
Constraint-based Event Trace Reduction
Jie Wang

University of Chinese Academy of Sciences
Institute of Software, Chinese Academy of Sciences, Beijing, China

wangjie12@otcaix.iscas.ac.cn

ABSTRACT
Various record-replay techniques are developed to facilitate web

application debugging. However, it is time-consuming to inspect

all recorded events that reveal a failure. To reduce the cost of de-

bugging, delta-debugging and program slicing are used to remove

failure-irrelevant events. However, delta-debugging does not scale

well for long traces, and program slicing fails to remove irrelevant

events that the failure has program dependence on. In this paper,

we propose an effective and efficient approach to remove failure-

irrelevant events from the event trace. Our approach builds con-

straints among events and the failure (e.g., a variable can read any

of its earlier type-compatible values), to search for a minimal event

trace that satisfies these constraints. Our evaluation on 10 real-

world web applications shows that our approach can further remove

70% of events in the reduced trace of dynamic slicing, and needs

80% less iterations and 86% less time than delta-debugging.

CCS Concepts

•Software and its engineering→Software testing and debugging

Keywords

JavaScript; failure; event trace reduction

1. INTRODUCTION AND MOTIVATION
To help diagnose JavaScript-based web application failures, vari-

ous record-replay techniques [1][2] are developed. However, web

applications are becoming more complicated and may generate a

long event trace after running for a while. It is time-consuming to

debug with such a long trace. According to a recent study [3], a

short event trace for a failure can significantly increase program-

mers’ debug efficiency. Thus, event trace reduction techniques are

proposed to reduce failure-irrelevant events, e.g., delta debugging

[3][4] and dynamic slicing [5].

The delta debugging technique, e.g., the [3], removes some events

that do not influence the occurrence of a failure in each iteration,

until no further events can be deleted. However, delta debugging is

black-box and does not scale to huge event traces due to (1) the

large search space and (2) re-executing every blindly generated

event trace. In our experiments, it costs 27 minutes for an event

trace with only 617 events.

Our previous work JSTrace [5] adopts dynamic slicing to trace the

precise program dependence and discards the events that are not

depended by a failure. However, not all remaining events in

JSTrace are necessary to reproduce the failure. Let’s see the exam-

ple in Figure 1. This code snippet shows the event handler when an

item is added to a shopping list. Considering the following event

trace: (1) e1: add an item named “book1”; (2) e2: add an item named

“book2”; (3) e3: add an item named “book1”. A failure will occur

if two added items have the same name (e.g., “book1”). Only e1 and

e3 are enough to trigger this failure. However, based on dynamic

slicing, e3 depends on e2 (e3 uses variable shoppingList written by

e2 at line 3) and e2 depends on e1 (e2 uses variable shoppingList

written by e1 at line 3). As a result, we cannot remove e2 although

it is unnecessary to reproduce this failure.

In this paper, we propose a novel constraint-based approach to ef-

fectively and efficiently remove failure-irrelevant events in the

event trace that leads to a failure. First, we relax the program de-

pendence (e.g., force the variable shoppingList in e3 to directly read

from its value in e1), thus irrelevant events (e.g., e2) can be removed

(effectiveness). Second, we use constraints (e.g., variables should

be defined before used) to filter out event traces that cannot repro-

duce the failure (efficiency).

2. BACKGROUND AND RELATED WORK
We focus on those work that concern record-replay in web applica-

tions and techniques for trace/test reduction.

Record-replay in web applications. Web application record-re-

play tools have been developed for faithfully reproducing failures,

e.g., Mugshot [1] and Timelapse [2]. However, they do not figure

out which events are relevant to failures.

Delta-debugging. Delta debugging is widely used to facilitate pro-

gram debugging [4][6][7][8][9][10]. Hammoudi et al. [3] adapts

delta-debugging [4] to reduce web application event traces. Their

approach operates by repeatedly selecting subsets of the events in

a trace, and replaying these subsets to determine whether they can

reveal the failure. Their work relies on blindly generating event

subsets. While our approach utilizes the runtime information to re-

strain the target event trace generation, and by this way greatly nar-

rows down the search space.

Program Analysis. JSTrace [5] adopted dynamic slicing [11][12]

to simplify event traces. However, a computation may still be re-

dundant even if it is depended by a failure. SimpleTest [13] recon-

structs a test to a simpler one by repeatedly replacing referred ex-

pressions in each statement with other alternatives. While the work

[14] applies partial-order and def-use relationship between events

to identify redundant event traces.

1. function onAddItem(){

2. var item = new Item(getElement(‘item_name’).value);

3. shoppingList = shoppingList || [];

4. shoppingList.push(item); // Throw an except when item exists.

5. }

Figure 1. Event handler for adding items to shopping list.

mailto:wj%7d@otcaix.iscas.ac.cn

3. APPROACH AND UNIQUENESS
Overview. Our approach consists of three phases. (1) We instru-

ment the source code to collect runtime information. (2) We con-

struct constraints according to the collected information, and gen-

erate candidate event traces that are likely to reproduce the failure.

