
SpreadCluster: Recovering Versioned Spreadsheets

through Similarity-Based Clustering

Liang Xu1,2, Wensheng Dou1*, Chushu Gao1, Jie Wang1,2, Jun Wei1,2, Hua Zhong1, Tao Huang1
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, China

{xuliang12, wsdou, gaochushu, wangjie12, wj, zhonghua, tao}@otcaix.iscas.ac.cn

Abstract—Version information plays an important role in

spreadsheet understanding, maintaining and quality improving.

However, end users rarely use version control tools to document

spreadsheets’ version information. Thus, the spreadsheets’

version information is missing, and different versions of a

spreadsheet coexist as individual and similar spreadsheets.

Existing approaches try to recover spreadsheet version

information through clustering these similar spreadsheets based

on spreadsheet filenames or related email conversation.

However, the applicability and accuracy of existing clustering

approaches are limited due to the necessary information (e.g.,

filenames and email conversation) is usually missing.

We inspected the versioned spreadsheets in VEnron, which

is extracted from the Enron Corporation. In VEnron, the

different versions of a spreadsheet are clustered into an

evolution group. We observed that the versioned spreadsheets

in each evolution group exhibit certain common features (e.g.,

similar table headers and worksheet names). Based on this

observation, we proposed an automatic clustering algorithm,

SpreadCluster. SpreadCluster learns the criteria of features

from the versioned spreadsheets in VEnron, and then

automatically clusters spreadsheets with the similar features

into the same evolution group. We applied SpreadCluster on all

spreadsheets in the Enron corpus. The evaluation result shows

that SpreadCluster could cluster spreadsheets with higher

precision (78.5% vs. 59.8%) and recall rate (70.7% vs. 48.7%)

than the filename-based approach used by VEnron. Based on

the clustering result by SpreadCluster, we further created a new

versioned spreadsheet corpus VEnron2, which is much bigger

than VEnron (12,254 vs. 7,294 spreadsheets). We also applied

SpreadCluster on the other two spreadsheet corpora FUSE and

EUSES. The results show that SpreadCluster can cluster the

versioned spreadsheets in these two corpora with high precision

(91.0% and 79.8%).

Keywords-spreadsheet; evolution; clustering; version

I. INTRODUCTION

Spreadsheets are one of the most successful end-user
programming platforms, and are widely used in various fields,
such as finance, education, and so on [1]. Scaffidi [2]
estimated that over 55 million end users in the United States
worked with spreadsheets in 2012.

In conventional software development, source code can be
managed by version control tools, e.g., SVN [3] and Git [4],
and developers can reduce the cost and time by reusing or
modifying existing code [5]. Similar to software development,
end users may create new spreadsheets based on existing ones

and reuse the data layout and computational logic (formulas).
These new created spreadsheets share the same or similar data
layout and computational logic with existing ones, and can be
considered as the updated versions of the existing ones.
Although there exist some version control tools for
spreadsheets, such as SpreadGit [6] and SharePoint [7],
spreadsheets are rarely maintained by these version control
tools. The version information between spreadsheets is
usually missing and different versions of a spreadsheet coexist
as individual and similar spreadsheets. It is exhausting and
time-consuming for end users to manage different versions of
a spreadsheet, and it becomes more challenging when facing
with a huge number of spreadsheets. For example, when users
find that a spreadsheet contains an error, they need to
manually identify all versions of this spreadsheet and recheck
them, because they may contain the same errors. Recovering
the version information will alleviate this situation. Further,
the version information of spreadsheets can be used to study
spreadsheet evolution [8][9], error and smell detection
[10][11], and so on.

Existing approaches try to recover spreadsheet version
information through clustering similar spreadsheets into
evolution groups, based on the usage context of spreadsheets
(e.g., spreadsheet filenames [8][10] and email conversation
[10]). In this paper, we also use evolution group to denote a
spreadsheet group whose spreadsheets are different versions
of a spreadsheet. VEnron [8] clustered spreadsheets based on
the similarity of spreadsheet filenames. Its basic idea is that
different versions of a spreadsheet usually share the same
shortened filenames after the version information (e.g., date,
version number) in their filenames is removed. Users may
share their spreadsheets to others through emails [12].
Schmitz et al. [10] found that the spreadsheets in the same
email conversation may belong to the same evolution group,
and further took the email conservation into consideration.

However, the applicability and accuracy of the filename-
based [8] and email-conversation-based [10] spreadsheet
clustering approaches are limited. The filename-based
approach relies on the assumption that all spreadsheets are
well-named. This assumption is not always true. First, no
common practice is used for the naming of versioned
spreadsheets. The different versions of a spreadsheet may
have different filenames. The filename-based approach will
cluster them into different evolution groups. Similarly, the
spreadsheets with similar filenames may evolve from different
spreadsheets and will be wrongly clustered together. Second,
the filename-based clustering approach cannot cluster the

* Corresponding author

spreadsheets whose filenames contain none or limited version
information (e.g., 2003-01-36.xls). The email-conversation-
based approach relies on the assumption that all spreadsheets
are transferred by emails between users. However, the email
conversations are not always available. First, collecting emails
is difficult because they usually contain private information
and users usually do not share their emails. Second, users may
create their own spreadsheets and do not share them with
anyone by emails. Third, users may send several completely
different spreadsheets by an email, thus the spreadsheets in
one email conversation may evolve from different
spreadsheets. Therefore, a new spreadsheet clustering
approach with higher applicability and accuracy will be
appreciated.

In this paper, we inspect the spreadsheets in each evolution
group in VEnron [8], and observe that there are some similar
features among the spreadsheets in each evolution group. For
example, the spreadsheets in an evolution group share similar
table headers and worksheet names. Based on this observation,
we propose a novel spreadsheet clustering approach, named
SpreadCluster, to identify evolution groups, whose
spreadsheets are likely multiple versions evolved from the
same spreadsheet. SpreadCluster first extracts these common
features and calculates the similarity between spreadsheets
based on these extracted features. Then, SpreadCluster uses
the criteria about features learned from VEnron to cluster the
spreadsheets into different evolution groups.

We compare SpreadCluster with the filename-based
approach used in VEnron [8]. Our evaluation result shows that
SpreadCluster obtains higher precision (78.5% vs. 59.8%),
recall (70.7% vs. 48.7%) and F-Measure (74.4% vs. 53.7%)
than the filename-based approach [8]. We further applied
SpreadCluster on the other two big spreadsheet corpora,
FUSE [13] and EUSES [14]. The evaluation results show that
SpreadCluster can also achieve high precision (91.0% and
79.8%, respectively) on both corpora. Thus, SpreadCluster
can be used to handle the spreadsheets in different domains
Finally, based on the ground truth we built, we created a new
versioned spreadsheet corpus VEnron2, which contains 1,609
evolution groups (12,254 spreadsheets). VEnron2 is much
larger than its previous version VEnron (360 groups and 7,294
spreadsheets).

To our best knowledge, SpreadCluster is the first
clustering approach that can automatically identify different
versions of a spreadsheet by learning features and cluster them
into an evolution group. The corpora we created are available
online at http://www.tcse.cn/~wsdou/project/venron/.

In summary, this paper makes the following contributions:

 We propose SpreadCluster, a spreadsheet clustering
approach that can automatically identify different
versions of a spreadsheet with higher applicability and
accuracy.

