IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

CAChebd&tect
Arr ays

We ns hengChDaonug, SX €.

Abst bD&pteadsheets are
comput atijemrti £ osuthe same
evol vbemesliln a celaln a@rmgayner at e
prescribing the same compwudiad

novel technique that aut emati
Our empirowrcal het BEdS$E Sc aarnpdo rEan rfoinnd s
t hat CA Gh eucskadfeule cdftidng epai ring real

prewd owork AmChedltsstelcley |

I ndex d8pmeadcsleédedtagambriagguous

AARAAAARAARARAA E

1 INTRODUCTI ON

Qpreadsheets are generally developed and maintained
by end users who are not familiar with appropriate soft-
ware development practice. As a result, spreadsheets have
been found to be error-prone [45]. Spreadsheet errors can
induce great financial losses[43], [54]. Various techniques
have been proposed to improve the quality of spreadsheets
Some amples include testing [1], [20], [37], error or smell
detection [6], [7], [29], [31], debugging [3], [47], and audit-
ing [11], [12], [16].

A spreadsheet comprises clusters of cells arranged in
rows and columns. We refer to a cell cluster that contains
cells as acell arraywhen these cells are subject to the same
computational semantics. For example, the cells[D2:D7] in
Fig. 1(b) implement the semantics o f 0 T and ani- 6
formly follow aformula pattern of D; = B; + C, where 2 Oi
O7. Cells in a cell array are usually copy-equivalent [11],
although there are inconsistent cases.In our empirical
study, we found 591,413 non-equivalent cell arrays in the
19,963spreadsheetsin the EUSES[19] and Enron [26] cor-
pora, which are the two mostly cited spreadsheet corpora
so far. This indicates that cell arrays are common in real-
life spreadsheets.

Soreadsheet smells can occur due to a distortion of, or
an ambiguity in , the meaning of data or formulas [46].
Spreadsheet software like Excel provides two useful edit-
ing features, copyandpasteand autofill, to reduce the
chances of introducing smells during the creation of new
cells in a cell array. Both features canhelp automatically
deduce a formula pattern from selected sample cells [55],
and apply it to the new cellsin a cell array.

0000000000000 00829d

1 W. Douand J. Wei arwith the State Key Laboratory of Computer Sciel
the Institute of SoftwareChinese Academy of Sciend&sijing, China E-
mails:{wsdou wj}@otcaix.iscas.ac.cn

1 C. Xuis with the State Key Laboratory for Novel Software Technology
the Department of Computer Science and Technology jidpbjniversity,
Nanjing, Jiangsu, China. #nails: changxu@nju.edu.cn

1 S.C. Cheung is with the Department of Computer Science anch&egi
ing, The Hong Kong University of Science and Technology, Clear Wa
Bay, Kowloon, Hong Kong, China-tBail: scc@cse.ust.hk

XXXX-XXXX/Ox/$xx.00 © 200x |IEEE

semantics

ng armie |
Il n Spreads

C haenudnugn We i

wi dehymes ed abtyi coenmg unti stehresi rf obrucse Inless swh oSsper e a
arasofhter| WMhesntayspriemdas herew
k&eph c
propos

due to ad rercadredd i faioo datyisgres .
i too aé x tsiebniatr tadt i Isoi,ng wsomes| d as@ m pWe
yakckbyldatewgsi agdt hepai ratended
that

recall

com@lulk ati on

nnnnnnnnnn

Although thesetwo features provide convenience in ed-
iting spreadsheets, their application is restrictive in the
sense thatend users havelittle control on the formula pat-
tern deduction process. They may not even be aware ofthe
deduced formula patterns. There are rare records (e.g.,
copy-paste tracking in XanaShee{32]) in the new cells doc-
umenting that they have beencreated using thesetwo fea-
tures, and therefore have to be consistently modified in fu-
ture. Little provision is offered to warn end users from
modifying these cells arbitrarily.

In principle , all cells in a cell array should prescribe the
samecomputational semantics. A cell array is said to suffer
from an ambiguous computationngell when there is more
than one computational semantics among the cells it con-
tains. Ad hoc modifications to these cells are one major
cause ofambiguous computation smell s. For example, he
cell array [D2:D7] in Fig. 1(a) could be a consequence ofad
hoc cell modifications that result in four different formu la
patterns, leading to an ambiguous computation smell .
Note that no warning is issued by Excelto alert end users
of such a smell. This smell can exist for a long time and
even be replicated to other spreadshees without being dis-
covered. Even though each cell inthis cell array [D2:D7] is
evaluated to a correct value, it can degenerate intoerrors
upon future updates of entries in columns B and C. For ex-
ample, the value in D2 would be incorrect if the value of
C2 is later updated to a non-zero value. As ambiguous
computation smell s are vulnerable to errors, their early de-
tection is important . It is particularly the case for those
spreadsheetsthat have liability consequences such ascom-
pany financial reports.

Spreadsheetsoftware like Excel provides a mechanism
to detect cells with inappropriate formulas. However, the
detection is applicable only to the situation where: (a) a
cell s formula is
two adjacent cells, and (b) the formulas of the two adjacent
cells are syntactically consistent. As such, Excelis not able

Published by the IEEE Computer Society

R e

s ucimo sQuer|l Isyt ugdeylglpd sstosay s
capradadyhaaete |.[CoymredvdhdBrrays
arragprect i onganed

synt eseofiisc a |

to issue any warning for the cell array [D2:D7] in Fig. 1(a).
Besides,UCheck [4] and dimension inference [8] exploit in-

formation about labels and headers in spreadsheets to
check the type consistency of formulas. Since each cell in
the cell array [D2:D7] in Fig. 1(a) does not have any type

inconsistency, the smell cannot be detected byUCheck or
dimension inference, either. Some commonly used com-
mercial spreadsheet tools (e.g.,Spreadsheet Professional
[56], OAK [57], EXChecker [58] and PerfectXL [59]) con-
sider cells D4 and D5 as errors with not quite relevant ex-
planations (e.g., due to the fact that the two cells reference
empty cells like C4 and C5). Some tools (e.g.,0AK, EX-
Checker, SpreadsheetDetective [60] and Spreadsheet Au-
ditor [61]) adopt Clermont et al. [11]6 s i daasrwtate
copy-equivalent cells with colors, and assist end users to
locate potential inconsistencies. However, they do not au-
tomatically detect the smell in the cell array [D2:D7] in Fig.
1(a).

Like semantic bugs in programming languages [39], [51],
it is hard to identify which cell s contain inappropriate for-
mulas, becausethis involves knowledge of intended se-
mantics, which often require s human judgment s or speci-
fications. Automatic repair ing of inappropriate cell formu-
las is another non-trivial challenge.

In this article, we focus on numericcellswhose numeric
value is either computed by a formula or given directly
without computation. Examples of these are cells A5 and
A6 in Fig. 1(a). We study the automated extraction of cell
arrays from numeric cells as well asthe automated detec-
tion and repair ing of those cell arrays that suffer from am-
biguous computation smells. Cells that are subject to the
same evaluationin a cell array arerealized by the same for-
mula pattern. We found that 17.3% of consecutive numeric
cells share the sameformula pattern while 82.7% do not.
The first key challenge is to identify which of these 82.®%
are cells belonging to some cell arrays even they do not
share the same formula pattern with their neighbors . Once
a cell array is identified to suffer from ambiguous compu-
tation smells, the repair action is to infer an appropriate
formula pattern so that its cells are subject to the same eval-
uation. The secondkey challenge ishow to infer appropri-
ate formula patterns for repairing smelly cell arrays that
suffer from ambiguous computation smell s. Our approach
automatically extracts computational semantics from cells
in a cell array, recoversits formula pattern , and further de-
tectssmells in its contained cells. Thus, our approach could
detect smellswithout human judgment s. Fig. 1(b) shows a
possible repairing of the spreadsheet in Fig. 1(a).

We evaluated our approach (CACheck) from three per-
spectives. First, we analyzed the EUSES[19] corpus to
learn how often smelly cell arrays canoccur, and measured
the precision and recall rate of our approach for detecting
such cell arrays. Second, we comparedCACheck with our
earlier version AmCheck in precision and recall on the
EUSES corpus Third , we further analyzed a more recent
and industrial corpus Enron [26] to seewhether we can ob-
tain results similar to those obtained from the EUSES cor-
pus. Our evaluation reportsthat: (1) 1,586c¢ell arrays in the
EUSES corpussuffer from ambiguous co mputation smells .
They cover 7.8%identified cell arrays. (2) Smelly cell arrays

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

| CellArray2 | | CellArray3 |

A B C D E

onth Apple Orange Total Mo on Mo
1/ (Mo) (a) (b) (c=atb) Change (%)
(2 2 \[-B2
3\|=a2+1]2 \|=B3 =(D3-D2)/D2
4\ =A3+1j4 =B4-C4 =(D4-D3)/D3
5 |=Ad4+1j6 =B5+C5 =(D5-D4)/D4
6|6 5 =Cé6 =(D6-D3)YD5
(8D 6 =C7 =(D7-D6)/D7]
8 _—
9 \1'§ta1 =SUM(B2:B5)|=C5+C6+C7 |[=SUM(B9:C9)| /

[Correct Value: 7| [Correct Value: 20%_

\
 Correct Value: 20% |

————— ==

CellArray4

(a) A spreadsheet with ambiguous computation smells.

A B C D E

Month Apple Orange Total Mo on Mo
1 (Mo) (a) (b) (c=atb) Change (%)
2 2 2 =B2+C2
3 [=A2+1(2 =B3+C3 =(D3-D2)/D2
4 =A3+1]4 =B4+C4 =(D4-D3)/D3
5 [=A4+1(6 =B5+C5 =(D5-D4)/D4
6 =A5+1 5 =B6+C6 =(D6-D5)/D5
7 =A6+1 6 =B7+C7 =(D7-D6)/D6
8
9 |Total |=SUM(B2:B7)|=SUM(C2:C7)=SUM(B9:C9)

(b) The correct version of the spreadsheet in (a).

