavaScript operations into a series of intermediate instructions
and design a dependency propagation model of web
applications (section B). As we have mentioned, simply
treating DOM manipulations as black box is insufficient. Thus,
in order to avoid missing dependencies, we perform JavaScript
dependency analysis (section B.1) and DOM dependency
analysis (section B.2). Finally, we use these dependencies to
build the Event Dependency Graph (EDG). We perform
dynamic slicing on EDG (section B.3) to obtain the key events
related to an error.

A. Untriggered Event Analysis

Some recorded events are fired by the user, but they never
trigger any user-defined handlers registered by the user.
According to the DOM3 event model [10], an event could be
propagated from the root element along the tree structure to the
target element, and then bubbles up to the root element. All the
event handlers registered at the capture phase or bubble phase
will be triggered if the event is not canceled in the middle (Fig.
4). Thus, if there do not exist an event handler registered by the
user from root element to the target element, the event can be
safely removed.

However, there is no DOM API that can be used to get the
registered event handlers. To resolve this problem, we treat
every registered handler as a special attribute of the
corresponding DOM element. We keep a map for a DOM
element to its corresponding event handlers. An event handler
can be registered in 3 ways as Fig. 4 shows. For the first case,
we override native addEventListener and removeEventListener
functions to intercept the event registering or unregistering
handlers. This could be done by taking advantage of
JavaScript’s dynamic feature. For the second and third cases,
our instrumented code could intercept such operations and
identify handlers registered. Thus, we can associate all the
registered event handlers to their corresponding DOM elements.
Based on this information, we can identify that an event will
never trigger any event handler if all the DOM elements along
the event flow path do not contain any event handler of the
event type. In Fig. 3, a mouseover event on addBtn can trigger
the event handler binding to its ancestor dayView, so this
mouseover event should not be removed. A keypress event on
addBtn will never trigger any event handlers, so this keypress
event can be removed.

B. Event Dependency Analysis

If an event ei depends on another event ej, one of the
following two conditions should be satisfied. (1) The event
handler of ei reads some JavaScript variables defined or written
by the event handler of ej. (2) The event handler of ei reads
some DOM elements appended or modified by the event
handler of ej. For these two cases, we perform JavaScript
dependency analysis and DOM dependency analysis separately.

1) JavaScript dependency analysis
In Fig. 5, we summarize the abstract JavaScript instructions

that can affect JavaScript dependency. A constant value cons
can be a number num, a string str, and the special constant
undefined or null. The variable v can represent the object in
JavaScript, such as a common object, a function object. The
instructions include constant assignment, variable assignment,
function definition, property variable reading and writing,
binary operation, unary operation and function call. Each
instruction (op) is assigned a unique instruction id (op.id).

A DOM API could be either property access or function
call to read or write the DOM tree. Therefore, each DOM
instruction is also a JavaScript instruction, which is Get
Property, Put Property or Function Call. In this section, we
only consider the dependencies among JavaScript instructions,
without considering the DOM dependencies.

JavaScript dependency analysis builds the dependencies
among JavaScript instructions. If a JavaScript instruction op1
uses an input variable that is defined or modified by another
instruction op2, we say that op1 depends on op2.

Table I lists all the rules for JavaScript dependency analysis.
The first column shows JavaScript instructions. The second
columns shows the dependency rules JSDep(op). We use def(v)
to denote the instruction op that changes the variable v, and
dp(op) to denote the instruction op’s dependencies.

For example, def(x)=5 denotes that an reference x is
modified by an instruction with id=5. We then execute the
instruction “y = x” (with id=10). According to the rules in
Table I, def(y)=10, and dp(10)={5}. Thus, we build the
dependency between instruction 10 and 5.

For an event handler, it should depend on the instruction
that registers the event handler. Losing this dependency may
cause mistakenly pruning the registering events and finally fail
to replay. We treat each registered event handler as a property
of the related DOM element. It is initialized when it is

1) div.addEventListener(‘click’, f); (DOM2)

2) div.onclick=function(){…} (DOM1)

3) <div onclick=’…’></div> (DOM1)

document

body

div

Standard DOM event flow

capture

bubble

Fig. 4. Standard event flow model

JavaScript abstract instructions
cons ::= num | str | bool | undefined | null
v ::= object variable

op ::= v = cons // Assign a constant to v

 | v1 = v2 // Assign variable v2 to variable v1

 | v = {op*} // Assign a function object to v

 | v1 = v2.v3 // Get property v3 of object v2

 | v1.v2 = v3 // Put property v2 of object v1

 | v1 = v2 ⨂ v3 // Binary operation, ⨂∈{+, −, ∗, /, etc.}

 | v1 = ⨀ v2 // Unary operation, ⨀∈{!, etc.}
 | v1.v2 ({vp1, …, vpn}) // Call object v1’s function v2 without return
 | v = v1.v2 ({vp1, …, vpn }) // Call object v1’s function v2 with return

Fig. 5. JavaScript abstract instructions

registered and accessed when the event handler is triggered. So,
we can resolve this in DOM dependency analysis.