 We compare SpreadCluster with the filename-based
approach used in VEnron [8]. Our evaluation result
shows that SpreadCluster obtains higher precision, recall
and F-Measure than the filename-based approach.

 We apply SpreadCluster on the other two big
spreadsheet corpora, FUSE [13] and EUSES [14]. The
evaluation results show SpreadCluster performs well in
identifying different versions of spreadsheets used in
different domains.

 Based on the ground truth we build, we further create a
much larger versioned spreadsheet corpus than VEnron.
Our new corpus VEnron2 is available online.

The remainder of this paper is organized as follows.
Section II shows our motivation example and observations.
Section III gives the detailed description of SpreadCluster.
Section IV presents our evaluation. We discuss the issues and
threats in Section V. Finally, we briefly introduce related work
in Section VI, and conclude this paper in Section VII.

II. MOTIVATION

In this section, we illustrate two evolution groups
extracted from VEnron [8]. We then introduce why need to
cluster spreadsheets into evolution groups and why current
approaches cannot work well through this example. Finally,
we show the challenges in clustering the spreadsheets into
evolution groups.

A. Example

We take two evolution groups 155_11_fomreq and
153_9_fom in VEnron [8] as an example. These two evolution
groups are used in the Enron Corporation [15]. The
spreadsheets in both two groups are used to report the monthly
and daily amount of “Baseload Storage Injections” in each
month. More detailed information is shown in Table 1,
including worksheet names, the subject of related emails, etc.
We only show 4 (11 in total) spreadsheets in the group
155_11_fomreq and 4 (9 in total) spreadsheets in the group
153_9_fom, because the remaining spreadsheets are the same
or similar to their previous versions. We only show two
worksheet names (“-” means that the corresponding
worksheets are absent). For other two worksheets in each
spreadsheet, they have the same and fixed names (“Comments”
and “Total Reqs”), as shown in Figure 1.

Table 1. Two evolution groups extracted from the VEnron corpus [8].

Group Name Version Id Spreadsheet Filename Worksheet Name Subject of Related Email

155_11_fomreq

v1 May00_FOM_Req2.xls May EPA Vols FOM May Storage Updated May '00 FOM requirements

v2 Jun00_FOM_Req.xls Jun EPA Vols FOM Jun Storage CES FOM June '00 Requirements

v6 July00_FOM_Req.xls Jul00 EPA Vols FOM Jul Storage CES FOM Volume Request for July 2000

v9 Aug00_FOM_Req.xls Aug00 EPA Vols FOM Aug Storage CES FOM August 2000 Volume request

153_9_fom

e1 FOM 0900.xls Sept00 EPA Vols FOM Sept Storage September FOM volumes for CES_New Power

e5 FOM Oct-00.xls Oct-00 EPA October Storage October 2000 FOM Requirements

e8 FOM Nov-00-1.xls Nov-00 EPA - New Power November FOM - - Final Edition

e9 FOM Dec-00.xls Dec-00 EPA - December 2000 FOM Estimates for New Power

We only show three typical spreadsheets, as shown in
Figure 1a-c. The first two spreadsheets, as shown in Figure
1a-b, are from the evolution group 155_11_fomreq, and the
last spreadsheet, as shown in Figure 1c, comes from the
second evolution group 153_9_fom. We can see that, all these
spreadsheets share the similar semantics, and they should
belong to the same evolution group. That said, these two
evolution groups should be combined into one. More detailed
information can be found in Section II.C.

B. Why Should We Cluster Spreadsheets into Evolution

Groups?

The version information among spreadsheets is usually
missing, which makes it hard for end users to manage
different versions of a spreadsheet. We outline two reasons
why clustering spreadsheets into evolution groups can
alleviate this situation.

1) Easier to Find and Fix Spreadsheet Errors
Many techniques have been proposed to help developers

to detect code clone and inconsistent errors by comparing
multiple code clone fragments [16][17][18]. Similarly, we can

find the inconsistent modifications on the spreadsheets by
comparing two versions of a spreadsheet. These inconsistent
modifications may indicate errors.

Figure 1a-b shows such a case. The worksheet FOM Jun
Storage in Figure 1a shows the monthly and daily amount of
storage injections in June, and the worksheet FOM Jul
Storage in Figure 1b is an update for handling storage
injections in July. We can see that they perform the same
calculation, except the constants that are used in formulas.
According to the table headers (Monthly and Daily), we can
safely conclude that the constants (30 and 31) in the formulas
are the numbers of the days in June and July. When the user
created the spreadsheets for handling storage injections in July
by reusing that in June, all constants in the formulas should
change from 30 to 31. However, all the constants in the
formulas are changed, except for that in the formula in cell
E15 (marked by red rectangle). The formula has a potential
error as users may enter non-zero value into cell D15.

To fix errors in the example, users could recheck all
different versions of July00_FOM_Req.xls in Figure 1b. By
clustering the different versions of a spreadsheet into an
evolution group, users can cross-check them, and find
opportunities on how to fix the errors. For example, users can
find that the spreadsheet shown in Figure 1c gives a good
example to fix the error.

2) Easier to Understand Spreadsheet Evolution
After clustering the different versions of a spreadsheet into

an evolution group, how bugs were introduced and fixed
might be observed. For example, the formula error was
introduced when the user created July_FOM_Req.xls in
Figure 1b based on Jun00_FOM_Req.xls in Figure 1a. This
formula error is hidden in the subsequent spreadsheets until
the spreadsheet for September was created. Users may find
that it is difficult to maintain these spreadsheets, and then
refactored the spreadsheet. After that, the users used new
filename naming pattern (e.g., FOM 0900.xls in Figure 1c)
instead of the old one, in order to distinguish the refactored
spreadsheets. We can see that the error is corrected and all
formulas are placed in the column D.

C. Existing Approaches

For the spreadsheets in Table 1, the filename-based
approach used in VEnron [8] clusters these spreadsheets into
two different evolution groups, because they have two
different shortened names (FOM_Req and FOM,
respectively). Since the email conservation is lost, some
heuristic rules (e.g., the subjects of two emails should match
after removing prefixes like “Re:”, or the contents of one
email exists in another one’s.) are used to reconstruct the
email conservation [10]. For example, as shown in Table 1, v2
and v9 are not in the same email conservation, due to the
subjects do not match each other and the contents of emails
are completely different. Thus, the email-conservation-based
approach fails to cluster these spreadsheets, too.

However, the following evidences show that these
spreadsheets of the two groups belong to the same evolution
group.

 Similar table headers and data layout. As we can see
from Figure 1, the worksheets of the spreadsheets in two

(a) Jun00_FOM_Req.xls (v2)

(b) July00_FOM_Req.xls (v6)

(c) FOM 0900.xls (e1)

Figure 1. Three real-world spreadsheets are extracted from two evolution

groups in VEnron. The first two spreadsheets (a-b) come from v2 and v6 in
group 155_11_fomreq, and the third spreadsheet comes from e1 in group

153_9_fom. However, they can be considered part of one evolution group.

groups share the same table headers, computational logic
(formulas) and data layout.

 Similar worksheets. A worksheet is a function of the
spreadsheet and the name usually indicates its main
intent. As shown in Table 1, almost all spreadsheets of
two groups contain four worksheets, only two
spreadsheets contain the first three worksheets. Their
names contain the same keywords that indicate the
corresponding worksheets play the same roles in these
spreadsheets.