(3) Each candidate trace is checked if it can reproduce the failure.

Phases 2 and 3 are repeated until a valid trace is generated.

We have two observations to generate candidate event traces. (1)

The selected events should at least be feasible (i.e., a variable must

be defined before used). (2) The exact value of a variable v may not

be critical to the failure. Thus, variable v could be relaxed to any of

its earlier type-compatible values. For example in Figure 1, we re-

quire that shoppingList in e3 directly reads the value written by e1.

Thus, we can possibly remove e2.

Uniqueness. The advantage of our approach is that (1) more fail-

ure-irrelevant events can be removed by relaxing program depend-

ence, rather than the exact dependence used in dynamic slicing; (2)

the search space is narrowed down since our constraints restrict it

by using runtime information.

3.1 Information Collecting
We collect the following runtime information, so that we can use

them to guide trace generating and validating.

Types and def-use: We collect type and def-use information so that

we can build constraints (Section 3.2) to generate candidate traces.

For each variable v: 1) The type of v is recorded. It can be “unde-

fined”, “number”, “string”, “boolean”, and “object”. Since DOM is

special object, we mark it as “DOM” type instead of “object”. 2)

The events that operate on v and define v are also recorded.

Symbolic expressions: We symbolize each variable v and trace

their symbolic expressions so that we can use them to check if a

specific program state is satisfied (Section 3.3). Symbolic expres-

sions are collected similar to any dynamic symbolic execution

[15][16][17]. Since we only calculate their values rather than solv-

ing the path constraints to explore new execution paths, our vali-

dating does not suffer from poor performance problem.

3.2 Event Trace Generating
Given an event trace 𝜏 = {𝑒1, 𝑒2 , … , 𝑒𝑛} that can reproduce a fail-

ure, our approach generates a subset 𝜏 , of 𝜏, which can still repro-

duce the failure. We require 𝜏 , should be as short as possible. Let

select(ei) denote whether event ei is selected by 𝜏 ,. If ei is selected

by 𝜏 ,, ei = 1. Formally, select(ei) is:

select(ei) ≡ (ei==1).

The trace generating formula Φ is constructed by a conjunction of

four sub-formulas: Φ ≡ Φs ⋀ Φc ⋀ Φl ⋀ Φe, where Φs denotes the

minimal syntax constraint, Φc denotes the type-compatible con-

straint, Φl denotes the length constraint, and Φe denotes that the

failure-triggering event must be selected.

3.2.1 Minimal Syntax Constraint (Φs)

The minimal syntax constraint (Φs) ensures that a variable is used

after necessary definition. Specifically, Φs requires that: (1) A local

variable should be explicitly defined. A global variable could be

used without definition, but a local variable must be explicitly de-

fined using keyword var. Thus, if event e is selected, then all events

that define the variables used by e should be selected. (2) An event

handler should be called after its registration. Otherwise, an event

fails to trigger the event handler. Thus, if event e is selected, then

the events that register the event handler of e should be selected.

We can regard an event handler as a variable v, and the registration

of v as its definition. Let use(e) be the set of variables used by e,

def(v) be the events that define the variable v. Formally, Φs is:

Φs ≡ ⋀e∈τ(select(e) ⇒ ⋀v∈use(e) select(def(v))).

3.2.2 Type-Compatible Constraint (Φc)

Type-compatible constraint (Φc) is used to ensure that each variable

reads the same type as recorded, although their exact value may be

different. By relaxing the dependence of a variable, we can generate

more simplified trace. Φc requires that if an event e is selected, then

for all variables used by e, at least one of its type-compatible written

events is selected. Let CEvent(v) be the set of events that contains

type-compatible written to v. Formally, Φc is:

Φc ≡ ⋀ e∈τ select(e) ⇒ ⋀v∈use(e) (⋁ej∈CEvent(v) select(ej)).

We can directly compare the type information collected to decide

if a previous written value is type-compatible. However, if v is

marked as “DOM” type, we need to subtly model its CEvent(v) be-

cause it has complicated tree-like structure. For DOM type, we say

v1 is type-compatible with v2 when the DOM tree of v1 has the same

structure as that of v2.

3.2.3 Length Constraint (Φl)

Length constraint (Φl) restricts the length of candidate traces. Let

length be the maximal length of candidate traces. Formally, Φl is:

Φl ≡ (∑
e∈τ

ei) == length.

The initial value of length is 1 and we increate it by 1 if there are

no solutions for length. This process is repeated until a valid trace

is found. This strategy make short traces be generated first. Thus,

we could quickly find the valid trace since the failure related event

trace is usually relatively short [3][18][19].

3.3 Event Trace Validating
We validate each generated candidate trace if it can reproduce the

failure. Instead of replaying the candidate trace as delta debugging,

we utilize the symbolic expressions to make the validation.

We observe that a valid event trace may follow the same path con-

ditions and hit the same failure as the original event trace does. For

each trace, the following constraints should be satisfied: (1) Path

constraint (Φp). All the path conditions (i.e., the branches of the

execution) hold the same value as recorded. (2) Failure constraint

(Φf). Failure assertions tell if the failure occurs. We calculate the

value of each symbolic expression for a given candidate trace and

check if Φp⋀Φf is satisfied.