Fig. 1. A motivating example: the four cell arrays in (a) are ambigu-
ous; for each cell array, its contained cells do not all follow the same
formula pattern, e.g., the cells in CellArray2 do not uniformly follow
the formula pattern of D; = B; + C; (2 Oi O7); the spreadsheet in (b)
gives the correct version.

reveal weakness and can cause errors in spreadsheets
8,139 cells in he 1,586smelly cell arrays were decided as
smelly. They contain either wrong values or formulas . This
number (8,139) occupies25.9%of all cellsin 1,586smelly
cell arrays, or 3.3% ofall cellsin 20,320cell arrays. (3) CA-
Check can detect98.3%of the smelly cell arrays detected
by AmCheck, and 401 (out of 1,586) additional smelly cell
arrays that are missed by AmCheck. CACheck also has a
higher precision (86.8%vs. 71.9%) and recall rate (71.0%vs.
60.3%9 than AmCheck. Other existing spreadsheet smell
detection techniques (e.g., Excel, UCheck/Dimension [4],
[8] and CUSTODES[10]) can detect at most 37.4%of CA-
Checkds shmelly eellst (¢) CACheck has compara-
ble precision (86.8% vs. 87.2%and recall rate (71.0% vs.
72.7% of smelly cell array detection on the EUSES and En-
ron corpora. Our approach can help end users detect and
repair such smells, thus improv ing the quality of their
spreadshees.

We made the following main contributions in this arti-
cle:
We empirically study the characteristics of cell ar-
rays in two spreadsheet corpaa (EUSES and En-
ron). This study identifies several key observations
on cell arrays.
We propose anovel approach, CACheck, to detect
and repair smelly cell arrays by identifying arrays
of cells that are subject to the same computatioral
semanti cs, inferring
spotting incompatible patterns, and synthesizing
new patterns to repair the smells.
We implement CACheck as a tool and evaluate it
experimentally on the EUSES and Enron corpora.

B

t hese

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 3

Compared with our previou s work AmCheck, CA-

Check detects smelly cell arrays with higher preci-
sion (86.8% vs. 71.9%)and recall rate (71.0% vs.
60.3%).

An earlier version of this work (AmCheck) appeared at
ICSE 2014[17]. In this article (CACheck), we extend the
earlier version in five aspects. (1) We conduct an empirical
study on well -formed cell arrays in the EUSES and Enron
corpora (Section 4). The study finds two common struc-
tures by which spreadsheet cells with formulas are orga-
nized: homogeneous cell arragsd inhomogeneous cellrays
In a row-/ columnbasedhomogeneous cell arraie formula
of each cellconsistently references cells from the samecol-
umn/ row as this cell, such asthe column-based cell array
[D2:D7] in Fig. 1(b). In arow-/ columnbasedinhomogeneous
cell array the formula of each cell may reference cells from
columre/ rows different from this cell, such as the column-
basedcell arrays [A2:A7] and [E3:E7]in Fig. 1(b). (2) Am-
Check can only detect homogeneous cell arrays. However,
CACheck can detect both homogeneous and inhomogene-
ous cell arrays (Section5.1), greatly improving its scope. (3)
We make several observations on cell arrays in our study.
CACheck leverages these observations to filter out
wrongly identified cell arrays, improving the precision of
cell array identification (Section 5.7). (4) AmCheck was
only evaluated on the EUSES corpus, while in this work,
we evaluate CACheck on both EUSES[19] and Enron [26]
corpora (Section 6), for more comprehensive comparison.
(5) Compared with AmCheck, CACheck provides higher
precision (86.8% vs. 71.9%) and recallate (71.0%vs. 60.3%).

The remainder of this article is organized as follows.
Section 2 gives a motivating example and explains the use
of our technique. Section 3 defines and explains necessary
conceptslike cell array and ambiguous computation smell .
Section 4 presents our empirical study on the EUSES and
Enron corpora. Section5 elaborates onour smell detection
and repairing technique. Section 6 evaluates CACheck
with the EUSES and Enroncorpora. Section7 discusses re-
lated work, and finally Section 8 concludes this article.

2 MOT!I VATI ON

In this section, we illustrate smelly cell arrays using an ex-
ample spreadsheetstemming from the EUSES corpus[19].
We then explain how to detect and repair such smelly cell
arrays.

21Exampl e
Fig. 1(a) shows a spreadsheetthat computesmonthly har-
vest of fruits. A cell array, which consists of numeric cells,
can exhibit two kinds of ambiguous computation smells :
Missing formula smell . This ambiguous computation
smell occurs when some cellsin a cell array do not pre-
scribe any formula. Such asmell can beintroduced to a cell
array when end usersoverride the formula in a cell with a
plain value. For example, CellArrayl [A 2:A7] is subjed to
the computation of 0Monthd with an intended formula
pattern of A; = A1 + 1, where 30i O7 (we use subscript to
represent row number). Unlike cells A3, A4 and A5, the
values of cells A6 and A7 are not computed by formulas.

Note that, the first cell A2 in CellArrayl gives a basevalue,
which is not computed by a formula .

Inconsistent formula smell . This ambiguous computa-
tion smell occurs when the cells in a cell array prescribe
different formula patterns. Sucha smell can be introduced
to a cell array when end users specify the formula of a cell
in the cell array inappropriately without preserving the
c el | aomputatoBatsemantics. For example, CellAr-
ray2 [D2:D7] is subject tothe computation of o0Totalé with
an intended formula pattern of D; = B; + C;, where 2 Qi O7.
End users may understand that there is no orange output
in February, and thus leave C2 empty. They specify a for-
mula that ignores C2 at D2, and as a result CellArray2 pre-
scribes more than one formula pattern. Inconsistent for-
mula smells also occur at CellArray3 [E3:E7] and CellAr-
ray4 [B9:C9]

Although CellArray2 and CellArray4 in Fig. 1(a) suffer
from ambiguous computation smells, the value s given by
their cells are appropriate . However , the smells can lead to
errorsin D2 and C9 if C2 is updated later with a ny non-
zero value. Besides problems canarise when end usersap-
ply copy-and-paste or auto-fill operations to these cell ar-
rays later. A cell array suffering from ambiguous compu-
tation smell likely contains a n error (e.g., A7 and E7) if no
formula patterns can be found to compute the values in it.

22CACheck Overview

Several technical challenges need to be addressed in the
detection and repairing of cell arrays with ambiguous com-
putation smells in spreadsheets. We explainthem using
the example in Fig. 1(a). First, does a cell (e.g., /8) belong
to a cell array? If yes, does this cell belong to a row-based
cell array (e.g., [A3:B3]) or column-based cell array (e.g.,
[A2:A7]) ? What are other cellsfor this cell array? Second,
do the cells in a cell array prescribe semantically different
formula patterns? Note that we consider two formula pat-
terns (e.g., X + x and 2*x) to be the same if the formulas
derived from these patterns offer the same computation.
Third, how may one construct an appropriate formula pat-
tern for a cell array that prescribes more than one formula
pattern? This is a challenging question because there are
chances that none of cells insuch a cell array is using an
appropriate formula , e.g.,cells B9 and C9 inCellArray4 .
Even worse, ells in such a cell array may prescribe con-
flicting formulas patterns, e.g., cells D4 and D5 in CellAr-
ray2. Fourth, some cells (e.g., 6) in a cell array may pre-
scribe noformula. The values of these cells (e.g., &) may
even conflict with the ir appropriate formula patterns.

In our earlier work AmCheck [17], we addressed the
challenge of cell array extraction by assuming that a cell
arrayd ®@rientation (row -based or column-based) and its
contained cells are determined by its referenced cells, i.e.,
homogeneous cell arrays (each cell in a row-/column -
based cell array referencesonly the cells that share the
same column/row as this cell). However, our empirical
study reveals that a significant amount (21.0%) of cell ar-
rays are inhomogeneous, which AmCheck fails to extract.
For example, AmCheck does not work for CellArray3
[E3:E7] (column-based cell array), because cell E3 refer-
ences D2 which does not share the same row as E3Even

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

L(A) 2(B) 3(C) 4(D) 5(E)

Month Apple Orange Total Mo on Mo
1 (Mo) (a) (b) (c=atb) Change (%)
2(2 2 \ Arc[-2] (
3\|=R[-1]C+12 \ =RC[-2] =(RC[-1]-R[-1]C[-1])/R[-1]C[-1]
4 (=R[-1]C+1]a =RC[-2]-RC[-1] =(RC[-1]-R[-1]C[-1])/R[-1]C[-1]
5 |=R[-1]C+1]6 =RC[-2]+RC[-1] =(RC[-1]-R[-1]C[-1])/R[-1]C[-1]
6|6 5 =RC[-1] =(RC[-1]-R[-1]C[-1]/R[-1]C[-1]
7\8 6 =RC[-1] =(RC[-1]-R[-1]C[-1])/RC[-1]
8
9 Total =SUM(R[-7]C:R[-4]C) |=R[-4]C+R[-3]C+R[-2]C [=SUM(RC[-2]RC[-1])

CellArray4

Fig. 2. The earlier spreadsheet in Fig. 1(a) is now given in the R1C1 representation style, in which four cell arrays are ambiguous, e.g., cells in
CellArray2 do not have semantically equivalent formulas in the R1C1 representation style.

worse, AmCheck would assume [A3:B3], [A4:B4] and

[A5:B5| as candidate cell arrays, but we can see that they
are not true cell arrays. The true cell array should be Cel-
IArrayl [A2:A7]. Note that the cell array [A2: A7] cannot be

extracted by AmCheck because it is column-based and
each ofits cells references a cell in another row (different

from this cell) . Therefore, AmCheck could miss true cell ar-

rays, and introduce false cell arrays.