 The spreadsheets of two groups share one common
maintenance staff. The senders of the related emails can
be considered as the maintenance staff of the
spreadsheets. The spreadsheets in two groups are
maintained by one common staff. Thus, it is likely that
he/she created FOM 0900.xls in 153_9_fom by reusing
Aug00_FOM_Req03.xls in 155_11_fomreq.

According to these evidences, we merged these two
groups and form a bigger evolution group.

D. Challenges and Approach Overview

To overcome the limitations of existing clustering
approaches, we propose a novel, feature-based spreadsheet
clustering approach. This approach calculates the similarity
between spreadsheets using features and clusters the
spreadsheets into different evolution groups.

There are several challenges in designing such a
spreadsheet clustering approach. First, what features can be
used to measure similarity between spreadsheets? Changes are
common in spreadsheet reuse, not only the data values but also
the data layout and computational logic. For example, end
users may add/delete rows/columns, or add/delete/rename
worksheets. The features selected should be as similar as
possible within each evaluation group, and as different as
possible from other groups. Second, how to define the
similarity between spreadsheets? Compared with traditional
software, spreadsheets have some special characteristics. For
example, the data in spreadsheets is usually modified, two
spreadsheets that have many differences on data with each
other may still be different versions of the same spreadsheet.
Existing spreadsheets comparison tools (e.g., SheetDiff [19]
and xlCompare [20]) focus on finding and visualizing

differences between two spreadsheets, and cannot be used to
identify evolution groups. Third, how to determine the
threshold for each feature? To determine the threshold, we
need a training dataset. However, VEnron [8] cannot be used
directly due to the drawback of the filename-based approach.
For example in Figure 1, the versions of a spreadsheet are
clustered into two independent groups.

To handle the first challenge, we manually inspected the
evolution groups in VEnron. We observed that the
spreadsheets in an evolution group usually share some
common features. For example, as shown in Table 1, the
corresponding worksheets share the same keywords in their
names, and the tables in them share the same table headers.
We discuss these features in Section III.A. To solve the second
challenge, we take the characteristics of the spreadsheets into
consideration. For example, the string in a cell is a complete
information unit and we regard it as a word in the spreadsheet
representation model that we use. More details can be found
in Section III.C. The groups 155_11_fomreq and 153_9_fom,
as shown in Table 1, are a good case that indicates how to
handle the third challenge. Each group in VEnron is manually
inspected by us to determine whether some groups should be
merged into one according to several information (e.g., their
contents, related email contents and whether they share
common maintenance staffs). We give more details in Section
IV.A.

III. SPREADCLUSTER

SpreadCluster automatically identifies different versions
of a spreadsheet. Figure 2 shows the overview of
SpreadCluster. SpreadCluster contains two phases: a training
phase and a working phase. In the training phase,
SpreadCluster extracts features (Section III.A) from each
spreadsheet (Section III.B). Then, SpreadCluster calculates
the similarity between spreadsheets based on the extracted
features (Section III.C). Finally, SpreadCluster trains a
clustering model using the training dataset that is created
based on VEnron [8]. In the working phase, SpreadCluster
extracts features from spreadsheets and calculates the
similarity between them. Then, SpreadCluster uses the trained
model to cluster spreadsheets into different evolution groups
(Section III.D).

A. Feature Selection

In order to be broadly applicable, the features selected
should exist in all spreadsheets, and reflect the spreadsheets’
semantics. Although formulas are often used in spreadsheet
analysis [19][20], we do not use formulas as a feature. It is
because formulas may change, even after a simple row is
added. In order to make our approach as simple as possible,
we also tend to select a small number of features. We select
two features as following:

1) Table Header. Table headers reflect the intended

semantics of the processed data in a worksheet. Table headers

have also been used to represent the possible semantics by

existing work [11][23][24]. Because the spreadsheets in an

evolution group share the same/similar semantics, the table

headers in their spreadsheets are rarely changed. As shown in

Figure 2. The overview of SpreadCluster.

Figure 1, the table headers (e.g., “Pipe/Service” and

“SONAT”) are the same in the three different versions.

2) Worksheet Name. Worksheet names denote the roles

that the worksheets play in a spreadsheet. Generally,

worksheet names give a high-level function description, and

they are usually reused during evolution. For example, as

shown in Figure 1a, the worksheet name FOM Jun Storage

shows that the last worksheet of v2 is used to store the data

of Fom Storage in June. Accroding to Table 1, we can see

that the worksheet names only contain limited changes (e.g.,

from “FOM Jun Storage” in v2 to “FOM Jul Storage” in v6).

B. Feature Extraction

1) Extracing Table Headers. To extract table headers, we

follow the region-based cell classification illustrated in

UCheck [23]. The region-based cell classification first

identifies the fences (a fence is a row or column that consists

of blank cells, and could be the boundary of a table). After

that, a worksheet is divided into one or more tables by the

fences. In a table, row headers are usually located at rows in

the top and column headers are usually located at columns in

the left.
Unfortunately, the accuracy of this basic approach is not

acceptable [24], because the spreadsheet allows users to
design their table layout flexibly. Consider the example in
Figure 3. This worksheet contains two tables (A1:E4 and
A6:E9), and the second table A6:E9’s headers are its first row
(row 6). However, the user inserted one empty column in the
second column of table A6:E9. The region-based cell
classification approach identifies this worksheet as three small
tables (A1:E4, A6:A9 and C6:E9) marked by red rectangles.
Based on these three small tables, we can identify many data
as headers, e.g., LIB in cell C7. Thus, we use the following
three heuristics to avoid extracting the meaningless headers:

 Row headers should occupy an entire row. Not all tables
have row headers, for example, the table A1:E4 in Figure
3. For this kind of tables, their top rows contain some
cells with data value (e.g., number in the C1 and D1).
Thus, we do not consider the strings in row 1 as row
headers of table A1:E4.

 Row/column headers cannot be a date or numeric
sequence. It is common that a table uses a date or
numeric sequence as row/column headers, such as

“1,2, ...” and “2000/7/5, 2000/7/6, ...”. This kind of table
headers may appear in many unrelated spreadsheets, we
avoid extracting this kind of table headers.

 Row/column headers cannot be located in the
right/bottom of a date or numeric sequence. If some cells
locate in the right/bottom of a date or numeric sequence,
their contents are most likely to be data rather than table
headers. For example, in Figure 3, C7:C9 are not the
column headers of table C6:E9, since their left cells
A7:A9 are a numeric sequence.

2) Extracting Worksheet Names. The worksheet name

may contain version information (e.g., FOM Jun Storage in

Figure 1a). Thus, we only extract meaningful words (e.g.,

FOM Storage in Figure 1a) from the worksheet name. These

meaningful words usually indicate the function of the

worksheet. To extract the keywords from the worksheet name,

we remove stop words (e.g., “the” and “a”), special characters

(e.g., “#” and “-”), spreadsheet related words (e.g., “Sheet”),

number and date.
The length of a worksheet name is usually short, using the

traditional method (e.g., edit distance) cannot assure the
similar worksheet names have similar semantics. So we
determine whether two worksheet names are similar
according to whether they contain the same keywords. Since
users may use default worksheet names (e.g., “Sheet1” and
“Sheet2(1)”) in different spreadsheets, we filter out the empty
worksheets with default names from consideration.

C. Similarity Measurement

In this section, we describe how to define the similarity
between worksheets and that between spreadsheets.