2) DOM dependency analysis
The DOM APIs are designed for manipulating web pages

by the organization W3C, which is integrated to the browser
environment but not the ECMAScript standard or JavaScript
itself. Since the DOM tree cannot be simply treated as a
general variable, our JavaScript dependency rules are
insufficient to analyze these APIs. We summarize the problems
as follows:

 Inconsistent ways to modify the DOM tree. The DOM
tree can be modified by assigning statement or a native
function call. Dependencies may be lost without know-
ing the semantics of DOM APIs. As shown in our moti-
vation example, an attribute of a DOM element may be
set by a name className but accessed by a native func-
tion call with the attribute name class.

 We need to scan the DOM tree to make sure whether
there is dependency relationship between two
operations on the DOM tree. In Fig. 6, after adding a
node div to the root body in step 1, step 2 adds a new
node p to the node div. Therefore, step 2 depends step 1.
Step 3 depends on step 1 because the operated DOM
element div must already exist, and step 3 depends on
step 2 because the reading innerHTML operation on the
node div will get the serialization string of the subtree.

To resolve these problems, we abstract the DOM
manipulations and extend the JavaScript dependency analysis
to propagate DOM-specific dependencies. We summarize the
DOM APIs into eight instructions in Fig. 7. DOM instructions

can read, add, remove, and replace a DOM element; modifies a
subtree of a DOM element; read, write, and remove an attribute
of a DOM element. Each DOM instruction dop associates with
a JavaScript instruction op.

DOM dependency analysis builds the dependencies among
DOM instructions. If a DOM instruction dop1 uses a DOM
element that is defined or modified by another DOM
instruction dop2, we say that dop1 depends on dop2. Table II
presents the dependency propagation rules of DOM
dependency analysis. The first column shows DOM
instructions. The second column shows the DOM dependency
rules DOMDep(dop). We treat the DOM tree as a fine-grained
variable that contains nodes and attributes. We associate the
DOM elements with the instruction id that defines or modifies
the DOM elements. In Table II, we use the functions bind(op,
ele, dop) and bind(op, ele, attr, dop) to build the association,
clearBind(ele), clearBind(ele, attr) and clearSubTreeBind(ele)
to clear the association when necessary, and dp(op) to denote
the instruction op’s DOM dependencies.

To trace DOM-specific dependencies, we introduce the
function SearchDOMDep to search for DOM-specific depend-
encies. Algorithm 1 presents our searching algorithm for
SearchDOMDep. The algorithm firstly searches the ancestors
of ele for the DOM instructions that have the types of DNAdd,
DNRm, DNReplace and DSubtreeMod (line 1). Thus, we can
guarantee the structural integrity (all its ancestor nodes already
exist) when we get access to ele. Next, if the operation dop is
reading an attribute attr of ele, then current dop will depends
on the operations that modified this attribute (line 3). Finally, if
the current DOM instruction dop is related to the subtree (such
as reading innerHTML), the subtree nodes will be searched

TABLE I. JAVASCRIPT DEPENDENCY ANALYSIS

op JSDep(op) Description

v = cons def(v)=op.id; dp(op)=∅ Constant variables do not depend on others.

v1 = v2 def(v1)=op.id; dp(op)={def(v2)} Assign operation depends on the definition of v2.

v = {op*} def(v1)=op.id; dp = ∅ Function variables do not depend on others.

v1 = v2.v3 def(v1)=op.id; dp(op)={def (v2), def (v3), def (v2.v3)}
Get property operation depends on object v2, property name v3, and the

property value v2.v3.

v1.v2 = v3 def(v1.v2)=op.id; dp(op)={def (v1), def (v2), def (v3)} Set property operation depends on object v1, property name v2, and value v3.

v1 = v2 ⨂ v3 def(v1)=op.id; dp(op)={def (v2), def (v3)} Binary operation depends on the two input values v1, and v2.

v1 = ⨀ v2 def(v1)=op.id; dp(op)={def (v2)} Unary operation depends on the input value v2.

v1.v2 ({vp1,…,vpn}) dps(op)={def (v1), def (v1.v2), def (vp1), …, def (vpn)}
Function call operation depends on object v1, the function object v2, and the
input parameters vp1, …, vpn.

v=v1.v2({vp1,…, vpn})
def(v1)=op.id; dp(op)={def (v1), def (v1.v2), def

(vp1), …, def (vpn), def(ret)}

Function call operation depends on object v1, the function object v2, and the

input parameters vp1, …, vpn. ret represents the return value of function v2.

body

table div

p

Step1: add node div

Step2: add node p

Step3: read innerHTML of div

Fig. 6. Dependency example for DOM manipulations

DOM abstract instructions
ele ::= DOM element

attr ::= DOM element attribute

dop ::=

 | DNRead ele // Read a node ele
 | DNAdd pEle, ele // Add node ele to parent node pEle

 | DNRm ele // Remove node ele from DOM tree

 | DNReplace ele1, ele2 // Replace node ele1 with node ele2
 | DSubTreeMod ele // Modify the subtree of node ele

 | DAttrRead ele attr // Read attribute attr of node ele

 | DAttrWrite ele attr // Write attribute attr of node ele

 | DAttrRm ele attr // Remove attribute attr of node ele

Fig. 7. DOM abastract instructions

(line 5). We have manually inspected the DOM APIs according
to DOM3 specification [11] to decide the DOM instruction
type and whether it is necessary to search the subtree of ele.