Our CACheck adopts new heuristics to extract cell ar-
rays, and does not assumetheir orientation s in advance.
The basic idea is that if two adjacent cells sharethe same
input dependence, they would belong to the same cédl ar-
ray. This relaxed constraint helps detect more cell arrays,
such as CellArrayl [A2:A7], [A3:B3], [A4:B4] and [A5:B5].
However, which cell arrays are true? We did an empirical
study on real-life cell arrays to understand how cell arrays
are used (.9., how cell arrays are structured in spread-
sheety. Then, we leverage the observations (e.g., non-
equivalent cell arrays rarely overlap) from this empirical
study to filter out wrongly identified cell arrays , such as
[A3:B3], [A4:B4] and [A5:B5] (i.e., these cell arraysoverlap
with the true one [A2:AT7]).

CACheck infers formula patterns by means of con-
straints in two steps. First, it usesvalues and formulas in a
cell array to infer underlying constraints of formula pat-
terns prescribed by this cell array. Second it uses the in-
ferred constraints to derive target formula pattern s. CA-
Check usescomponent-based program synthesis [22], [36]
to construct candidate formula patterns for repairing
smelly cell arrays. To achieve this, CACheck needs to cope
with the noisesinduced by conflicting formulas (e.g., D4
and D5) and potential errors (e.g., A7). For example, CA-
Check can construct a candidate formula pattern (B + C;,
where 2 Oi O7) to repair the smelly cell array CellArray2
in Fig. 1(a), and a candidate formula pattern (SUM(Xz, Xs,
X4, Xs5) + X + X7, where X = {B, C}) to repair the smelly cell
array CellArray 4. It can also use its inferred formula pat-
ternsto detecterrors (e.g., A7 and E7) in smelly cell arrays.

3 CELIARRAYS ANMBI| GUOOBMPUTATI O

SMELLS

In this section, we introduce the spreadsheet programming
model, and explain key conceptssuch ascell array and am-
biguous computation smell for subsequent discussons. To
ease presentation, we referdata cellso those cells whose

numeric values are given directly without computation
and formula cellsto those cells whose numeric values are
computed by formulas, unless otherwise specified.

31Spreadsheet Programming

A spreadsheetcan be modeled asa set ofcells with expres-
sions, which are indexed by two -dimensional cell addresses
(a row index and a column index, e.g.,Bl or C2) [5]. The
expression of a data cell and a formula cell is given by its
numeric value and formula, respectively. A formula refer-
encesanother cell by means of acell referencewhich de-
notes the r edddrese lreicRebd thecset loflcall s
references EXP be the set of expressions, and V be the set
of plain values. A c e | dxgession expis either a plain
value (O N w), acell reference(i M Y, or a function (¢) ap-
plied to one or more expressions. Functions used in
spreadsheets include basic operdors (e.g., 0+0, 0- 6, 0*0,
0/ 6) as well as other built -in functions from spreadsheet
software (e.g., SUM, AVERAGE and MAX). Formally, a
c e | ekpbessionexpis:
QmRLsiss Qoo
We define a reference-fetching function , ‘Q w Awhich
returns the set of cell referencesusedin ac e | ekpdession
exp Formally,, Qwrjs:
n ‘Q wn o
Qwn QM '
, Qo 8, QonQaone Qo Qo
Most spreadsheet systemshave two built -in styles for
representing a cell reference, namely, A1 and R1C1repre-
sentatiors [52], and they can beeither absoluteor relative An
absolute referengmints to a particular cell, and keeps point-
ing to this cell when it is copied to another cell. A relative
referencepresents the cell address offset between the cur-
rent cell and the referenced cell, and the offset keeps un-
changed when the referenceis copied to another cell. In the
Al representation style, a cell at the X-th column and y-th
row is notated as Xy in relative reference (e.g., B5), or X%y
in absolute reference (e.g., B5). For example, the spread-
sheet inFig. 1(a) usesthe Al representation (all are relative
references) On the other hand, in the R1C1 representation
style, a cell atn rows below and m columns right to the
current cell is notated as R[n]C[m] (in relative reference;[n]
(or [m]) can be omitted when n =0 orm = 0), and a cell at
the n-th row and m-th column is notated as RnCm (in ab-
solute reference). For example, the spreadsheet inFig. 2
uses the R1C1 repesentation (all are relative references)

. Qon

Z

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 5

In subsequent discussions,we assume that expression exp
and function ,, ‘Q @ rpse the R1C1 representation unless
otherwise specified.

An interesting observation is that cell formula s prescrib-
ing the same formula patterns typically have semantically
equivalent R1C1lrepresentations. For example, theformula
0B5 + CHin cellD5in Fig. 1(a)i s ©2RHRC[-1]6 i n
R1Cl1representation, as shown in Fig. 2. It means a sum-
mation of two values. The first value is given by a cell at
the same row but two columns left. The second value is
given by a cell at the same row but one column left. Fig. 2
also gives corresponding R1C1representations for all for-
mulas in the spreadsheet inFig. 1(a). We can observe that
some of them are semantically equivalent and some are
similar with each other. We use such features to detect cell
arrays and find their contained smells .

32Cel | Array
In a spreadsheet, ells with the same computational se-
mantics are usually grouped together in a row or column.

Definition 1:A cell arrayis a consecutiverange of cells
(e.qg.,[A2:A7],[D2:D7], [E3:E7]and [B9:C9]in Fig. 1(b)) pre-
scribing certain computational semantics.

Since cells in a cell array often use formulas to expess
such computational semantics, we name a cell array® com-
putational semantics asits formula pattern("Q). In sub-
sequent discussions,we assume thatformula pattern s al-
ways usethe R1C1 representation for ease of presentation
Let CellArray be the set of cells in acell array. We say that
acell array is well-formedif the following condition holds :

OO 6 Qa b o hdon , OGN
Z'QR 6 QU @EXEG o N

The first condition states that any two cells éxpressions
in this cell array sharethe samecell references.The second
condition states that any two cells &xpressionsshould be
evaluated to the same output value given the same input
values to their cell references. For example, two expres-
si 0@sRM@C+R[-1]C)6 a r2dR[A]C + 2 * RE1]C6
are semantically equivalent although they are syntactically
different. Our CACheck checks well-formedness using
constraint solver Z3 [42]. Since awell -formed cell array has
all its expressions semantically equivalent, we can takeany
of them as the cell array&"Q

Note that the concept of cell array proposed in this arti-
cle differ s slightly from copy equivalence (i . e . ,
expressionsare identical) proposed by Clermont et al. [11],
[12], [41]. In order to detect computational semantic smells,
werequirethat:()any t wo c el |isakellarxap
are evaluated to the same output value given the same in-
put values (i.e., their expressions may be syntactically dif-
ferent but should be semantically equivalent; we adopt Z3
[42] to check expressiors équivalence), and (2) the cell ar-
r a yconsained cells are consecutivein layout . However,
for cellsthat are copy equivalent [11], it is assumed that: (1)
their expressions must be identical, and (2) they are not
necessary b be topologically adjacent (e.g., they can be
separated by some other cells with different expressions).

We can classify cell arrays based on either their orienta-
tion or the way they reference other cells in their formulas .

Based on their orientation, cell arrays can be classified into
row -based and column-based:

Row-based cell array. It comprises consecutive non-
empty cellsin a row. For example, [B9:C9] in Fig. 1(b) is a
row -based cell array.

Column-based cell array. It comprises consecutivenon-
eimpnecells in a column. For example, [D2:D7] in Fig. 1(b)
is a column-based cell array.

Based on how they reference other cells in formulas, cell
arrays can be classified into homogeneous and inhomoge-
neous:

Homogeneous cell array. A row -/column -based cell ar-
ray is homogeneous the expression of each contained cell
creferenceonly cells in the samecolumn/ row as that of c.
For example, in the cell array [D2:D7] (column -based cell
array) in Fig. 1(b), cell D2 references cells B2 and C2 (the
same row as D2) as inputs and cell D3 references cells B3
and C3 (the same row as D3) as inpus. Therefore, the cell
array [D2:D7] is homogeneous. The cel array [B9:C9] in
Fig. 1(b) is homogeneous, too.

Let row represent the row index of a cell cor a cell refer-
encecr, and colrepresent the column index of a cell cor a
cell referencecr. Formally, a cell array CellArray is homo-
geneous if the following condition holds :

For row-basedCellArray,

Loov 6 Qa a ohil @ith g ai o foBo é acab & &

For column-basedCellArray,

JoNv 6 Qa o ohil ®ibpaofd ¢ 0 @ ¢ 8

Inhomogeneous cell array. A row -/column -based cell
array is inhomogeneous it contains a cell c whose expres-
sion references some cel in a column/row different from
that of c. For example, in the cell array [A2 :A7] (column -
based cell array) of Fig. 1(b), cell A3 references cell A2 (dif-
ferent row from cell A3) as its input. Therefore, the cell ar-
ray [A2:AT7] is inhomogeneous. In cell array [E3:E7] (col-
umn-based cell array), cell E3 references cefl D2 (at a dif-
ferent row from cell E3) and D3 (at the same row as cell EJ
asits input s. Therefore, the cell array [E3:E7] isinhomoge-
neous, too.