1) Similarity between Worksheets
In each worksheet, table headers represent the semantics

of the processed data. Thus, the similarity of two worksheets
can be represented by the similarity of their table headers. We
consider all table headers in a worksheet as a textual document,
and then we can define the similarity of corresponding textual
documents as the similarity of the worksheets.

The similarity between the textual documents have been

well-studied in the area of information retrieval [25]. We

select the widely-used Vector Space Mode (VSM) [26] as the

document representation model. VSM converts every

document into an n dimension vector <w1,w2,⋯,wn>, where

n is the number of distinct words that exist in at least one

document, and wi (1≤ i ≤ n) represents the degree of the

importance of corresponding word to this document.

Since each table header should be taken as a whole to

represent its semantics, we take each table header as a basic

word. For example, in Figure 1a, the table header extracted

from C5 is Pipe/Service. We treat this header as a word

“Pipe/Service” instead of two words “Pipe” and “Service”.

Further, in order to avoid selecting useless words for

clustering, we clean table headers by removing the

meaningless words, including the common stop words (e.g.,

“all” and “above”), some spreadsheet related words (e.g.,

“#NAME?”), all special characters, strings of number/date,

URL and mailing address. We also use the Porter Stemming

Figure 3. A spreadsheet example for table header extraction.

Algorithm [27], a widely used English stemming algorithm,

to transform every word into its root form.
After the above steps, each worksheet is presented as a

bag of words. We assign a weight to each word by utilizing
the TF-IDF [28], whose value increases proportionally to the
number of times a word appears in the worksheet, but is offset
by the frequency of the word appears in other worksheets.
Finally, the worksheets are presented as vectors. We give the
formal representation of a worksheet as follows:

wsi ≡ wsi ⃗⃗ ⃗⃗ ⃗⃗ ≡ (wi1,wi2,⋯,win) (1)

Since a spreadsheet can be considered as a set of
worksheets and each worksheet can be represented as a vector
in VSM. Thus, we formally represent a spreadsheet as
following:

SP ≡ {ws1, ws2,⋯,wsk} (2)

We use widely used cosine similarity to define the
similarity between two worksheets as follows:

Sws(wsi , wsj) =
wsi⃗⃗ ⃗⃗ ⃗ ∙ wsj⃗⃗ ⃗⃗ ⃗

|wsi⃗⃗ ⃗⃗ ⃗| × | wsj⃗⃗ ⃗⃗ ⃗ |
 (3)

 wsi and wsj are two worksheets.

 wsi⃗⃗ ⃗⃗ ⃗ and wsj⃗⃗ ⃗⃗ ⃗ are the vectors of wsi and wsj, respectively.

Our extraction algorithm may fail to extract the headers
and results in zero vector for a worksheet. (1) The worksheet
is empty or only contains some types of data that cannot be
handled by the Apache POI [29], e.g., charts. (2) The
worksheet only contains data cells. For the above two cases,
if their worksheet names share the same meaningful keywords,
we set their similarity to 1, otherwise set to 0. Thus, S𝑤𝑠 is
within [0,1].

2) Similarity between Spreadsheets
Two spreadsheets with different numbers of worksheets

may be different versions of the same spreadsheet. For
example, as shown in Table 1, although the worksheet named
Storage was deleted from FOM Nov-00-1.xls, it is still
regarded as an update version of FOM Oct-00.xls, due to the
fact that they share the main functions (three similar
worksheets). Thus, the spreadsheet similarity should be able
to tolerate the changes in the number of worksheets. We adapt

Jaccard similarity coefficient [30] to define the similarity
between two spreadsheets. The Jaccard similarity coefficient
is widely used to measure the similarity between finite sample
sets. It is defined as the size of the intersection divided by the
size of the union of the sample sets. The similarity between
two spreadsheets is defined as follow:

 Ssp (sp
i
, sp

j
) =

|φ|

|sp
i
| + |sp

j
|
 (4)

 |sp
i
|and |sp

j
| are the numbers of the worksheets in the

spreadsheets sp
i
 and sp

j
, respectively.

 φ is a set of worksheets which come from the pairs <
wsk, wsl >, where wsk ∈ sp

i
 and wsl ∈ sp

j
, and is bigger

than the threshold θws , and their names share the same
keywords.|φ| is the number of different worksheets in φ.
Note that Ssp is within [0,1].

Algorithm 1 shows how SpreadCluster calculates the

similarity between two spreadsheets sp
1
 and sp

2
. In order to

get the set of worksheets φ , SpreadCluster calculates the
similarity S𝑤𝑠(wsi, wsj) according to equation (3) for each

worksheet wsi ∈ sp
1
 and each worksheet wsj ∈ sp

2
 (Lines 3-

9). If Sws(wsi , wsj) is bigger than the threshold θws and their

names both contain the same keywords (Line 5), then we add
wsi and wsj to the set φ (Line 6). Finally, SpreadCluster

calculates the similarity between two spreadsheets Ssp

according to equation (4).
We define the similarity between a spreadsheet sp and a

group C as the maximum similarity achieved by sp and
spreadsheets in C as follows:

Ssc(sp, C) = max (Ssp(sp, sp
i
)) , sp

i
∈ C (5)

D. Clustering Algorithm

Since users may choose the latest version to create new
version every time, the accumulation of small changes may
make the original version and the last version completely
different. To handle this, we adapt the single-linkage
algorithm [31] to cluster spreadsheets into evolution groups,
as shown in Algorithm 2. First, we select a spreadsheet sp

0

from all spreadsheets SP as a seed of group C (Lines 3-6).
Second, if there exists an un-clustered spreadsheet sp and
Ssc (sp , C) is bigger than the threshold θsp, then we add sp

into group C and remove it from SP (Lines 8-11), until no
more spreadsheets can be clustered into C (Lines 7-12). If
group C contains more than one spreadsheet, we consider that
these spreadsheets are clustered successfully and assign a
unique id for group C (Lines 13-15). We repeat steps 1 and 2
until SP is empty (Lines 2-16). Finally, our clustering
algorithm returns all groups that contain more than one
spreadsheet (Line 17).

E. Threshold Learning

Two thresholds used by our clustering algorithm, θws
and θsp, should be determined. They are used to determine

whether two worksheets are similar and whether two
spreadsheets belong to an evolution group, respectively.

Algorithm 1. Calculating similarity between spreadsheets

Input: sp
1
, sp

2
 (two spreadsheets), θWS (threshold for the similarity

between two worksheets)

Output: Ssp (similarity score).

1: 𝜑 = ∅ ; // Initialize the similar worksheet set

2: Ssp= 0; // Initialize the similarity score

3: For each worksheet wsi ∈ sp
1

4: For each worksheet wsj∈ sp
2

5: If Sws(wsi ,wsj) ≥ θWS and SimilarName(wsi, wsj)

6: φ = φ ∪ {wsi ,wsj}; //Add two worksheets into φ

7: EndIf

8: EndFor

9: EndFor

10: Calculate Ssp according to equation (4)

11: Return Ssp

Different combinations of values of θws and θsp may result in

different clustering results. We use the overall F-Measure [32]
to measure how closely the clustering result C = {C1, C2, ⋯,
Cm} matches the manually clustering result P = {P1, P2, ⋯,
Pn}. Here, n and m may not be equal.