Since a DOM instruction dop is also a JavaScript
instruction op, the dependency of a DOM instruction dop
includes two parts: JavaScript dependencies calculated by
JSDep(op) and DOM dependencies calculated by
DOMDep(dop).

3) DDG and EDG
In this section, we describe how to build the Dynamic

Dependence Graph (DDG) and the Event Dependency Graph
(EDG), and calculate the final key events.

The Dynamic Dependency Graph DDG(N, E) consists of a
set of nodes N and a set of directed edges E. Nodes N are
JavaScript instructions or DOM instructions, and edges E are
the directed dependencies among instruction nodes N. We can
trace these dependencies by JavaScript dependency analysis or
DOM dependency analysis.

We can build the Event Dependency Graph EDG(N, E)
based on DDG. EDG consists of a set of event nodes N and a
set of directed edges E. Each edge ei → ej in E denotes that
there is at least one instruction in event ei that depends on an
instruction in event ej.

The example in Fig. 8 illustrates DDG and EDG including
JavaScript dependency analysis and DOM dependency analysis.
The original code is part of our motivation example, which has
an onAdd event handler and an onSave event handler. The
dashed boxes are executed events. The solid boxes are

executed instructions and the arrows between them denote
dependency relationship. The rectangles denote JavaScript
instructions and the rounded rectangles denote DOM
instructions. Each DOM instruction is associated with its
manipulating DOM element and the dependencies are retrieved
by searching the DOM tree. As Fig. 8 shows, the set property
innerHTML of popup at line 2 (op4) depends on op2 and op3
(the literal string) according to the DAttrWrite rule by resolving
JSDep. The operation getElementById (line 5) implies the
reading of id attribute of title (op11). Thus, according to the
DAttrRead rule, op11 depends on op2 (by resolving JSDep)
and op4 (by resolving DOMDep). A reading property value of
title element at line 5 (op12) depends on op11 (JSDep), op4
and op7 (DOMDep) according to the DAttrRead rule. The
registering event handler onSave is treated as an attribute with
a unique name (op9), while implicitly triggering the event, an
access to this event handler is recorded (op11), and this access
depends on the registering operation. EDG is built based on the
DDG. For example, the event that triggers onSave handler
depends on the event that triggers onAdd, because there are
edges between them. As we can see, the resulted DDG of
combined JavaScript dependency analysis and DOM
dependency analysis consists 4 kinds of dependencies in the
graph, JS node to DOM node, DOM node to JS node, JS node
to JS node, and DOM node to DOM node. The result of
JavaScript dependency analysis or DOM dependency analysis
alone is only a subgraph of this DDG in Fig. 8.

Calculating the key events related to the error is a graph
reaching problem. Algorithm 2 gives the slicing algorithm DS.

TABLE II. DOM DEPENDENCY ANALYSIS

Id dop DOMDep(dop) Description

1 DNRead ele dp(dop.op)={SearchDOMDep(ele)} DOM element read depends on instructions that create/modify ele.

2 DNAdd pEle, ele
dp(dop.op)={SearchDOMDep(pEle)}

bind(dop.op, ele, DNAdd)

DOM element add depends on instructions that create/modify ele’s parent

node pEle. It also binds a new operation on ele.

3 DNRm ele
dp(dop.op)={SearchDOMDep(ele)}
clearBind(ele)

DOM element remove depends on instructions that create/modify ele. It also
clear operations on ele.

4 DNReplace ele1, ele2

dp(dop.op)={SearchDOMDep(ele1)}

clearBind(ele1)
bind(dop.op, ele2, DNReplace)

DOM element replace depends on instructions that create/modify the origi-

nal ele1. It also clears original operations on ele, and binds a new operation
on ele.

5 DSubTreeMod ele

dp(dop.op)={SearchDOMDep(ele)}

clearSubTreeBind(ele)

bind(dop.op, ele, DSubTreeMod)

DOM subtree modify depends on instructions that create/modify the original

ele. It also clears original operations on ele and its subtree, and binds a new

operation on ele

6 DAttrRead ele, attr dp(dop.op)={SearchDOMDep(ele, attr)} DOM attribute read depends on instructions that create/modify ele and attr.

7 DAttrWrite ele, attr

dp(dop.op)={SearchDOMDep(ele, attr)}

clearBind(ele, attr)
bind(dop.op, ele, attr, DAttrWrite)

DOM attribute write depends on instructions that create/modify the original

ele and attr. It also clears original operations on ele and attr, and binds a new
operation on ele.attr.

8 DAttrRm ele, attr
dp(dop.op)={SearchDOMDep(ele, attr)}

clearBind(ele, attr)

DOM attribute remove depends on instructions that create/modify the origi-

nal ele and attr. It also clears original operations on ele and attr.