Formally, a cell array CellArray is inhomogeneous if the
following condition holds :

For row-basedCellArray,

moN & 'Qa & Bhimd ith (0 G @ F BH £ addo € &

P w I(:)or colténg1 -b%sad CellArray,
mi® EQa § himdihw @ oRhE 20 @ ¢ 8

33Ambi guous ComBmpmetldti on

I 1aScéll larfayis not well -formed , we say that it suffers from

an ambiguous computation smelt it is smelly. Smells canoc-
cur in a cell array when end users make ad hocmodifica-
tions to its cells. Such modifications can be made by inex-
perienced end users to accommodate lastminute modifi-
cations under tight deadlines. We find two common types
of ambiguous computation smell: missing formulasmelland
inconsistent formulamell as explaned earlier. A missing for-
mula smelloccurs in a not well -formed cell array when it
contains a data cell. An inconsistent formula smebticcurs in
a not well -formed cell array when it has two formula cells
with semantically different expressions . A cell array of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TA B LLE
St at iofwuiSGdsu8uybj ect s
Subjects Cell arrays
Corpus ss Processed SS with SS with Initial CA SSwith CA/ Average CA per
SS formulas CA CA SS with formulas SS with CA
EUSES 4,037 3,737 1,617 1,118 26,393 21,427 69.1% 19
Enron 15,926 15,790 9,137 6,298 1,177,967 569,986 68.9% 91
Total 19,963 19,527 10,754 7,416 1,204,360 591,413 69.0% 80
more than two cells can suffer from missing formula and 1(A) 2(B) 3(C) 4(D)
inconsistent formula smells at the same time. 1] 5 9 13
Definition 2: A conformance errasccurs when the value g :E{Hal:gmgﬁ:‘;”g: :EHE:
of a gell in a cell array does not conform to that computed 4 (=R[-1]C+]=R[-1]C+|=R[-1]C+1|=R[-1]C+1
by this cell array& formula pattern "Q @
’i‘N T \ \ o on e Ny i \ \ v o
MmN 0 ‘Qa a ohidl Wiad @ uﬁ’Qs N o i 1A) 2(B) 3C) 4(D)
A conformance error may be caused byimproper mod- 11 5 l9 [13
ifications to a cell array such that it suffers from ambiguous 2 [=R[-1]C+16 |10 [14
: 3 |=R[-1]C+]7 11 15
computation smells. Conformance errors reflect true data 4 [ERLTIC T RIICH-RETC 1 -RLTIC1)

discrepancies in spreadsheets, such agells A7 and E7 in
Fig. 1(a).

4 EmMPI RI S8AUDY WELtFORMEELGELL
ARRAYS

In this section, we report our findings from an empirical
study on well -formed cell arrays in the EUSES[19] and En-
ron [26] corpora. We aim to understand the use of cell ar-
rays in real-life spreadsheets. We focus on the following
three research questons:

RQ1: How commoty arecell arrays useth spreadsheets?

(b)

Fig. 3. Spreadsheets with overlapping cell arrays.

Somepre-1995 (BIFF5 format)spreadsheets cannot bepro-
cessedby the Apache POI. We did not attempt to recover
these spreadsheets as the recovery process mayot be con-
tent preserving. Moreover, these spreadsheets may no
longer well represent those being used nowadays. Among
the spreadsheetsthat can be parsed 55.1% (1Q754/19,527)
of them contain formula cells.

Extracting w ell-formed cell array s. We examine consec-
utive formula cells clustered in a row or column, and con-

RQ2: How common are homogeneous and inhomogeneousGgly 3 cell cluster to be a well-formed cell array if : (1) the

arrays? Especially, are inhomogeneous cell arcymmorn

cluster is not a subset ofany other cell array, (2) each cell

RQ3: How are cell arrays structured in spreadsheets? ESRR-the cluster has a semantically equivalent expression in
cially, does cell array often occugywhole range of consecyye R1C1 representationstyle. The first condition enforces

utive cells? Do cell arrays overlap?

To answer questionsRQ1- 3, we conducted an empirical
study on the EUSES andEnron corpora. We extracted all
well -formed cell arrays from these spreadsheets and ana-
lyzed them statistically for answering these questions. We
have also made our tool and empirical results available
online for future research [62].

41SubjeeteSandvetFlor medl |
Extraction

Subject selection. The EUSES corpus consists of 4,037
spreadsheetsfrom 11 categories These spreadsheets were
mainly collected over the web by search engines Since its
creation in 2005,the EUSES corpushas beenwidely used
for spreadsheet researchalthough the corpus may not nec-
essarily represent spreadsheets used in companies The
EUSES corpus is the most citedone among all spreadsheet
corpora so far. The Enron corpus is a recent collection that
consists 0f15,926spreadsheets which were extracted from
the Enron Email Archive, within the Enron Corporation
[38]. The Enron corpusis considered a collection that rep-
resentsspreadsheets used ina typical enterprise.

In Table 1, columns 2-4 list the statistics of the EUSES
and Enron corpora. There are 19,963spreadsheets (SS)n
total. We found that 97.8% (19,527/19 ,963) of spreadsheets
in thesetwo corpora could be parsed by the Apache POI
[63] that we used to parse spreadsheets(Processed SS.

Ar

t hat a ¢ edighboriag aels ghvidd not have the
same formula pattern as this cell array. The second condi-
tion enforces that all the cells in a cell array should pre-
scribe the same formula pattern.

Filtering w ell-formed cell array s. Cell arrays in a com-
pact region may prescribe the same computational seman-
tics. For example, inFig. 3(a), cells in the region [A2:D4] all
paye,the same formula pattern. One can obtain a set of
three row-based cell arrays [A2:D2], [A3:D3] and [A4:D4],
and another set of four column-based cell arrays [A2:A4],
[B2:B4], [C2:C4] and [D2:D4]. These two sets of cell arrays
overlap. We consider the two sets are semantically equiv-
alent because either of them can represent the computa-
tional semantics of the whole region [A2:D4]. Keeping one
of them in cell array extraction is enough. The other one
can be filtered out.

We use two criteria to filter out equivalent sets of cell
arrays. First, the remaining sets contain all the cells of the
ones that are filtered out. Second, the number of overlap-
ping cells among the remaining ones is minimized. If there
are more than one solution satisfying both criteria, we
choose the solution that cortains the least number of cell
arrays. Based on these criteria, the set of three rowbased
cell arrays [A2:D2], [A3:D3] and [A4:D4] is selected in the
cell array extraction of the spreadsheet in Fig. 3(a). The
other set of four column -based cell arrays are filtered out.

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 7

TAB L2ZE
St at iodeifder med (Homogeneou
neous) Cell Array
Corpus CA Homogeneous Inhomogeneous
EUSES | 21,427 16,383 (76.5%) 5,044 (23.5%)
Enron 569,986 450,691 (79.1%) 119,295 (20.9%)
Total 591,413 467,074 (79%) 124,339 (21.0%)

For the spreadsheet inFig. 3(b), the cell array extraction se-
lects cell arrays [A2:A4] and [A4:DA4].

Table 1 lists the numbers of cell arrays extracted from
the two corpora. We in total extracted 1,204,36Qcell arrays
(Initial CA) , and after filtering, we obtained 591,413 (CA)
cell arrays, which occupy 49.1% (CA/Initial CA) . In the fol-
lowing , we study these obtained remaining non-equiva-
lent well -formed cell arrays.

42RQ1How Commpme Cel |

Spreadsheet s?
Table 1 also gives how commonly cell arrays are used in
real-life spreadsheets. Among 10,754 spreadsheets with
formulas (SS with formulas), 7,416 spreadsheets (SS with
CA) have used cell arrays.Interestingly, the percentage of
spreadsheetsthat use cell arrays (SS with CA/SS with for-
mulas) is almost the same in the EUSES and Enron corpora.
On average, there are 8Q/Average CA per SSwith CA) cell
arrays in a spreadsheet with cell arrays. The Enron corpus
(92) uses cell arrays more often than the EUSES corpus (19)
and the ratio is about 4.8 (92/19). This suggeststhat cell
arrays are used more often inthe Enron corpus. Therefore,
we make the following observation:

EUI UYEWDP OO wBEWHDOODY ww
OPI T wUxUI EEUTTIT OUBwW3T 1T wy
Oi U]l OwUOT EOwUT T w$4232wEODLU

43 RQ2HowWw. anmon ar e
Il nhomogeneldursa?Cs

In our earlier work AmCheck [17], we assumethat each cell
in a row-/column -based cell array references only the cells
that share the same column/row as this cell. Therefore,
AmCheck can only detect homogeneous cell arrays. Thus,
we care abouthow commonly homogeneous and inhomo-
geneous cell arrays are used in real-life spreadsheets Table
2 lists the statistics of all cell arrays (CA), homogeneous cell
arrays (Homogeneous) and inhomogeneous cell arrays (In-
homogeneous). We observe that 79.0% cell arrays are ho-
mogeneous. This result suggeststhatA mCh e c k 6 s
tion (i.e., most cell arrays are homogeneous) is reasonable
and AmCheck can detect most (79.0%)cell arrays. Still, we
also observe that about 21.0% cell arrays are inhomogene-
ous. As a result, AmCheck would thus miss all these inho-
mogeneous cell arrays whose percentage is notnegligible .
Therefore, we make the following observation:

E Ul UY mibhoriogasdus cell arrays assocom-
mon (21.06) in reatlife spreadsheet&ne need to ex-
tend AmChecln orderto detecsuchcell arrays.

44RQ3How &rdél Arrays
Spreadsheet s?

Given a well-formed cell array, i f neither of its two neigh-
boring cells is a data cell or formula cell (i.e., they are

Struc

T AB L3E
Layout Sofdallet med Cel |
Corpus CA Wholel Whole2 Overlap
EUSES | 21,427 12,612 (58.9%) 13.2% 110 (0.5%)
Enron 569,986 | 344,790 (60.5%) 17.4% 3,487 (0.6%)
Total 591,413 | 357,402 (60.4%) 17.3% 3,597 (0.6%)

empty or labels), we say that this cell array occupies a
whole range of consecutive cellsin a row or column. For
example, in Fig. 1(b), cell arrays [D2:D7] and [E3:E7] both
occupy a whole range of consecutive cells. However, cell
array [B9:C9] does not occupy a whole range of consecu-
tive cells, due to the existence ofcell D9 (formula cell) . Ta-
ble 3 showsthat only 60.4% well -formed cell arrays occupy
a whole range of consecutive cells(Wholel). Interestingly,
the EUSES and Enroncorpora have almost the same ratio.

Ar 1 ay swelsttednvestigate d whether a whole range of con-

secutive cellsin a row or column often form a well -formed
cell array. To carry out the investigation, we consider those
ranges of consecutive numeric cells that contain at least
one formula cell and are bound by non-numeric cells at
both ends. We extracted 3,056367 ranges of consecutive
cellsfrom the EUSES and Enron corpora. Among them, we
found that only 17.3%share the sameformula patterns (i.e.,
they are well-formed cell arrays), while 82.7% do not
(Whole2). This leads us to makethe following observation:

E Ul U Y iatbhsdddtive cells ithe sameow or col-
umn do not necessariffprm a cell array.