Note that we do not know the correspondence between P
and C . To find the corresponding Ci for each Pj , we first

calculate precision, recall, and F-Measure for every Ci and Pj

as follows:

precision(Pj,Ci) =
| Pj ∩ Ci |

|Ci|
 (6)

recall(Pj, Ci) =
| Pj ∩ Ci|

|Pj|
 (7)

F(Pj, Ci) =
2 × precision(Pj , Ci) × recall(Pj, Ci)

precision(Pj, Ci) + recall(Pj, Ci)
 (8)

F(Pj) = max
i = 1, 2, …, m

F(Pj, Ci) (9)

For each Pj , Ci that makes F(Pj,Ci) to reach the

maximum value is selected as the group corresponding to Pj.

After getting all correspondence between P and C, then the
overall F-Measure is defined as follow:

𝐹 =
∑ |𝑃𝑗| × F(Pj)

n
j=1

∑ |Pj|
n
j=1

 (10)

When the value of F is closer to 1, the matching degree
between the clustering result by our approach and the
manually clustering result is higher.

Algorithm 3 shows how we learn the thresholds from a
training dataset. Since the value range of θws and θsp is

between 0 and 1, we enumerate all possible combinations of
 θws and θsp, accurate to 0.01 (Lines 2-9), and then calculate

the corresponding overall F-Measure (Line 5) for each

combination of θws and θsp. We choose the combination that

can achieve the maximum F-Measure (Line 10).

IV. EVALUATION

We evaluate SpreadCluster on three big spreadsheet
corpora: Enron [12], EUSES [14] and FUSE [13]. We focus
on the following research questions:

RQ1 (Effectiveness): How effective is SpreadCluster in
identifying different versions of spreadsheets? Specifically,
what are the precision, recall and F-Measure?

RQ2 (Comparison): Can SpreadCluster outperform
existing spreadsheet clustering techniques (e.g., the filename-
based approach)?

RQ3 (Applicability): Can SpreadCluster cluster the
spreadsheets from different domains?

To answer RQ1, we evaluate SpreadCluster on the Enron
corpus (Section IV.B.1). To answer RQ2, we compare
SpreadCluster with the filename-based approach in terms of
effectiveness on the Enron corpus (Section IV.B.2). To
answer RQ3, we apply SpreadCluster on the EUSES [14] and
FUSE [13] corpora (Section IV.B.3), and validate its precision.
Our results are available online for future research
(http://www.tcse.cn/~wsdou/project/venron/).

A. Data Collection and Experimental Setup

We evaluate SpreadCluster on three widely used
spreadsheets corpora: Enron [12], EUSES [14] and FUSE [13].
Enron is an industrial spreadsheets corpus, and contains more
than 15,000 spreadsheets that were extracted from the Enron
email archive [33]. EUSES is the most frequently used
spreadsheet corpus, and contains 4,037 spreadsheets extracted
from World Wide Web. FUSE is a reproducible, internet-scale
corpus, and contains 249,376 unique spreadsheets that were
extracted from over 26.83 billion webpages [34].

1) Training Dataset based on VEnron
As discussed earlier in Section II.D, some groups in

VEnron should be merged into one. Thus, VEnron cannot be
used directly as training dataset. We manually inspected each
evolution group in VEnron, and determined whether two
groups should be merged into one according to the following
criteria described in next section. Table 2 shows the final

Algorithm 2. Clustering algorithm

Input: SP (all spreadsheets), 𝜃𝑊𝑆 (threshold for the similarity between

two worksheets), θSP (threshold for the similarity between two
spreadsheets).

Output: Cs (evolution group set).

1: Cs = ∅ // Initialize group set

2: While 𝑆𝑃 ≠ ∅

3: C = ∅ // Initialize a new group

4: Select a spreadsheet sp
0
 ∈ SP

5: SP = SP - {sp
0
}; //Remove sp

0
 from SP

6: C = C ∪ {sp
0
}; //Add sp

0
 into group C

7: Do

8: If (∃ sp ∈ SP ⋀ 𝑆𝑠𝑐(𝑠𝑝, 𝐶) ≥ 𝜃𝑆𝑃)

9: SP = SP - {sp}; //Remove sp from SP

10: C = C ∪ {sp}; //Add sp into group

11: EndIf

12: While (C changes)

13: If C contains more than one spreadsheet

14: Cs = Cs ∪ C; //Cluster successfully

15: EndIf

16: EndWhile

17: Return Cs ; //Return the clustering result

Algorithm 3. Determine thresholds

Input: SP (training spreadsheet set)

Output: θWS (threshold for the similarity between two worksheets),

 θSP (threshold for the similarity between two spreadsheets).

1: θWS = 0.01, θSP = 0.01 //Initialize

2: While θWS ≤ 1

3: While θSP ≤ 1

4: groups=cluster SP by Algorithm 2 with (θWS, θSP);
5: Calculate overall F-Measure for groups;

6: Increase θSP by 0.01;

7: EndWhile

8: Increase θWS by 0.01;

9: EndWhile

10: Return θWS and θSP that achieve maximum F-Measure;

training dataset. We merged 58 groups into 26 groups
(Merged). We filtered out 6 groups which cannot be parsed by
Apache POI [29] (Filter). Finally, we got 322 evolution
groups containing 7,171 spreadsheets (TSet). We use this
dataset to train SpreadCluster (Algorithm 3). In our
experiment, we get θWS = 0.60 and θSP = 0.33.

2) Validation Method
Given a set of spreadsheets, we cluster them into different

evolution groups using SpreadCluster or existing approaches.
Since the creators of the spreadsheets used in our experiment
are not available, we manually inspect each evolution group
by ourselves. During our inspection, we use the spreadsheets’
contents and associated information (e.g., emails), and try to
answer the following questions and determine whether a
spreadsheet belongs to an evolution group: (1) Are the
spreadsheets in a group similar? (2) Do they share the same
maintenance staffs? (3) Can we recover the order of these
spreadsheets according to the time? We repeat the following
steps until no further changes can be made.

i) If all spreadsheets in a group are similar, we leave
this group unchanged.

ii) Otherwise, if we can find out some smaller groups
whose spreadsheets are similar, we split the original
group into subgroups, and each subgroup’s
spreadsheets are similar.

iii) If only one spreadsheet is dissimilar to others in a
group, we delete this spreadsheet from the group.

iv) If any two spreadsheets are dissimilar in a group, we
delete the group.

v) If two groups are similar and can be merged, we
merge them into one.

3) Ground Truth
In order to evaluate the recall of our approach, we need to

obtain all evolution groups in Enron. However, the creators of
Enron spreadsheets are not available, and we cannot obtain all
these groups. We adopt a soft way to build the ground truth by
combining all validated evolution groups by all approaches
(SpreadCluster and the filename-based approach used in
VEnron [8]). Note that some groups detected by two
approaches will be merged if they contain common
spreadsheets. We obtain 1,609 evolution groups, and 12,254
spreadsheets in total. We use these evolution groups as our
ground truth.

For these 1,609 evolution groups, we further recover the
order for the spreadsheets in each evolution group by
following the order recovery rules in VEnron [8]. For example,
in Figure 1, we can extract the date information (e.g., July and
0900) from the filenames, and determine the version order.
After the version order recovery, we build a new versioned
spreadsheet corpus VEnron2, which contains 1,609 evolution
groups and 12,254 spreadsheets. VEnron2 is much larger than
our previous versioned spreadsheet corpus VEnron [8] (7,294
spreadsheets and 360 groups).