Algorithm 1. Searching algorithm for SearchDOMDep

Input: dop (the DOM instruction), ele (the DOM element),

attr (the attribute, if ncecssary)

Output: ids (dependent instruction ids)

//search ancestor nodes to make sure existence of ele, attr

//searching types: DNAdd, DNRm, DNReplace, DSubtreeMod

1. ids = searchAncestors(ele, attr);

2: if attr != NULL //if accesses ele.attr

//get the instruction ids that modify ele.attr

3: ids = ids ∪ getMutations(ele, attr);
4: if needSearchSubtree(dop)

5: ids = ids ∪ searchSubtree(ele);
6: return ids;

__ ______________________________

Algorithm 2. Slicing algorithm DS
__

Input: g (event dependency graph), e (erroneous event node

to trace from)

Output: result (key events)

1: Set result = {}

2: Queue q = {e}; //initialized as the erroneous event

3: while q.length>0

4: ei = q.deQueue();

5: if ei is not in result

6: result.add(ei);

//adjacentNodes can find adjacent nodes of ei in graph g

7: for each ej in adjacentNodes(g, ei)

8: if !result.contains(ej)

9: q.enQueue(ej);

The algorithm is a breadth-first algorithm. q is a queue that
contains the nodes that need to trace back, and is initialized as
the erroneous event (line 2). If q contains at least one node,
then q dequeues a node ei and add it to the result set result (line
6), and add all the nodes that ei can reach in the EDG to the
queue q (lines 7~9). Therefore, we can iteratively trace from
these nodes and find more reachable nodes. As the example
given in Fig. 9, we can calculate the key events as [e1, e2, e3,
e4, e5, e6].

C. Replayable

We classify symptoms of web application errors into the
following three cases. 1) The rendering errors, such as missing
UI components. The symptoms of such errors can always be
observed on the web pages. 2) Unhandled exception thrown by
the program. Such errors can cause the code termination or be
observed by the debugging tools. 3) A specific piece of code
specified at source code. This are often functional anomalies
such as the inoperative UI components caused by program
logic error or the wrongly computed result. It can also be the
specific piece of code that is expected to be executed.

The criterion for web application error reproducibility is
whether the assertions of the above symptoms hold. Our tool
can automatically insert user-defined assertions for a given
event when replaying the event trace.

IV. IMPLEMENTATION

Our implementation of the record-replay system is similar
to Mugshot [3] that provides the essential functionality to trace
events and replay the event trace. We extend the replay phase

to support event trace reduction as shown in the dashed box in
Fig. 10. Our event trace reduction approach has taken
advantage of shadow execution and instruments JavaScript
code using Jalangi [6] to capture instructions and support
annotated value. Our implementation is entirely in JavaScript
which is transparent to users and easy to deploy.

Architecture. At the record phase, the record proxy
retrieves the original web page and instruments it to record
event trace. The event trace is periodically updated to the
server and stored in a log file. It supports manually submitting
of the error by users or automatically submitting when an
exception is thrown. The Cache is used to store web pages and
nondeterministic data, which makes sure that the replaying
phase will get the same data at the recording phase. The replay
proxy is designed to replay a given event trace. Dynamic
analysis module can perform event trace reduction at several
levels by separately applying untriggered event handler
analysis, JavaScript dependency analysis, combination analysis
(combination of JavaScript and DOM dependency analysis),
and aggressive analysis (section VI) accordingly.

Instrumentation. The instrumentation is patched to the
client side code, thus the dynamically generated code can be
instrumented as well, such as eval, setTimeout and
setTimeinterval that can run or schedule a task to execute a
piece of string code. All the JavaScript code in libraries is
instrumented. All the concerned JavaScript instructions and
DOM instructions are intercepted by the instrumentation.

JavaScript dependency analysis. To trace data
dependencies dynamically, we incorporate the idea of shadow
execution [6] in which the analysis can update and access the
shadow value of a variable v. The shadow value records the
value of def(v). For simplicity, we define a shadow member for

popup

View

popup

title

13. todo.title=t12

6. t6=t5.popupView

save

DOM tree

onAdd

onAdd: 1.popup=...

 2.popup.innerHTML = '<div id="title"></div>...<div id="save"></div>.';

 3.this.ctn.popupView.appendChild(popup);

 4.popup.getElementById('save').addEventListener('click',onSave);

onSave: 5.todo.title = popup.getElementbyId('title').value;

5. t5=t1.ctn

1. t1=todoList=...

4. t2.innerHTML=t3

3. t3= '...'
2. t2=popup=...

7. t6.append(t2)

11.t11 = t2.getEle...

12. t12 = t11.value

8. t8=t2.getEle...

9.t8.$click_1=onSave

 DOMAttrWrite

DOMNdAccess

DOMAttrRead

DOMAttrWrite

DOMAttrRead

DOMAttrRead

onLoad

onSave
10. onSave()

DOMAttrRead

...

 DOMNdAdd

Fig. 8. Constructing DDG and EDG

1 2 3 4

5 6

7

10

8 9

11 12

e6: error

event

e4 e5

e3e2e1

Fig. 9. An example for EDG

Record proxy Replay proxy

Cache

Dynamic
analysis

Record request:

<url> Replay request:<logFile>

Event logs

Replay:

<Handler | JS | DOM | Comb| Aggressive>

<logFile>

Original web page Log trace reduction

Fig. 10. The architecture of JSTrace

each value taking advantage of the JavaScript API
defineProperties with the option enumerable configured as
false, since this added shadow member should not be seen by
the original code. When the value is modified, the shadow
value is updated with the id of the operating instruction.