The observation suggests that one cannot simply aggre-
gate consecutive cells in the same row or column to fam a
cell array. We need a more precise way to identify cell ar-
rays.

Ho mo ge ne o uWe aelgo interested in finding whether cell arrays

could possibly overlap with each other in spreadsheets. If
two cell arrays have shared cells, we say that theyoverlap
For example, in Fig. 3 (a), two cell arrays [A2:A4] and
[A2:D2] share cell A2; in Fig. 3 (b), two cell arrays [A2:A4]
and [A4:D4] share cell A4. If two cell arrays overlap, they
should have the same formula pattern. As a result, two
row -/column -based cell arrays should not overlap. This is
because if they overlap, they should be merged into a sin-
gle cell array.

Cell arrays can overlap in two ways: redundant and

anensredumgant. As mentioned earlier in cell array extrac-

tion (Section4.1), a cell array is redundant if all of i ts cells
are contained by other cell arrays. Such overlapping is re-
dundant and can be removed. For example in Fig. 3(a), all
cells in range [A2:D4] share the same formula pattern, and
the three row-based cell arrays ([A2:D2], [A3:D3] and
[A4:D4]) and four column -based cell arrays ([A2:A4],
[B2:B4], [C2:C4] and [D2:D4]) overlap. Therefore, we need
only to extract the three row-based cell arrays. By doingso,
our extracted cell arrays do not overlap.

Cell arrays.can also overlap in a nonredundant way,
RNMCFI r%q ired ddifferent treatment. For example, in Fig.
3(b), cell arrays [A2:A4] and [A4:D4] overlap on cell A4,
but neither of them can represent the other. Therefore, we

need to keep both overlapping cell arrays during extrac-
tion. Table 3 lists the statistics of overlapping cell arrays in
the EUSES and Enron corpora (Overlap) We observe that
cell arrays rarely (0.6%) overlap in real-life spreadsheets.
Therefore, we make the following observation:

EUI UYRWPOOwBHEUE DE w @Y 68
UxUI EEUT 11 0U8

45Summary

The above observations enable us to effectively identify
cell arrays in real-life spreadsheets, and support follow -up
detection and repairing of smells in these cell arrays.

For example, observation 2 motivates us to identify both
homogeneous and inhomogeneous cell arraysin spread-
sheets Observation 3 suggests the cell extraction technique
should be capable to identify cell arrays that may not oc-
cupy whole rows or columns. Observation 4 can be lever-
aged to filter out wrongly identified cell arrays. The meth-
odology elaborated in the next section embodies these
ideas.

5 DETECTIAMGREPAI RISMEBL LGEL L
ARRAY

After analyzing a given spreadsheet, CACheck reports all

detected smelly cell arrays with repair suggestion s. Fig. 4
shows its architecture. CACheck heuristically extracts cell

arrays from a spreadsheet (Section 5.1), and detects
whether each of them is smelly via constraint solving (Sec-
tion 5.2. CACheck inffersa cel | arrayos
Q in two steps. First, CACheck usesvalues and for-

mulas in a cell array to derive constraints associated with
its intended formula pattern (Section 5.3). Second, CA-

Check infers the formula pattern "Q based on these
constraints. In order to expedite the inferenceprocess, CA-
Check combines heuristics (Section5.4) and program syn-

thesis techniques (Section 5.5). After the inference, CA-
Check identifies smelly cells in a cell array and their con-

tained conformance errors, if any, based on its inferred

Q (Section 5.6). Finally, CACheck identifies and re-
moves false positives based onthe observations from Sec-
tion 4, as well as the inferred "Q (Section5.7).

51Extrac€teilhgaArray
The first challenge of smelly cell array detection is to iden-
tify cell arrays from a given spreadsheet, which has no rec-
ord about which cells were previously prepared by copy-
and-paste or auto-fill operations. We observe that a
spreadsheet snippet usually provides useful hints about
boundaries of cell arrays. Besides,the cells in a cell array
often have similar formulas. Their formulas can be similar
by means of referencing the same cells or referencing dif-
ferent cells with the same R1C1 representation Such simi-
larity facilitate sour cell array identification and extraction.
We first identify spreadsheetsnippets. Related data or
formulas in a spreadsheetare often clustered together in a
rectangle circumscribed by empty cells or labels [27]. We
refer to such rectangles of cellsas snippets Examples of
spreadsheet snippetsin Fig. 1(a) include two rectangles
comprising cells [A2:E7] and [B9:D9], respectively.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

e —————————

N Anmt a
:Formul a]: Spr eal
i Reco
P&
|
|

M Xy T

______________.’

Fig. 4. CACheckd architecture.

To identify snippets, w e adopt a cell classification strat-
egy, similar to what Abraham and Erwig [4] proposed. We
define a fenceas a row or column of cells that comprises
only empty cells or labels in a spreadsheet. Weuse fences
to identify boundaries for each spreadsheet snippet. Other
cells inside the identified boundar ies are considered as
cells of this snippet.

We describe our spreadsheet snippet identification al-
gorithm as follows. Initial ly, each spreadsheet is consid-
ered asone snippet. Wethen identify fence sin this snippet,
and divide this snippet into more by the identified fences.
For each newly identified snippet, we repeat this refine-
ment until no further snippet can be identified.

We next extract cell arrays from the identified snippets.
As observed earlier, thecellsin a cell array are often similar
in how their formulas reference other cells. We capture this
similarity by means of dependence similarity.

Given a pair of cells, ¢; and ¢, from a consecutiverange
of numeric cells in a row or column (e.g.,CellArray2 in Fig.
1) |f c anq gahatls one {’féh f Ilowmg four conditions,
they are sald to hav dependence S|m|Iar|Iy

Condition 1 . Either ¢, or ¢ is a data cell Since one has
no idea on how the value in a data cell is computed, this
data cell can potentially have any dependence on other
cells. Therefore, we consider that a data cell has depend-
ence similarity with any other cell. For example, in Fig. 1(a),
cells A6 and A7 are both data cells, and thus they have de-
pendence similarity .

Condition 2 . Both ¢; and ¢; are formula cells, and they
reference some cells in common. For examplecells E3 and
E4in Fig. 1(a) commonly reference cell D3, and thus they
have dependence similarity.

Condition 3 . Both ¢; and ¢, are formula cells and they
do not reference any cell in common, but they reference
some cdls in the same way. For example, in Fig. 1(a), cells
D3 and D4 reference cells B3 and B4, respectively (D4 also
references C4, but it is not important here and so omitted).
Although B3 and B4 are not the same cell, they are refer-
enced in the same way (same distance to D3 and D4), and
therefore their references are the samein the R1C1repre-
sentation, i.e.,R[-2]C, asshown in Fig. 2. Thus, cells D3 and
D4 also have dependencesimilarity.

Condition 4 . Both ¢; and ¢, are formula cells and they
do not satisfy condition 2 or 3, but there exists another cell
¢ from the same consecutive range such that: (1) ¢, and ¢
satisfy condition 2 or 3, and (2) so doc; and c;. For example,
in Fig. 1(a), cells D2 and D7 do not satisfy either condition
2 or 3, but: (1) D2 and D4 satisfy condition 3, and (2) so do
D7 and D4. Then cellsD2 and D7 satisfy condition 4. As a
result, they also have dependence similarity .

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 9

Overall, our cell array extraction algorithm works as fol-
lows. For eachidentified spreadsheet snippet, it examines
consecutive cells clustered in a rowor column, and consid-
ers a cluster as a cell array if (1) the cluster is not a subset
of another already identified cell array, (2) eachpair of cells
in the cluster has dependence similarity , and (3) at least
one cellin the cluster is a formula cell. The algorithm may
have three outcomes
Cell array: A row - or column-based cel array is suc-
cessfully identified and extracted. Two examples are
[D2:D7] and [B9:C9] in Fig. 1(a).

Plain value: A consecutive range of cells in a row or
column are all data cells. One cannot tell whether they
prescribe the same business conceptand are subject to
certain computational semantics. We do not consider it
asacell array.

Others: It does not belong to the above two cases. To
play safe, we alsodo not consider it as a cell array.
Note that the cell arrays we now extract can be either
well -formed or smelly. Therefore, the above four condi-
tions relax the ones we use to extract weltformed cell ar-
rays earlier in Section4.1 For example, the above condition
1 can help detect cell arraysthat suffer from missing for-
mula smells. Conditions 2, 3 and 4 can help detect cell ar-
rays that suffer from inconsistent formula smells.

B

52Detec$Smalgly Cell Arrays
Next, let us explain how to check whether an extracted cell
array is smelly or not.

According to our earlier Definition 1, a cell array is well-
formed if: (1) it contains only formula cells, (2) all its ex-
pressions share the samecell references and (3) all its ex-
pressions are semantically equivalent. If a cell array does
not satisfy any of the above conditions, it suffers from am-
biguous computation smells, and is thus smelly.

As such, we partition the extracted cell arrays into two
groups: well -formed and smelly. In the following, we ex-
amine smelly cell arrays to repair their contained smells by
recovering their intended formula patterns.