4) Evaluation Metrics
Let Rclustered denote the clustered groups and Rvalidated

denote the groups after manual validation. If a group in
Rclustered contains exactly the same spreadsheets that contained
by a group in Rvalidated, we consider it correct (true positive).

We define the precision of a clustering approach as the ratio
of the number of groups clustered correctly to the number of
groups in Rclustered, as shown below:

precision =
|Rclustered ∩ Rvalidated|

|Rclustered|
 (11)

We use 𝑅𝑎𝑙𝑙 to denote all validated evolution groups in
the ground truth. If a group in 𝑅𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 contains exactly the
same spreadsheets that contained by a group in 𝑅𝑎𝑙𝑙 , we
consider it detected correctly. Thus, the recall and F-Measure
are defined as follows:

recall =
|Rclustered ∩ Rall|

|Rall|
 (12)

F-Measure =
2 × precision × recall

precision + recall
 (13)

B. Expermental Results

1) RQ1: Effectiveness
We apply SpreadCluster on all the spreadsheets in Enron,

and further manually validate all groups in the clustering
result. Table 3 shows the detected and validated results. We
can see that SpreadCluster clusters all spreadsheets into 1,561
groups (Detected). Among these groups, 1,226 are correctly
clustered (Correct). The precision of SpreadCluster is 78.5%,
which is promising.

As shown in Table 4, among 1,609 evolution groups in the
ground truth (GroundTruth), SpreadCluster can detect 1,137
evolution groups correctly (Correct). Note that these 1,137
evolution groups are less than validated groups detected by
SpreadCluster (1,137 vs. 1,226). It is because in the ground
truth, some groups merge the groups detected by two
approaches and they may contain spreadsheets that cannot be
detected by SpreadCluster. Thus, the recall and F-measure of
SpreadCluster are 70.7% and 74.4%, respectively.

Therefore, we can draw the following conclusion:

We further investigate why SpreadCluster fails to detect
some evolution groups. First, although some spreadsheets
share common or similar worksheets, we do not think that they
are different versions of the same spreadsheet and cluster them
into different evolution groups. This is the main reason we
need to delete/split some groups or delete some spreadsheets,
as shown in Table 3. Second, some spreadsheets only contain
data, charts or numeric/date sequence as table headers,
SpreadCluster cannot detect table headers in them. Specially,
some spreadsheets share some empty worksheets with same
names. Third, our header extraction algorithm is heuristic and

Table 2. The training dataset based on VEnron [8].

 Original Merged Filter TSet

Groups 360 58 26 6 322

Spreadsheets 7,294 1,211 123 7,171

SpreadCluster can identify evolution groups with
high precision (78.5%) and recall (70.7%).

it may fail in some cases. We will further improve the header
extraction algorithm in the future.

2) RQ2: Comparison
We further compare the effectiveness of SpreadCluster

with the filename-based approach [8]. We do not compare
with the email-conversation-based approach [10] because it is
challenging to automatically reconstruct email conservation
precisely. We choose Enron [12] to evaluate these two
approaches rather than EUSES [14] and FUSE [13]. First, the
spreadsheets in EUSES are usually independent. Second, the
filename-based approach cannot work on FUSE because the
spreadsheets in FUSE were all renamed as a combination of
numbers and letters with fixed length of 36 (e.g., “00001ca0-
d715-4250-bba8-f416281ffb1c”).

Table 3 also shows the detected and validated clustering
results of the filename-based approach on Enron. We can see
that the filename-based approach, among 1,613 detected
groups (Detected), 956 groups are correctly detected (Correct).
The precision of filename-based approach is 59.8%, which is
much lower than SpreadCluster (78.5%).

We further compared the recall and F-Measure. From
Table 4, we can see that the filename-based approach can only
detect 783 evolution groups correctly (Correct). Thus, its
recall and F-measure are 48.7% and 53.7%, which are also
much lower than SpreadCluster (70.7% and 74.4%).

Therefore, we draw the following conclusion:

We further compare the two approaches in more details to
understand why SpreadCluster performs better. The detailed
result is shown in Table 4. SpreadCluster misses much less
evolution groups than the filename-based approach (GMissed;
90 vs. 272). This indicates that spreadsheets in many evolution
groups do not have similar filenames (as assumed in the
filename-based approach [8]), and thus the filename-based
approach would fail to detect them. Further, SpreadCluster
can detect evolution groups more precisely, e.g., evolution
groups that were split (Split) and incomplete groups (FMissed)

are much lesser, too. Thus, for the filename-based approach,
its accuracy and applicability heavily depend on the
spreadsheet filenames. SpreadCluster can overcome this
limitation and achieves higher accuracy.

3) RQ3: Applicability
The spreadsheets in the Enron dataset were created to store

or process the data in the financial area, they are domain-
specific. To validate whether SpreadCluster can identify
evolution groups from other domains, we apply SpreadCluster
on the FUSE [13] and EUSES [14] corpora. These two
corpora were extracted from the web pages and used for
different domains. Since there is no training dataset can be
used to learn the thresholds for FUSE and EUSES. we apply
SpreadCluster on these two corpora with the thresholds
trained from VEnron [8].

Table 3 shows the detected results. SpreadCluster can
detect 10,985 groups (Detected) on FUSE. It is impractical to
validate all these groups manually, thus we randomly selected
some groups to validate and estimated the accuracy of
SpreadCluster on FUSE. In order to alleviate human labor, we
randomly selected 200 groups containing no more than 20
spreadsheets to validate, since only 279 groups contain more
than 20 spreadsheets. In Table 3, we can see that
SpreadCluster can achieve 91.0% precision on FUSE [13],
which is higher than Enron (78.5%).

We further applied SpreadCluster on the EUSES [14]
corpus to find the hidden different versions of spreadsheets in
EUSES. SpreadCluster clustered only 481 of 4,140
spreadsheets into 213 groups. It is not surprised, since many
versions of a spreadsheet had been have been cleaned as
duplicated spreadsheets in EUSES. We manually validated all
groups since the number of groups is not large. As shown in
Table 3, the precision of SpreadCluster achieves 79.8% (170
of 213), which is a little lower than that on FUSE, but still
higher than that on Enron.

Therefore, we draw the following conclusion:

SpreadCluster performs well in identifying evolution
groups for different spreadsheet corpora in different
domains.

Table 3. The clustering results of SpreadCluster and the filename-based approach on three spreadsheet corpora. For each corpus, columns 3-11

show the numbers of evolution groups. After SpreadCluster (or the filename-based approach [8]) detected evolution groups (Detected), we manually

validated all or parts of them (Validated). We confirmed some of them are correct (Correct), and deleted groups when all their spreadsheets are dissimilar
(Deleted), and deleted some spreadsheets if they are different from others (DeleteSpread). Further, if a group contains more subgroups, we split it into

more groups (Split). Some groups were merged into other groups (Merged). We may perform deleting spreadsheets, merging groups, or splitting groups

together (MultiOp). Column 11 (Final) shows our validated results.