DOM dependency analysis. We regard a JavaScript
instruction as a DOM instruction if the operating object or
returned value is DOM element. We manually inspect the APIs
to decide the information that are used by SearchDOMDep.

Limitations. Arrays are treated as an integrity to avoid
missing dependencies. However, this may cause unexpected
event dependencies. The functions setTimeinterval and
setTimeout that periodically execute a scheduled task may
cause iterative event dependencies, and greatly lower the
reduction rate of our approach.

V. EVALUATION

We evaluated JSTrace on 10 real-world errors from 7
different open source web applications in GitHub. In order to
select the representative applications, we first used the
condition “language:JavaScript tag:bug comment:>2” to filter
the applications that are written in JavaScript and the issues are
marked as bugs with multiple comments. We used the
keywords repro, sample or bug to filter the errors that may
have reproducing steps. From the result, we made further study
on the errors, and made sure that they can be manually
reproduced and has certain difficulty to diagnose (with
multiple steps to reproduce). Finally, we classify them to
different categories and bias the applications that are more
popular, weighed by the number of stargazers in GitHub. We
have selected 10 real-world errors form all the filtered issues.

Table III provides an overview of our evaluated web
applications. These web applications are designed for different

purpose and functionality. For example chart.js [12] is a
drawing library that uses canvas, Handsontable [13] is an
excel-like application, and TodoList is an offline HTML5
application that works like a calendar. These web applications
are very complicated, and all of them use many JavaScript. For
example, Handsontable uses 4.7M JavaScript code.

In the evaluation, we measure reproducibility and
efficiency of our tool. Specifically, we investigate the
following research questions:

RQ1: Can the reduced event trace faithfully reproduce the
errors?

RQ2: Can our tool efficiently reduce the event trace?

RQ3: Is the performance acceptable?

As far as we know, there is no similar work that aims to
reduce event trace for web applications. Thus, we have not
compared our work to others.

A. RQ1: Reproducibility

To address the first research question, we evaluated
whether the reduced trace can faithfully reproduce the errors.

Table IV shows the result on 10 errors. The column issueID
shows the issue id in GitHub. The column ALL shows the
number of events in the event trace. The columns Handler, JS
show the reduced result for untriggered event analysis, and
JavaScript dependency analysis. Comb_L* is the combination
of JavaScript dependency analysis and DOM dependency
analysis but with different granularity of DOM analysis.
Comb_L1 simply treats the DOM tree as an integrity variable,
Comb_L2 further manually identifies whether the operation is
writing or reading and then simply build DOM dependencies
by the read-after-write rule. While Comb_L3 uses our fine-
grained DOM analysis (section III.2). The R flag with value Y
or N represents whether the reduced trace can successfully
reproduce the errors or not.

The untriggered event analysis may significantly reduce
event trace. However, the remained event trace is still quite
long to diagnose. For example, the bug 2 and bug 9 remove
only less than a half irrelevant events, but the expected event
number is no more than 6.

JS analysis and Comb analysis are applied to further reduce
the event trace. However the result of JS analysis may not be
reproducible. For JS analysis, 2 out of 10 errors failed to replay.
The Comb_L* performs best with respect to reproducibility, all

TABLE IV. EVALUATED ERRORS

Apps BugId IssueID #All #Handler/R #JS/R #Comb_L1/R #Comb_L2/R #Comb_L3/R #Expected Rate

Chart.js
1 503 1139 351/Y 52/N 342/Y 79/Y 74/Y 6 94.0%

2 920 1168 770/Y 139/Y 757/Y 139/Y 139/Y 6 88.60%

HandsonTable

3 1366 403 345/Y 29/Y 344/Y 297/Y 29/Y 5 94.0%

4 638 694 668/Y 28/Y 388/Y 31/Y 28/Y 3 96.4%

5 2231 606 462/Y 34/Y 67/Y 51/Y 34/Y 6 95.0%

JPushMenu 6 1 342 6/Y 2/Y 6/Y 6/Y 2/Y 2 100.0%

TodoList 7 1410 851/Y 21/N 53/Y 43/Y 24/Y 3 98.5%

FullPage 8 146 398 39/Y 30/Y 39/Y 36/Y 30/Y 3 93.2%

Editor.md 9 18 1023 791/Y 9/Y 97/Y 72/Y 9/Y 2 99.3%

My-mind 10 12 1454 351/Y 8/Y 40/Y 22/Y 8/Y 6 99.9%

TABLE III. REAL-WORLD APPLICATIONS

Apps Description JS size Popularity

Chart.js [12] basic charts 105K 14803

Handsontable [13]
Excel-like data grid

editor
4.7M 4989

TodoList [9] Offline calendar 312K 19

JPushMenu [14] A menu library 1.5M 134

FullPage [15]
To create full screen

scrolling websites
882K 9518

Editor.md [16] A markdown editor 257K 530

 My-mind [17]
Online mindmapping

software
223K 1449

the errors are successfully replayed. The result of fine-grained
Comb_L3 analysis is closer to the expected event traces.