4. RESULTS AND CONTRIBUTIONS
We performed our evaluation on 10 real-world web application fail-

ures used in JSTrace [5]. The evaluation shows that our approach

can further remove 70% of events in the reduced trace of dynamic

slicing, and needs 80% less iterations and 86% less time than delta-

debugging. Note that the time overhead of our approach includes

information collecting (65.3%), trace generating (5.6%) and trace

validating (29.1%). The contributions of this paper are as follows:

• We propose a novel approach that transforms event trace reduc-

tion problem into a constraint solving problem.

• The evaluation on 10 real-world failures shows our approach

can effectively and efficiently remove failure-irrelevant events.

5. ACKNOWLEDGMENTS
This work was supported in part by National Key Research and De-

velopment Plan (2016YFB1000803) and National Natural Science

Foundation (61672506) of China.

6. REFERENCES
[1] J. Mickens, J. Elson, and J. Howell, “Mugshot : Deterministic

Capture and Replay for JavaScript Applications,” in

Proceedings of the 7th USENIX Conference on Networked

Systems Design and Implementation(NSDI), 2010, pp. 159–

174.

[2] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive

Record/Replay for Web Application Debugging,” in

Preceedings of User Interface Software and Technology

(UIST), 2013, pp. 473–484.

[3] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel, “On the

Use of Delta Debugging to Reduce Recordings and Facilitate

Debugging of Web Applications,” in Proceedings of the 10th

Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the

Foundations of Software (ESEC/FSE), 2015, pp. 333–344.

[4] A. Zeller and R. Hildebrandt, “Simplifying and Isolating

Failure-inducing Input,” IEEE Transactions on Software

Engineering (TSE), vol. 28, no. 2, pp. 183–200, 2002.

[5] J. Wang, W. Dou, C. Gao, and J. Wei, “Fast Reproducing

Web Application Errors,” in Preceedings of the 26th

International Symposium on Software Reliability

Engineering (ISSRE), 2015, pp. 530–540.

[6] M. Burger and A. Zeller, “Minimizing Reproduction of

Software Failures,” in Proceedings of the International

Symposium on Software Testing and Analysis(ISSTA), 2011,

pp. 221–231.

[7] J.-D. Choi and A. Zeller, “Isolating Failure-Inducing Thread

Schedules,” in Proceedings of the ACM SIGSOFT

international symposium on Software testing and

analysis(ISSTA), 2002, pp. 210–220.

[8] A. Zeller, “Isolating Cause-Effect Chains from Computer

Programs,” ACM SIGSOFT Software Engineering Notes, vol.

27, no. 6, pp. 1–10 , 2002.

[9] Q. Zhang and B. Goncalves, “Minimizing GUI Event

Traces,” in Preceedings of the 24th ACM SIGSOFT

International Symposium on the Foundations of Software

Engineering(FSE), 2016, To appear.

[10] A. Zeller, “Yesterday, My Program Worked. Today, It Does

Not. Why?,” in Proceedings of the 7th European Software

Engineering Conference(ESEC), 1999, pp. 253–267.

[11] J. Krinke, “Context-Sensitive Slicing of Concurrent

Programs,” in Proceedings of the 9th European software

engineering conference held jointly with 11th ACM SIGSOFT

international symposium on Foundations of software

engineering (ESEC/FSE), 2003, pp. 178–187.

[12] D. Giffhorn and C. Hammer, “Precise Slicing of Concurrent

Programs: An Evaluation of Static Slicing Algorithms for

Concurrent Programs,” Automated Software

Engineering(ASE), vol. 16, no. 2, pp. 197–234, 2009.

[13] S. Zhang, “Practical Semantic Test Simplification,” in

Proceedings of the International Conference on Software

Engineering (ICSE), 2013, pp. 1173–1176.

[14] S. Arlt, A. Podelski, and M. Wehrle, “Reducing GUI Test

Suites via Program Slicing,” in Proceedings of the

International Symposium on Software Testing and Analysis

(ISSTA), 2014, pp. 270–281.

[15] K. Sen, “Concolic Testing,” in Proceedings of the twenty-

second IEEE/ACM international conference on Automated

software engineering (ASE), 2007, pp. 571–572.

[16] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic

Symbolic Testing of JavaScript Web Applications,” in

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering(ICSE),

2014, pp. 449–459.

[17] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever

Wanted to Know about Dynamic Taint Analysis and Forward

Symbolic Execution,” in IEEE Symposium on Security &

Privacy (S&P), 2010, pp. 317–331.

[18] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic

Symbolic Testing of JavaScript Web Applications,” in

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering(ICSE),

2014, pp. 449–459.

[19] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated

Testing with Targeted Event Sequence Generation,” in

Proceedings of the International Symposium on Software

Testing and Analysis(ISSTA), 2013, pp. 67–77.