Approaches Corpus Detected Validated Correct Deleted DeleteSpread Split Merged MultiOp Final Precision

SpreadCluster

Enron 1,561 1,561 1,226 59 69 33 125 49 1,507 78.5%

EUSES 213 213 170 36 7 - - - 177 79.8%

FUSE 10,985 200 182 6 1 2 9 - 188 91.0%

Filename-based [8] Enron 1,613 1,613 965 153 88 15 341 51 1,278 59.8%

Table 4. The comparison of SpreadCluster and the filename-based approach on Enron. For each group in ground truth (GroundTruth), we validated
whether it is detected correctly by two approaches. We confirmed some groups are correctly detected (Correct), none spreadsheets in some groups are

clustered (GMissed), some groups are incomplete (FMissed), some groups are clustered into several small subgroups (Split), some groups are mixed with

other groups (Mixed), some groups are involved in more than one case in the above (MultiCase), for example, one group is split into subgroups and some
spreadsheets in it are missed.

Approach GroundTruth Correct GMissed FMissed Split Mixed MultiCase Recall F-Measure

SpreadCluster
1,609

1,137 90 91 37 223 31 70.7% 74.4%

Filename_based [8] 783 272 164 92 217 81 48.7% 53.7%

SpreadCluster performs better than the filename-
based approach in identifying evolution groups.

V. DISCUSSION

While our experiments show that SpreadCluster is
promising, we discuss some potential threats to our approach.

Representativeness of our experimental subjects. One
threat to the external validity is the representativeness of
experimental subjects used in our evaluation. We select the
Enron [12], EUSES [14] and FUSE [13] that are the three
biggest spreadsheet corpora so far, and have been widely used
for spreadsheet-related studies [10][35][36][37].

Training dataset and evolution group validation. To
construct the training dataset and validate the clustering
results, we manually inspected spreadsheets in each evolution
group. However, we cannot guarantee that this dataset does
not contain any false positives or false negatives. To minimize
this threat, the groups were cross checked by two authors.

Ground truth used in the experiments. Since it is
impractical to obtain all evolution groups in Enron, we build
the ground truth by combining the validated results of two
approaches (SpreadCluster and the filename-based approach
[8]). This ground truth may contain some biases although we
have done our best to avoid that. In the future, we will try to
get a complete ground truth in a small corpus.

Similarity definition and clustering algorithm. The
similarity definitions and clustering algorithm we used is
simple and effective regarding to our presentation model.
Different definitions and clustering algorithm may achieve
better results, and we will explore that in the future.

Parallel evolution. Spreadsheets can be forked like
software and evolve in parallel. Our approach clusters the
spreadsheets in parallel evolution groups into the same group.
This problem may be solved by using more information (e.g.,
spreadsheet filenames). We leave this as future work.

VI. RELATED WORK

We focus on these pieces of work concerning spreadsheet
corpora, clone detection, evolution and error detection.

Spreadsheet corpora. EUSES [14] is the most widely
spreadsheet corpus, containing 4,037 spreadsheets. Enron [12]
is the first industrial spreadsheet corpus, containing more than
15,000 spreadsheets extracted from the Enron email archive
[33]. FUSE [13] is the biggest spreadsheet corpus, containing
249,376 spreadsheets extracted from over 26 billion pages
[34]. The spreadsheets in these three corpora are independent
and all relationships between them were missing.
SpreadCluster can recover the relationships between
spreadsheets by detecting evolution groups. VEnron [8] is the
first versioned spreadsheet corpus, containing 360 evolution
groups and 7,294 spreadsheets. VEnron uses the filename-
based approach to identify evolution groups, and leads to
inaccurate and incomplete results. We applied SpreadCluster
to create a much bigger versioned corpus than VEnron.

Spreadsheet clone detection. Hermans et al. [38]
proposed data clone detection in spreadsheets. TableCheck
[11] identifies table clones that share the same/similar
computational semantics. These two approaches can only
identify areas with the same data or computational semantics.
However, changes (e.g., new data, formula) are common in
spreadsheets, clone detection techniques cannot be employed

to identify evolution groups. Spreadsheet comparison tools,
like SheetDiff [19] and xlCompare [20], can be used to find
differences between spreadsheets. However, they cannot
judge whether two spreadsheets belong to an evolution group.

Spreadsheet evolution. Due to the version information is
usually missing, few work focus on spreadsheet evolution.
Hermans et al. carry out an evolution study on 54 pairs of
spreadsheets [9]. The spreadsheet evolutionary characteristics
(e.g., the level of coupling) were observed by comparing each
pair of spreadsheets. But the studied spreadsheets are not
publicly available. Dou et al. [8] study spreadsheet changes
from multiple views (e.g., formula, entered value and error
trend) during evolution. SpreadCluster’s results can be used to
do further spreadsheet evolution studies.

Spreadsheet error detection. Various techniques have
been proposed to detect spreadsheet errors. UCheck [23] and
dimension check [39] infer the types for cells and use a type
system to carry out inconsistency checking. Dou et al [40][41]
extract cell arrays that share the same computational
semantics, then find and repair inconsistent formulas and data
by inferring their formula patterns. Hermans et al. [32][33]
adjust and apply code smells on spreadsheets. CheckCell [43]
detects data value that affects the computation dramatically.
However, these pieces of work focus on a single spreadsheet.
SpreadCluster makes it possible to detect errors or smells
caused by inconsistent modifications in spreadsheets by
comparing different versions of a spreadsheet.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose SpreadCluster, a novel clustering
algorithm that can automatically identify different versions of
a spreadsheet. SpreadCluster calculates the similarity based
on the features in spreadsheets, and clusters them into
evolution groups. Our experimental result shows that
SpreadCluster can improve the filename-based clustering
approach greatly. We also apply SpreadCluster on FUSE [13]
and EUSES [14], and it can also achieve high precision. That
indicates SpreadCluster can perform well in identifying
evolution groups in different domains.

We further build a new versioned spreadsheet corpus
based on the ground truth we used, VEnron2, which contains
1,609 evolution groups and 12,254 spreadsheets. VEnron2 is
much larger than our previous versioned spreadsheet corpus
VEnron [8] (360 groups and 7,294 spreadsheets). Our new
corpus VEnron2 is now available online for future research
(http://www.tcse.cn/~wsdou/project/venron/).

We plan to pursue our future work in three ways. (1) For
now, we manually recover the version order among
spreadsheets. We will study how to automatically recover the
version order. (2) SpreadCluster can be further improved by
more precise header extraction algorithm. (3) An empirical
study on the versioned spreadsheets can be conducted to
improve the understanding of spreadsheet evolution.

ACKNOWLEDGMENT

This work was supported in part by Beijing Natural
Science Foundation (4164104), National Key Research and
Development Plan (2016YFB1000803), and National Natural
Science Foundation of China (61672506).

REFERENCES

[1] L. a. Kappelman, J. P. Thompson, and E. R. McLean, “Converging

End-user and Corporate Computing,” Communications of the ACM,

vol. 36, pp. 79–92, 1993.

[2] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of End

Users and End User Programmers,” in Proceedings of IEEE

Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2005, pp. 207–214.

[3] “Apache Subversion,” 2013. [Online]. Available:

http://de.wikipedia.org/wiki/Apache_Subversion.

[4] “Git.” [Online]. Available: https://git-scm.com/.

[5] Miryung Kim, L. Bergman, T. Lau, and D. Notkin, “An Ethnographic

Study of Copy and Paste Programming Practices in OOPL,” in

Proceedings of International Symposium on Empirical Software

Engineering (ISESE), 2004, pp. 83–92.

[6] “SpreadGit.” [Online]. Available:

https://www.crunchbase.com/organization/spreadgit.