53Extr adtoirmgPladad t@omst saint
To detect and repair asmelly cell array, CACheck needs to
recover its formula pattern "Q . To do so, we first ex-
tract constraints behind the formula pattern "Q

Our idea was inspired by component-based program
synthesis, which synthesizes a loop-free program from
components, input -output pairs and specifications used by
this program [22], [36]. The synthesis is based on three as-
sumptions: (1) Existing expressionsin acell array are good
hints for inferring its formula pattern "Q ; (2) Most cell
values should be correct for this cell array, and they can
serve as’Q 0 &put -output pairs ; (3) Components in
expressions used by this cell array are often those used by
this cell array & formula pattern "Q . Under these as-
sumptions, CACheck recoversa s mel |y <cel
tended formula pattern by extracting its constraints from
the cells of this cell array, and combining them appropri-
ately. The extraction processconsists of four parts, i.e., ex-
tracting input variables, functions, input -output pairs and

components from a smelly cell array, as follows:

1) All cell referencesused by expressions in a cell array
are considered asinput variablesfor this cell array®
Q . For example, in Fig. 1 (a), input variables for
CellArrayl are R-1]C, input variables for CellArray2
are RC[2] and RC[-1], input variables for CellArray3
are R[-1]C[-1] and RCJ[-1], and input variables for Cel-
IArray4 are R[-7]C, R[-6]C, é , R[-2]C. The processmay
extract irrelevant input variables, which could be re-
moved later. Let IV bethe set ofa
iables, and x; be the i-th input variable in IV. After ex-
tracting n input variables for "Q , we can model
Q asaconceptual function like "Q ho F8 ¢ . For-
mally, 1V is defined as:

© , 0NN, 0N, oA
xEAOBMBO "6 Qaads | dw

2) Existing expressions in the cell array are extracted as
functions For example, one can extract four function's
from CellArray2, namely, f(x1, 0) =Xi, f(X1, X2) = X1 + Xz,
f(X1, X2) = X1 0 X2 and f(0, x2) = x2. These functions are
considered as specifications in componentbased pro-
gram synthesis [22], [36].

3) All data (including those calculated by expressions)in
the cell array are considered as input-output pairs For
example, in Fig. 1 (a), input -output pairs in CellArray2
include <(2, 0), 2>, <(4, 0), 4>, <(g0), 6>, <(0, 5), 5> and
<(0, 6), 6>.

4) All operators and constants used by expressions in the
cell array are considered as componentsNote that we
also consider a constant as a component that returns
this constant value. For example, in Fig. 1 (a), compo-
nents from CellArrayl include 0 6 and constant (1),

cel |inpatvar-ay 0 s

components from CellArray2 include 60 + 6 addd 0
components from CellArray3 include 666 anWd, 60and
components from CellArray4 include 6 +6 and S

Some components might beirrelevant, but could be re-

moved later. If CACheck fails to find any operator from

a cell array, it would add basic operators(e.g.,+, 0, *, /)

as components.

All thus extracted input variables, functions, input -out-
put pairs and components are constraintsused for recover-
ing or synthesizingas mel | 'y cel |
pattern "Q , as explainedin the following .

54Recovellipg,.

We observethat a cell array® "Q can exist infunction s
extracted from the
function f(x) = x + 1 extracted from formula cells i n CellAr-
rayl in Fig. 1(a) is agood candidate for recovering CellAr-
r ay Mo s . This observation enables us to recover a cell
ar r d¥ 0 sbased on a candidate set of functionsex-
tracted from its formula cells. This cansignificantly reduce
the cost of formula pattern inference since program syn-
thesis [22], [36] is typically expensive. We aim to selecta
functidrm thaa Yobitsins allninput variables and covers all
cells in acell array as its"Q . We say thata function co-
versa data cellwhent he cel |l 6s value
this function. For example, the value (6) of cell A6 in Cel-
IArrayl in Fig. 1(a) can be computed by f(x) = x + 1, where

arrayos

c leor dxamale, r a 'y

10

x represents the cell reference R{1]C. We say that a func-
tion coversa formula cell if the function is compatiblewith
the one extracted fom this cell in the sense thatboth can
return the same outputs values given the same input val-
ues. For example, function f(x1, X2) = X1 + X2 is compatible
with function f(x1, 0)= x;extracted from cell D2 in Fig. 1(a).
Note that the second parameter needs to bind to zero for
both functions to take the samevalues asinputs. However,
function f(x1, X2) = X1 + X2 is not compatible with function

f(X1, X2) = X1 0 x2extracted from cell D4 in CellArray2 in Fig.
1(a). This is because their output values are different when
X1 and x. are set to 0 andl, respectively.

Algorithm 1 gives our "Q recovery algorithm. The
algorithm returns NULL if it fails to recover any "Q
from functions extracted from a given cell array. If only
one function can be extracted fromacell array, it is treated
asthe cell array& "Q (Lines 1- 3). Otherwise, a function
that can cover (by the Coverage method) all data and for-
mula cellsin the cell array (Lines 4- 10)is treated as™Q
The Coverage method (Lines 13- 27) computes the ratio
of cells afunction cancover against all cells in the cell array.
Lines 17-19 (or Lines 21-23) check whether a formula (or
data) cell is covered by a function.

55Synt he sl zdi g

The ™ Q recovery algorithm returns NULL when it fails
to identify an appropriate "Q for a smelly cell array
from its extracted functions. When this happens, CACheck
would try to synthesize "Q using component-based
program synthesis [22], [36].

Let usfirst review how component-based program syn-
thesis work s for constructing a program. Program synthe-
sis first deriv esconstraints (constraint,s) for the target pro-
gram to be synthesized based ona set of components and
input -output pairs, which can be generated by specifica-
tions [22] or provided by users [36]. It then solves con-
straints,s to synthesize the program. If the inp ut-output
pairs provided are not sufficiently restrictive, multiple can-
didate programs can be synthesized (all satisfying con-
straints,s). Then more input -output pairs are used to pro-
vide additional constraints to further strengthen con-
straints,s until a unique program is synthesized.

Algorithm 2 gives the pseudo-code of our "Q syn-
thesis algorithm. There are three challengesin synthesiz-
ing "Q : (1) Component-based program synthesis re-
quires usersto explicitly provide components and input -
output pairs. The algorithm addresses this using con-
straints extracted from cellsin a smelly cell array (Section
5.3). (2) Functions extracted from a smelly cell array may
not be compatible with one another. For example, two
functions f(x1, X2) = X1 + X2 and (X1, Xz) = X1 & X, extracted
from CellArray2 in Fig. 1(a) are not compatible. This can
causeour "Q synthesis to fail. (3) Data cells may con-
tain incorrect values, which cannot be computed by the cell
ar r d¥ 0 seven if it is correct. Such incorrect values
can alsocauseour 'Q synthesis to fail .

To tackle the second challenge, Algorithm 2 classifies
extracted functions into compatible groups using the
Classify method (Line 1) such that all functions in each

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Algorithm 1. [+ « <Lgcovery algorithm.
Input : IV (i nputvariables), FUNC (functions),

10 (input 7out-

put pairs), CA (cellarray).
Output : F (target formula pattern) or NULL.
1: if (FUNClength == 1)
2: return FUNCget(0)
3: endif
4: foreach fn in FUNCdo
5: if fn contains all input variables in 1V then
6: if (Coverage(fn, CA == 100%) then
7: return fn;
8: end if
9: end if
10: end for
11: return NULL

13: method Coverage(fn, CA

14: coveredCells =0;

15: foreach cell in CA do

16: if (cell .type ==FORMULA) then

17: if (!$input . fn (input), cell .exp(input)) then
18: coveredCells ++;

19: end if

20: else /I Plain value case

21: if (fn(cell .input)== cell .value) then
22: coveredCells ++;

23: end if

24: end if

25: end for

26: return coveredCells | CA length ;

27: end method

group are compatible. The method classifies as manydis-
tinct compatible functions into each group as possible The
Classify method classifies functions by adding them it-
eratively into compatible grou ps. When it comes across a
function f that cannot be added into any existing group, it
creates a newcompatible group (Lines 24- 25) and itera-
tively adds in other functions compatible with this new
group (Lines 26- 30). Note that a function is allowed to be
in multiple compatible groups. For example, we canobtain
two compatible groups from CellArray?2 in Fig. 1(a): (1) f(xa,
0) =X, f(X1, X2) = X1 + Xz and f(0, X2) = Xz; (2) f(x1, 0) =x; and
f(X1, X2) = X1 0 Xa.

To tackle the third challenge, Algorithm 2 synthesizes
Q candidates in two steps. The two-step synthesisis
motivated by two observations: (1) the inclusion of input -
output pairs derived from incorrect data cells can result in
unsuccessful "Q synthesis, but one has no prior
knowledge of which data cells are incorrect; (2) the addi-
tional constraints of input -output pairs are useful for prun-
ing inappropriate "Q candidates. In the first step, the
algorithm uses the constraints provided by functions in
each compatible group to synthesize "Q candidates
with the SynFPattern method (Line 5). The method is
implemented to follow the component-based synthesis
technique [22] by treating functions as specification inputs.
It generatesa ™Q candidate set for each compatible
group. If the functi ons in agroup are not restrictive enough,
the set can containmultiple candidates. In other words, all
functions in the group collectively constitute only a partial
specification for the "Q synthesis. The algorithm then
takesthe second step to enrich the specification with addi-
tional constraints given by input -output pairs using the
Refine method (Line 6). For each™Q candidate set,
the method iteratively prunes inappropriate candidates
from the set using the input-output pairs from the given
cell array while i gnoring those that lead to no solution.
This relieves us from the need for identify ing incorrect

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 11

Algorithm 2. I_+ <<« S¥nthesis algorithm.

Input : IV (i nput variables), FUNC (function s), 10 (input 7 out-
put pairs), COMP(components), CA (cell array).

Output : F (target formula pattern).