The reason why the reduced event trace of JS analysis
failed to replay is the missing DOM dependencies. The failing
number is not high because our evaluated applications are
highly-cohesive, and the applications have much shared data
and JS dependencies are very common. This result also
explains why the DOM analysis is necessary. Bug 1 is a
division by zero error triggered when the user add data to a line
chart right after clearing the chart. The JS analysis failed to
trace the DOM dependency while executing add data. Fig. 11
shows how a DOM dependency is missing. It uses an img to
render a checkbox and its value is represented by the class
attribute of its ancestor DOM element. That means that reading
the value will search for modification of its ancestor elements.
Without our DOM analysis, the dependency cannot be
established.

B. RQ2: Efficiency

We use reduction rate to evaluate the efficiency. Table IV
presents the result. The column Expected is the number of the
actual key events to reproduce the error. The column Rate is
the reduction rate that calculated by (#ALL-#Comb_L3) /
(#ALL-#Expected).

In Table IV, the average reduction rate is 96%. Untrig-
gered event analysis may significantly reduce event trace such
as bugs 1, 6, 8 and 10 that have sparsely registered handlers
and rarely use event delegation programming pattern, but the
other bugs only remove few irrelevant events. Comb_L3 (with
reduction rate of 87% relative to the untriggered event analysis)
can remove more irrelevant events compared to the coarse-
grained Comb_L1 analysis (40%) and Comb_L2 (65%). This
result proves the necessary of our fine-grained DOM analysis.

However, the result of fine-grained analysis contains
irrelevant events. We dig into the errors and find that the
unremoved irrelevant events are mostly caused by: 1) Array
operation, since we treat array as an integrity object. The
application char.js and HandsonTable suffer from this problem.
2) Calls to setTimeout and setTimeInterval. Such calls are
often used to periodically check and modify a shared data or
showing animations which result in large amount of
dependencies and lower the reduction rate. The application
char.js and fullPage suffer from this problem. 3) Redundant
data dependencies. For example, an event reads the value of
variable guid set by the handler of a previous event ei and adds
it by 1. There is a JavaScript dependency between them.
However, the error may not care about the exact value of guid
and the user cannot feel the existence of it. Thus, the event ei is
not expected to appear in the result from the user side. Almost
all of the applications suffer from this problem. We try to solve
this issue with the aggressive event reduction in section VI.

C. RQ3: Performance

The performance of the record and replay (without
analyzing) is the same as Mugshot [3]. Since our analyzing is
performed offline on the server side, we assume that the
slowdown of analyzing is acceptable. In this section, we
evaluated the memory usage.

We have evaluated the memory usage of the 10 errors on
Google Chrome and taken a heap snapshot on the profiles tab
of the developer tool when the execution is ended. We use this
profiler to take snapshot of JavaScript heap only, thus this size
does not include the images, canvas, audio files, plugin data or
native memory.

Table V compares the memory usage of the original and the
Comb_L3 analysis. The extra memory is used to record shadow
values and DOM searching information. The result shows that
the overhead of memory is 1.4~13.3X.

D. Discussion

A threat to our evaluation is that the 10 errors come from
only 7 applications. However, the applications considered are
randomly selected from real-world open source projects. They
have detailed descriptions for the reproducing of the errors, and
make our evaluation repeatable. Hence, they have reasonable
representativeness. Besides, multiple steps are needed to
reproduce the errors, thus they also have reasonable complexity.
Finally, the applications are developed for different purposes.

Non-determinism may make our approach fail. Our
approach can record all the non-deterministic sources. This
makes the replaying and analyzing deterministic and repeatable.

Additionally, all the errors considered occur in a single
page that may be a potential source of bias. However, our
approach to replay an event trace that has recorded all the non-

Afternoon

Fig. 11. HTML code snippet for TodoList

TABLE V. MEMORY OVERHEAD

BugId
Original

(MB)

Comb_L3 analysis

(MB)
Overhead (X)

1 4.5 12.2 2.71

2 4.7 30.5 6.49

3 10.3 64.1 6.22

4 7.5 74.4 9.92

5 23.4 45.3 1.94

6 12.5 21.3 1.70

7 12.4 161 12.98

8 4.8 64 13.33

9 11.2 144 12.90

10 11.6 16.3 1.41

TABLE VI. AGGRESSIVE EVENT REDUCTION

App BugId #Comb_L3/R #Aggressive/R #Expected

Chart.js
1 74/Y 4/N 6

2 139/Y 28/Y 6

HandsonTable

3 29/Y 24/N 5

4 28/Y 9/N 3

5 34/Y 13/N 6

JPushMenu 6 2/Y 2/Y 2

Todolist 7 24/Y 5/Y 3

FullPage 8 30/Y 21/Y 3

Editor.md 9 9/Y 2/Y 2

My-mind 10 8/Y 7/Y 6

determinism to make sure that the replaying starts with a
determined environment and the execution will load the same
data [3]. Therefore, from the point of reproducibility, there is
no need to trace events across pages. Each execution of one
page will generate one event trace.