[7] “SharePoint.” [Online]. Available: https://products.office.com/zh-

cn/sharepoint/collaboration.

[8] W. Dou, L. Xu, S.-C. Cheung, C. Gao, J. Wei, and T. Huang, “VEnron:

A Versioned Spreadsheet Corpus and Related Evolution Analysis,” in

Proceedings of the 38th International Conference on Software

Engineering Companion (ICSE), 2016, pp. 162–171.

[9] B. Jansen and F. Hermans, “Code Smells in Spreadsheet Formulas

Revisited on an Industrial Dataset,” in Proceedings of IEEE

International Conference on Software Maintenance and Evolution

(ICSME), 2015, pp. 372–380.

[10] T. Schmitz and D. Jannach, “Finding Errors in the Enron Spreadsheet

Corpus,” in Proceeding of IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), 2016, pp. 157–161.

[11] W. Dou, S.-C. Cheung, C. Gao, C. Xu, L. Xu, and J. Wei, “Detecting

Table Clones and Smells in Spreadsheets,” in Proceedings of the 24th

ACM SIGSOFT International Symposium on the Foundations of

Software Engineering (FSE), 2016, pp. 787–798.

[12] F. Hermans and E. Murphy-Hill, “Enron’s Spreadsheets and Related

Emails: A Dataset and Analysis,” in Proceedings of the 37th IEEE

International Conference on Software Engineering (ICSE), 2015, pp.

7–16.

[13] T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-Hill, “FUSE:

A Reproducible, Extendable, Internet-Scale Corpus of Spreadsheets,”

in Proceedings of the 12th Working Conference on Mining Software

Repositories (MSR), 2015, pp. 486–489.

[14] M. Fisher and G. Rothermel, “The EUSES Spreadsheet Corpus: A

Shared Resource for Supporting Experimentation with Spreadsheet

Dependability Mechanisms,” ACM SIGSOFT Software Engineering

Notes, pp. 1–5, 2005.

[15] “Enron Corporation.” [Online]. Available:

https://en.wikipedia.org/wiki/Enron.

[16] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent

Approach for Detecting Duplicated Code,” in Proceedings of

International Conference on Software Maintenance (ICSM), 1999, pp.

109–118.

[17] R. Wettel and R. Marinescu, “Archeology of Code Duplication:

Recovering Duplication Chains From Small Duplication Fragments,”

in Proceeding of the 7th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing (SYNASC), 2005, pp. 8-

pp.

[18] U. Manber, “Finding Similar Files in a Large File System,” in

Proceedings of the USENIX Winter Technical Conference, 1994, pp.

1–10.

[19] C. Chambers, M. Erwig, and M. Luckey, “SheetDiff: A Tool for

Identifying Changes in Spreadsheets,” in Proceedings of IEEE

Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2010, pp. 85–92.

[20] “xlCompare.” [Online]. Available:

http://www.xlcompare.com/product.asp.

[21] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and

Visualizing Inter-Worksheet Smells in Spreadsheets,” in Proceedings

of the 34th International Conference on Software Engineering (ICSE),

2012, pp. 441–451.

[22] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting

Professional Spreadsheet Users by Generating Leveled Dataflow

Diagrams,” in Proceeding of the 33rd international conference on

Software engineering (ICSE), 2011, pp. 451-460.

[23] R. Abraham and M. Erwig, “UCheck: A Spreadsheet Type Checker

for End Users,” Journal of Visual Languages & Computing, vol. 18,

pp. 71–95, 2007.

[24] S. Roy, F. Hermans, E. Aivaloglou, J. Winter, and A. van Deursen,

“Evaluating Automatic Spreadsheet Metadata Extraction on a Large

Set of Responses from MOOC Participants,” in Proceedings of the

23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), 2016, pp. 135–145.

[25] E. Greengrass, Information retrieval: A survey. 2000.

[26] S. K. M. Wong and V. V. Raghavan, “Vector Space Model of

Information Retrieval: A Reevaluation,” in Proceedings of the 7th

annual international ACM SIGIR conference on Research and

development in information retrieval (SIGIR), 1984, pp. 167–185.

[27] M. F. Porter, “An Algorithm for Suffix Stripping,” Program, vol. 14,

pp. 130–137, 1980.

[28] “Term Frequency-Inverse Document Frequency.” [Online]. Available:

https://en.wikipedia.org/wiki/Tf–idf.

[29] “Apache POI.” [Online]. Available: https://poi.apache.org/.

[30] R. L. Hale, “Cluster Analysis in School Psychology: An Example,”

Journal of School Psychology, vol. 19, pp. 51–56, 1981.

[31] J. Han, M. Kamber, and J. Pei, Data Mining : Concepts and

Techniques : Concepts and Techniques (3rd Edition). Elsevier, 2012.

[32] B. Larsen and C. Aone, “Fast and Effective Text Mining Using

Linear-time Document Clustering,” in Proceedings of the 5th ACM

SIGKDD international conference on Knowledge discovery and data

mining (KDD), 1999, pp. 16–22.

[33] “The Enron PST Data Set Cleansed of PII by Nuix and EDRM.”

[Online]. Available: http://info.nuix.com/Enron.html.

[34] “Common Crawl Data on AWS.” [Online]. Available:

http://aws.amazon.com/datasets/41740.

[35] S. Badame and D. Dig, “Refactoring Meets Spreadsheet Formulas,”

in Proceedings of the 28th IEEE International Conference on

Software Maintenance (ICSM), 2012, pp. 399–409.

[36] B. Jansen, “Enron versus EUSES: A comparison of two spreadsheet

corpora,” in Proceedings of the 2nd Workshop on Software

Engineering Methods in Spreadsheets (SEMS), 2015, pp. 41–47.

[37] S.-C. Cheung, W. Chen, Y. Liu, and C. Xu, “CUSTODES: Automatic

Spreadsheet Cell Clustering and Smell Detection using Strong and

Weak Features,” in Proceedings of the 38th International Conference

on Software Engineering (ICSE), 2016, pp. 464–475.

[38] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen, “Data Clone

Detection and Visualization in Spreadsheets,” in Proceedings of the

35th International Conference on Software Engineering (ICSE), 2013,

pp. 292–301.

[39] C. Chambers and M. Erwig, “Automatic Detection of Dimension

Errors in Spreadsheets,” Journal of Visual Languages & Computing,

vol. 20, pp. 269–283, 2009.

[40] W. Dou, S.-C. Cheung, and J. Wei, “Is Spreadsheet Ambiguity

Harmful? Detecting and Repairing Spreadsheet Smells due to

Ambiguous Computation,” in Proceedings of the 36th International

Conference on Software Engineering (ICSE), 2014, pp. 848–858.

[41] W. Dou, C. Xu, S. C. Cheung, and J. Wei, “CACheck: Detecting and

Repairing Cell Arrays in Spreadsheets,” IEEE Transactions on

Software Engineering (TSE), vol. 43, pp. 226–251, 2017.

[42] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and

Refactoring Code Smells in Spreadsheet Formulas,” Empirical

Software Engineering, vol. 20, pp. 549–575, 2015.

[43] D. W. Barowy, D. Gochev, and E. D. Berger, “CheckCell:Data

Debugging for Spreadsheets,” in Proceedings of the ACM

International Conference on Object Oriented Programming Systems

Languages & Applications (OOPSLA), 2014, pp. 507–523.