1: groups = Cassify (FUNGQ; // Get compatible group s

2: pert =0; F = NULL

3: while groups notEMPTY do

4: group = group s.removeOne(); /I Retrieve one group

5: formula s = SynFPattern (1V, COMP group);

6: formula =Refine (IV, COMP formulas , 10);

7 if (formula |, NULL && Coverage(formula , CA>pert) then
8: pert = Coverage(formula , CA ;// Measure percentage
9: F = formula ;

10: end if

11: end while

12: if (F =NULL) then // Synthesis fails

13: foreach fn in FUNCdo

14: if (Coverage(fn, CA > pert) then

15 pert = Coverage(fn, CA;

16 F=1n

17 end if

18 end for

19 end if

20: return F;

21:

22: method Classify (FUNQ

23: groups = EMPTY;

24: while ($init Funci FUNC init Func non-classif ied) do
25: newGroup = {init Func};

26: foreach func in FUNG newGroup do

27: if (! $ 1 newGroup. $in. fn(in) , func (in)) then
28: newGroup .add(func) ;

29: end if

30: end for

31: group s.add(newGroup) ; // All in newGroup classified

32: end while

33: return groups ;

34: end method

data cells and excluding their associated input-output
pairs. Details of this pruning process can be found in re-
lated work [36]. The Refine method would return a
Q candidate randomly if there are multiple remain-
ing ones for each set asits result. Finally, among all re-
turned "Q candidates, Algorithm 2 selectsthe one that
covers the most cells in the given cell array as its synthe-
sized "Q (Lines 7- 10).

We note that program synthesis relies heavily on its un-
derlying constraint solver. As in practice, we also set up a
timeout limit for solving constraints. The limit, say 5
minutes, is set with respective to each compatible group.
Upon timeout, we conservatively select one function,
whi ch currently covers the most cells in the given cell array,
asits"Q (Lines 12-19).

For the four smelly cell arrays in Fig. 1(a), their "Q
can be recovered by Algorithm 1 or synthesized in the first
step of Algorithm 2 . Sowe consider a more complicated
example, cell array [C2:C6], asshown in Fig. 5. From this
cell array, one can extracttwo functions (f(x1, 0) = x, and
f(X1, X2) = X1 + X2 + 1), four input -output pairs (10 ={<(2, 0),
2>,<(3, 2),9>, <(4, 3), 7>, <(5, 4),10>}), and three compo-
nents (two 0 + dperators and one constant (1)).

When Algorithm 2 starts, its Classify method (Line 1)
partitions the above two functions into two different com-
patible groups: (1) f(x1, 0) =x1 and (2) f(X1, X2) = X1 + X2 + 1.
We use the first compatible group to explain our two -step
synthesis, and show this process inTable 4. During synthe-
sis, we need to prune inappropriate "Q candidates by
iteratively adding input -output pairs, which are generated
from the first compatible group (SynFPattern) or se-
lected from 10 (Refine). In the first iteration, SynFPat-
tern uses an input-output pair <(1, 0), 1>to generate its

1(A) 2(B) 3(C)
1 Apple (a) |Orange (b)| Total (c=a+b)
22 =RC[-2]
32 RC[-2]
4 3 2 9
o 4 13 7
6 5 4 RC[-2]+RC[-1]+1

Fig. 5. A more complicated smelly cell array for synthesis, in which
cells [C2:C6] should uniformly follow a formula pattern of C = A +
Bi (2 Oi O6).

TABLUE
Twetep synthesis pr
Iteration 10 pair Candidates

f(x1, X2)=x1; f(X1, X2)=X1+X2;

1 <(1,0), 1> (X1, X2)= X2+1; f(X1, X2)=1;
f(X1, X2)=X1+X2+Xo; f(X1, X2)=X2+X2+1
2 «@,0), 2 (X1, X2)=xq; f_(Xl, X2)=X1+X2;
(X1, X2)=X1+X2+X2

3 <(3,2), % none
4 <(4,3), > (X1, X2)=X1+X2

initial set of "Q candidates. This input-output pair is
generated from function f(x1, 0) = x; in the compatible
group. Then SynFPattern generates six™Q candi-
dates: f(X1, X2) = X1, f(X1, X2) = X1 + X, f(X1, X2) = X2 + 1, f(X1, X2)
=1, f(X1, X2) = X1 + X2 + Xz and f(x1, X2) = X2 + X2 + 1. Note that
if multiple "Q candidates are equivalent, only one
would be generated, e.g.,f(X1, X2) = X1 + X2 and f(x1, X2) = X2
+ X; are equivalent and thus only the former remains. Then
in the second iteration, in order to prune some "Q can-
didates, SynFPattern uses another input -output pair <(2,
0), 2>, which is also generated from function f(xi, 0) =X
itself. This time SynFPattern generates only three
Q candidates: f(X1, X2) = X1, f(X1, X2) = X1 + Xz and f(x1, X2)
= X1 + X2 + X2 (the other three are pruned). Note that now
SynFPattern can no longer further prune "Q candi-
dates by only using input -output pairs generated from
function f(x;, 0) =xi. Therefore, Algorithm 2 moves on to
the Refine method (Line 6). Refine would use input -
output pairs from 1O to further prune "Q candidates.
Since the input -output pair <(2, 0), 2> from IO has been
used, in the third iteration, Refine uses the second input
output pair <(3, 2), 9>from 10. Unfortunately, none of the
remaining three "Q candidates can satisfy this pair,
and thus this pair is ignored (in fact, this pair is a wrong
input -output pair). In the fourth iteration, Refine uses the
third input -output pair <(4, 3), 7>from 10. This time Re-
fine generates a unique™Q candidate: f(x1, X2) = X1 +
X2 (the other two are pruned). Now we finish the synthesis
process and return f(x1, X2) = X1 + Xz as the formula pattern
for the first compatible group .

561 dent iSfmeildHgy Cel | s
CACheck infers a smel ly <cell
Q successfully if it can recover or synthesize "Q
for this cell array. When successful, CACheckuses the in-
ferred "Q to check whether some cellscontained in the
cell array are smelly, and repair them if necessary.

We consider a cellin a cell array smellyif it is a data cell
(i.e., missing formula smell), or it is a formula cell but its

arraya?o

12

expression is not semantically equivalent to the inferred
Q (i.e., inconsistent formula smell). Then, according
to our earlier Definition 2, CACheck can further check
whether a smelly cell suffers from a conformance error.

In identifying smelly cells, we notice one subtle but im-
portant issue that should be handled specially. In some cell
arrays,a cell ds value computat
which further depends on its next, forming a continual
chain with all concerned cells in the same cell array. We
call such cell arrays aschainedcell arrays. For a chained cell
array, its first several cells in the chain, whose computation
does not depend on any other cells, contain initial (plain)
values for the whole cell array. We should remove them
from consideration of candidates for smelly cells. For ex-
ample, in Fig. 1(b), each cell (except A2) in cell array
[A2:A7] references its immediately above cell in its value
computation, and thus this cell array is a chained one. The
first cell A2 offers the initial value (2) for the whole cell ar-
ray. Therefore, cell A2 should not be considered smelly.

57Fi |l t €reildgsArr ay

As discussed earlier in Section5.1, we use relaxed condi-

tions to extract cell arrays, which can be either well-formed

or smelly. However, due to this relaxation, our cell array

extraction might incur false positivesi.e., a consecutive
range of cells is mistakenly extracted as a cell array but it
is not actually . For example, in Fig. 1 (a), cells [A3:B3] form

a consecutive range, and theycoincidentally satisfy condi-

tion 1 in our extraction. As a result, cells [A3:B3] are ex-
tracted as a cell array. However, we consider this cell array
a false positive. This is becausethe two cells do not pre-

scribe the same computational semantics (cell A3 is com-
puted from cell A2, meaning a previous month, while cell

B3represents the amount of apple harvest in March). Sim-

ilar casesalso occur in cells [A4:B4] and [A5:B5]. As such,
one needs to filter out such false positives in cell array ex-

traction.

We note that our filtering is based on the earlier obser-
vations we made in the empirical study in Section4, as well
as the formula patterns, which are either recovered or syn-
thesized, as discussed in Sectionb.4 or 5.5. Therefore, we
discussour cell array filtering after them. We will use four
examples of extracted cell arrays for illustration in the fol-
lowing disc ussions. They are[A2:A7], [A3:B3], [A4:B4] and
[A5:B5] from Fig. 1 (a), among which we aim to identify the
latter three as false positives

Let 6 obe the set of extracted cell arrays. Our cell array
filtering aims to selecta subset of6 Oto satisfy certain con-
straints. Let 0 0 be the subset (0 0 P 6 9. We col-
lect constraints on 6 0 , and generate all possible
60 candidates to find one that satisfies these con-
straints. This process needs to consider the following two
requirements:

1) From observation 4 in Section 4, cell arrays rarely
overlap (only 0.6%cases. This suggeststhat, given a pair
of extracted cell arrays that overlap (i.e., some of their cells
are shared), one of themis probably a false positive. There-
fore, we require that all cell arrays in 6 0 should not
overlap. In order not to mistakenly miss cell arrays,
00 should also be maximized with respect to 6 0 This

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

means that any cell arrayin 6 6 0 0 must overlap
with at least one cell arrayin 6 0 . Considering the four
extracted cell arrays [A2:A7], [A3:B3], [A4:B4] and [A5: B5],
we have two 6 0 candidates: 6 0 = {[A2:A7]} or
00 = {[A3:B3], [A4:B4], [A5:B5]}.

2) The first requirement tries to isolate true positives
frofh Mfalseé! o itive’, bt one has AoNide4 whigh 6 6
candidate best suits the characteristics oftrue positiveqi.e.,
real cell arrays). We observe thateven if atrue positive suf-
fers from ambiguous computation smell s, its recovered or
synthesized formula pattern can cover most of its con-
tained cells. This means thata majority of its cells have cor-
rect values, and its contained conformance errors, if any,
would be few . For example, in cell array [A2:A7] (true pos-
itive) , all its cells except one (A7) have correcvalues. How-
ever, cells in awrongly extracted cell array (false positive)
cannot easily be covered by its recovered or synthesized
formula pattern since its contained cells are put together in
an unreasonable way. Thus one can easilydetect conform-
ance errors in a false positive. For example, in cell array
[A3:B3] (false positive), its recovered formula patternis R[-
1]C + 1. Then cell B3 contains aconformance error (its
value is 2 rather than 3). Similarly, one can also detect one
conformance error (at cell B4) for cell array [A4:B4] (false
positive) and one conformance error (at cell B5) for cell ar-
ray [A5:B5] (false positive). As such, taking each 6 0
candidate as a unit, one can detectone conformance error
in the first candidate 6 0 = {[A2:A7]}, but three con-
formance errors in the second candidated 0 ={[A3:B3],
[A4:B4], [A5:B5]}. Therefore, we should select ad 0
candidate, which has the minimal number of conformance
errors, to win the best chance of isolating false positives
from our consideration .