VI. CASE STUDY FOR AGGRESSIVE EVENT REDUCTION

As we have mentioned in our evaluation, almost all the
applications have dependencies that cannot be removed. In this
section, we setup a study to make further event reduction.

Our insight is that developers may not concern all the
instructions triggered by an erroneous event, but a subset. If we
only trace from a small part of instructions, we may gain a
slimmer event trace. We call this as an aggressive event
analysis. To calculate this slice, we first give the expected
piece of code to replay, and use the execution of this code as
the reproducible criterion. Then we trace from the variables
that are involved in the given piece of code and find the event
set that directly affect these variables, this event set is called
event cut. Finally we use this event cut to run our DS algorithm
and get the final event trace. For the example shown in Fig. 9,
according to the EDG, we can get the final event set [e1, e2, e3,
e4, e5, e6]. If the error is triggered by the execution marked as
12 and we only concern the reproducing of that execution, then
we do not need to keep track on the execution of 10 and 11.
Based on the EDG, we can get the final event set as [e2, e3, e5,
e6].

This approach is similar to EFF’s meta slicing [7], EFF has
proved its correctness. However, in the case of web
applications, events often refer to user interaction events that
are associated with multiple event handlers. Thus, the result of
our aggressive event reduction analysis cannot guarantee the
reproducibility, but is enough to diagnose the expected code.

Experiment. We perform the aggressive event reduction
analysis for all the 10 errors. We compare with Comb_L3
analysis, since the Comb_L3 analysis has high reproducibility
but with many irrelevant events.

Table VI shows the result of aggressive event reduction
analysis. Comparing to Comb_L3 analysis, the reduction result
is closer to the expected result, but 4 errors cannot be
reproduced. This aggressive event reduction analysis requires
that the user is familiar with the source code. Thus, this
analysis is more helpful for developers to diagnose an error.

VII. RELATED WORK

Record and replay in web applications. Mugshot [3] is a
high performance record-replay system that captures all events
in JavaScript applications and all the nondeterministic
information such as AJAX request, random calls and timers to
make sure the replaying phase loads the same data. DoDOM
[19] records user interaction events, then the web application
can be repeatedly executed under the captured event sequence.
WaRR [20] records user interactions with a web application
and uses the recorded interaction trace to perform high-fidelity
replay of the web application. Ripley [21] replicates execution
of the client-side JavaScript application on the server replica to
automatically preserve the integrity of a distributed

computation. Reducing event trace are out of their scope. Our
basic record-replay approach applies the same technique as
Mugshot [3].

Dynamic slicing. Dynamic slicing [22][23][24] is more
useful in program debugging and testing than static slicing,
several approaches for computing dynamic slicing through
building a reachability-graph or a dynamic dependency graph
[7][25]. Our work differs from their work for DOM-specific
challenges and in the way the graph is constructed. We
combine the dynamic slicing technique and shadow execution
technique to trace JavaScript programs. Thus, we can avoid
resolving all the complex dynamic features of JavaScript.

Event-based application debugging and testing.
CLEMATIS [5] records all the event-based interactions and
execution context information such as DOM events, timeouts
and function traces, to analyze the dynamic behavior of web
applications. EFF [7] combines dynamic slicing technique and
checkpoint technique to provide a record-replay tool that can
reduce event trace and thus support long executions. They also
build an EDG to calculate the event slice, however, their
approach does not fit our cases. The word ‘event’ in their
context refers to system calls and their way to build data
dependencies is not suitable for web applications. Josip’s work
[26][27] extract client-side web application code for the
purpose of program understanding, debugging and feature
extraction. They use the expected behavior as slicing criteria
and perform dynamic program slicing to identify the related
CSS, HTML, and JavaScript source. However, their work does
not care which event the execution is performed, their
approach of capturing dependencies is inefficient to resolve our
challenges. They use parent-child relation to form structural
dependency edges between DOM nodes and use the parsed
AST to build dependencies between JavaScript statements.
AppDoctor [28] uses heuristic rules to reduce the event
sequence. It takes advantage of the specific characteristics of
Android events and compares the states of Android UI that is
relatively simple. Their rules are simple and the approach will
fall back to the worst cases if the rules do not work. Our work
presents the fine-grained rules to build and propagate
dependencies. The work [29] aims to reduce event traces using
delta debugging technique that treats the operations as black
boxes. The approach relies on trial and error to decide which
inputs to discard, not the data dependency analysis.

VIII. CONCLUSION

In this paper, we propose a tool JSTrace to identify the key
events related to a web application error. Given the expected
symptoms or code snippet that we should reproduce, we
precisely trace the dependencies between JavaScript
instructions and DOM instructions, and develop a novel
dynamic slicing to filter out irrelevant events. The evaluation
on real-world web application errors shows that JSTrace can
greatly reduce the event trace, and achieve 100%
reproducibility.

IX. ACKNOWLEDGMENTS

The work was supported in part by National Natural Sci-
ence Foundation (61173005) of China.

http://dict.youdao.com/w/heuristic/

REFERENCES

[1] S. Thummalapenta, D. Pranavadatta, S. Sinha, S. Chandra, S.
Gnanasundaram, D. D Nagaraj and S. Sathishkumar, “Efficient and

Change-resilient Test Automation: An Industrial Case Study,” in Pro-

ceedings of the International Conference on Software Engineering
(ICSE), 2013, pp. 1002–1011.

[2] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, An Empirical

Study of Client-Side JavaScript Bugs. in Proceedings of ACM / IEEE In-
ternational Symposium on Empirical Software Engineering and Meas-

urement (ESEM), 2013, pp.55-64

[3] J. Mickens, J. Elson, and J. Howell, “Mugshot : Deterministic Capture
and Replay for JavaScript Applications,” in Proceedings of the 7th

USENIX conference on Networked systems design and implementation

(NSDI), 2010, pp. 159-174.
[4] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive Record/replay

for Web Application Debugging,” in Proceedings of the 26th annual

ACM symposium on User interface software and technology (UIST),
2013, pp. 473–484.

[5] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Under-

standing JavaScript Event-Based Interactions,” in Proceedings of the

ACM/IEEE International Conference on Software Engineering (ICSE),

2014, pp. 367–377.

[6] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A Selective
Record-replay and Dynamic Analysis Framework for JavaScript,” in

Proceedings of the ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (FSE), 2013, pp. 488-498.
[7] X. Zhang, S. Tallam, and R. Gupta, “Dynamic Slicing Long Running

Programs Through Execution Fast Forwarding,” Proceedings of the 14th

ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2006, pp. 81–91.

[8] “JavaScript.” [Online]. Available:

http://en.wikipedia.org/wiki/JavaScript.
[9] “TodoList.” [Online]. Available: https://github.com/01org/webapps-

todo-list.

[10] “Document Object Model (DOM) Level 3 Events Specification.”
[Online]. Available: http://www.w3.org/TR/2011/WD-DOM-Level-3-

Events-20110531/.

[11] “Document Object Model Core.” [Online]. Available:
http://www.w3.org/TR/DOM-Level-3-Core/core.html.

[12] “Chart.js.” [Online]. Available: https://github.com/nnnick/Chart.js.

[13] “handsontable.” [Online]. Available:
https://github.com/handsontable/handsontable.

[14] “jPushMenu.” [Online]. Available: https://github.com/takien/jPushMenu.

[15] “fullPage.js.” [Online]. Available:
https://github.com/alvarotrigo/fullPage.js.

[16] “editor.md.” [Online]. Available: https://github.com/pandao/editor.md.

[17] “my-mind.” [Online]. Available: https://github.com/ondras/my-mind.
[18] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic Test-

ing of JavaScript Web Applications,” in Proceedings of the 22Nd ACM

SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE), 2014, pp. 449–459.

[19] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM Invariants for

Web 2.0 Application Robustness Testing,” in Proceedings of Interna-
tional Symposium on Software Reliability Engineering (ISSRE), 2010, pp.

191–200.

[20] S. Andrica and G. Candea, “WaRR: A Tool for High-Fidelity Web Ap-
plication Record and Replay,” in IEEE/IFIP 41st International Confer-

ence on Dependable Systems & Networks (DSN), 2011, pp. 403–410.

[21] K. Vikram, A. Prateek, and B. Livshits, “Ripley: Automatically Securing
Web 2.0 Applications Through Replicated Execution,” in Proceedings of

the 16th ACM Conference on Computer and Communications Security

(CCS), 2009, pp. 173–186.
[22] M. Weiser, Program Slicing. in Proceedings of the 5th International

Conference on Software Engineering (ICSE),1981, pp.439-449.

[23] H. Agrawal and J. R. Horgan, “Dynamic Program Slicing,” ACM
SIGPLAN Notices, vol. 25, no. 6, pp. 246–256, 1990.

[24] a. De Lucia, “Program slicing: Methods and Applications,” in Proceed-

ings of First IEEE International Workshop on Source Code Analysis and
Manipulation, 2001, pp. 142-149

[25] K. H. Lee, Y. Zheng, N. Sumner, and X. Zhang, “Toward Generating

Reducible Replay Logs,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation

(PLDI), New York, NY, USA, 2011, pp. 246–257.
[26] J. Maras, J. Carlson, and I. Crnkovi, “Extracting Client-side Web Appli-

cation Code,” in Proceedings of the 21st International Conference on

World Wide Web (WWW), 2012, pp. 819–828.
[27] J. Maras, M. Stula, J. Carlson, and I. Crnkovic, “Identifying Code of

Individual Features in Client-Side Web Applications,” IEEE Trans.

Softw. Eng., vol. 39, no. 12, pp. 1680–1697, Dec. 2013.
[28] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, Effectively Detect-

ing Mobile App Bugs with AppDoctor,” in Proceedings of the Ninth Eu-

ropean Conference on Computer Systems (EuroSys), 2014, pp. 18:1–
18:15.

[29] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel, “On the Use of

Delta Debugging to Reduce Recordings and Facilitate Debugging of

Web Applications,” in Proceedings of the 10th Joint Meeting of the Eu-

ropean Software Engineering Conference and the ACM SIGSOFT Sym-

posium on the Foundations of Software Engineering (ESEC/FSE), 2015,
pp. 333–344.