The above filtering processworks on observations and
heuristics, but it is highly e ffective in isolating true posi-
tives from false positives. For example, our later experi-
ments reported that the overall removal precision is as
high as 97.24. In the following, we elaborate onthe details
of this filtering process.

571 Gener ®&t0i nGandisdat e
According to the first requirement, t he cell arrays in each
0 0 candidate must not overlap. Each 6 0 candi-
date is also a maximal subset with respect to 6 0in the
sense thatany cell arrayin 6 0 6 0 must overlap with
at least onecell array in 6 6 . We use the following two
constraints to generatesuch 0 0 candidates.
Constraint 1: Given any 6 0 candidate, for any two
cell arrays in 6 Othat overlap with each other, at most one
of them can be in this 6 0 candidate. For example, cell
arrays [A2:A7] and [A3:B3] overlap. Then they must go to
two different 6 0 candidates. If two cell arrays
w A T A coverlap, we denote this overlapping relation-
shipas¢ 0 Qi & dxjcd. Then, this constraint can bespec-

ified formally as(¢ o, £gpfesents anyd 0 o, gandidate):

DO O@ELQI @dHD + OO

=
z

° 58 " hepbd 8

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 13

Constraint 2: Given any 0 0 candidate, for any cell
arraycain 6 0 0 0 ,there exists & least onecell array
in this 6 6 candidate that overlaps with ca This con-
straint makes sure that any cell array in 6 6 6 0 can-
not be added into this 6 0 candidate (i.e., already max-
imized) . This constraint can be specified formally as
(6 @ o4 EEpyesents anyd § o4 gandidate):

mo@ 66 FE O QI @ &pHs

Any 6 0 candidate must satisfy both constraints 1
and 2. Consider our earlier example: 6 6 = {[A2:A7],
[A3:B3], [A4:B4], [A5:B5]}. Its two 6 O candidates are
thus: 6 0 = {[A2:A7]} or 6 O = {[A3:B3], [A4:B4],
[A5:B5]}.

In order to obtain all 6 6 candidates, a straightfor-
ward way is to generate them by enumerating all subsets
of 6 § and check whether they satisfy both constraints 1
and 2. However, it would be exponentially complex. We
choose tospeed up this process based orthe overlapping
relationship. The key idea is to remove those subsetsthat
do not satisfy constraint 1 or 2 as early as possible.

Our 60 candidate generation algorithm (Algo-
rithm 3) takes all extracted cell arrays (i.e.,6 § as input,
and returns all 6 6 candidates. Its kernel part is the
Generate method (Lines 8- 27), which first selects those
cells arrays that do not overlap with any other cell array
into a candidate subset 6 i § @ihes 9-13). If this step
already selects all available cell arrays, we successfully
find one 6 0 candidate and add it into the result (Lines
14-18). Otherwise, we still have some remaining cell arrays
not selected (ini Qi ¢)oadd we know that t hey overlap

Algorithm 3. =« Sangidate generationalgorithm.

Input : CAs (inputted cell arrays).
Output : candidates (all 60 candidate s).
= EMPTY;

1: candidates
: curCAs =EMPTY;// The current candidate
Generate (CAs, curCAs);
return candidates
restCAs and curCAs,
/I respectively, do not overlap
method Generate (restCAs, curCAs)

3

4

5:

6: // Any two cell arrays from
7

8

9 foreach

ca in restCA s do

10: if (GetOverlap(ca, restCA s) =EMPTY) then
11: restCA s.remove(ca); curCAs.add(ca);

12: end if

13: end for

14: if (restCA s = EMPTY then

15: // Duplicated candidates are ignored

16: candidates .add(curCAs);

17: return

18: end if

19: /I All cell arrays in restCAs overlap with others

20: foreach ca in restCAs do

21: tmpRest CAs = restCAs ; tmpCurCAs = curCAs; // Backup
22: r estCA s.remove(ca); curCAs.add(ca);// Select ca
23: restCAs .remove(GetOverlap(ca, restCAs));

24: Generate(restCAs , curCAs);

25: restCAs = tmpRest CAs; curCAs =tmp CurCAs; // Restore
26: end for

27: end method

28:

29: /I Getcell arrays in restCAs , which overlap with ca
30: method GetOverlap (ca,r estCAs)

31: overlapCAs = EMPTY;

32: foreach tmp_ca in restCAs do

33: if (ca , tmp_ca &&overlap(ca, tmp_ca)) then

34: overlapCAs .add(tmp_ca); // ca overlaps with tmp_ca
35: end if

36: end for

37: return overlapCAs ;

38: end method

iteration (Lines 20-26), we select cell array [A2:A7] into
@6 1 § and at the same time remove cell arrays[A3:B3],
[A4:B4] and [A5:B5] from i Qi 0, &idce they all overlap
with [A2:A7]. Thus, we generatethe first candidate 6 ©

with at least onecell array also not selected yet(ini Qi 0)6 & l{[A2 A7]} (this iteration completes quickly as i Qi 0i8 0 i
but never overlap with any other cell array in ©6 1 @ 6 mpty). In the second iteration, we restart this process by

Then we consider selecting these remaining cell arraysin
an iterative and recursive way. We consider each reman-
ing cell array cain turn as follows (Lines 20-26). (1) We add
cainto ® 6 1 6add at the same time remove those cell ar-
rays overlapping with cafrom i Qi o @ibes 22-23). By
doing so, we again are able to possibly select more non-
overlapping cell arraysfrom i Qi 0iftd @6 1 &(lbines 9-
13). If this selects all remaining cell arrays, we find a new
0 0 candidate (Lines 14-18). Otherwise, we consider
the newi Qi 0d@ndd o6 i Gabd finer granularity and re-
start the Generate method recursively (Line 24).(2) When
we complete considering the current cg we restore the
original i Qi 6a@n@®do6 i &(ldnie 25), and then consider
the next cauntil we complete considering all remaining cell
arrays ini ‘Qi 0.dnothe above steps, we make two in-
tended efforts. (1) We keep adding non-overlapping cell
arrays into w6 i 6 Bhis is for avoiding generating those
subsets that are not maximal. (2) Whenever we add a cell
array into @6 i § \Wei also remove its overlapping cell ar-
rays from 1 'Qi o.dlisiis for avoiding generating those
subsetsthat contain overlapping cell arrays.

Consider our earlier example: 6 6= {{[A2:A7], [A3:B3],
[A4:B4], [A5:B5]}. Since eachcell array in 6 Ooverlaps with
at least arother cell array, we do not select any cell array
into w6 1 Girdbthe first step (Lines 9-13). Then in the first

first recovering original i ‘Qi 0 @adntaining four cell ar-
rays)and @ 6 i 6(@mipty). This time, we selectanother cell
array [A3:B3] into w6 i § ant at the same time remove
cell array [A2:A7] from i Qi 0,Gside it overlaps with
[A3:B3].Now,i Qi 0 liedomes{[A4:B4], [A5:B5]}. During
recursively invoking the Generate method, we selectthe
two non-overlapping cell arrays ([A4:B4] and [A5:B5]) into
w6 i O(ines 9-13). Since nowi Qi 0§ émipty, we gen-
erate the second candidate 6 0 = {[A3:B3], [A4:B4],
[A5:B5]}.

We note that Algorithm 3 may generate duplicated
0 0 candidates. For example, when we go ahead with
the third iteration, a duplicated candidate 6 0 =
{[A4:B4], [A3:B3], [A5:B5]} is generated. Since the ordering
does not matter for set elements, this candidate is the same
as the second one Algorithm 3 would keep only one copy
for duplicated 6 0 candidates (Lines 15-16). For this
example, the algorithm would eventually generate two
60 candidates.

572Sel ecdtdi nGandi dat es
With generated 6 0 candidates, we use the following
strategy for final selection.

As mentioned earlier, we aim to minimize the number
of conformance errors in 6 0 candidates, to win the

14

best chance of isolating false positives from our considera-
tion. Let caerrorsbe the number of conformance errors in a
cell array ca and Qi i @di be the number of con-

formance errors in all cell arrays in a6 0 candidate.
Formally, Qi i @ © is defined as:
Qi 160 OEi i 8 i

We select as the final result thed 0 candidate that
hasthe minimal Qi i & © value. If there are multiple
choices, we selectthe one having the least number of cell
arrays. Then the set of cell arrays in this final 6 0 can-
didate is our filtering result. Smell detection results are ad-
justed accordingly with this set (e.g., dropped if the con-
cerned cell arrays are not in this set).

6 EVALUATI ON

We implemented our smelly cell array detection approach
as a tool named CACheck. CACheck builds on the Apache
POI library [63] to manipulate spreadsheets in Excelfiles.
CACheck loads an Excel file, analyzes its cell arrays, and
generates commentsexplaining whether they contain am-
biguous computation smells and what they are, as well as
corresponding repairs suggested

We implemented CACheck in Java7 and used Z3 [42]
as its underlying constraint solver. To be userfriendly,
CACheck transform s an inferred formula pattern "Q
back toits Al representation, e.g.,RC[-2] + RC[-1] is trans-
formed to B2 + C2for cell D2 in Fig. 1(a). For visualization
CACheck marks its detection results by three annotations:
(1) Cell arrays that suffer from ambiguous computation
smellsare coloredin yellow ; (2) Spreadsheet omments are
added to smelly cells for suggesting their corresponding
repairs; (3) Conformance errors are colored in red with
comments explaining their reasons.These annotationscan
assist end users toquickly validate the reported problems.
Fig. 6 gives a screenshot of C A C h e ad&tért®on reports
regarding problems identified for our motivating example
in Fig. 1(a).

We then evaluate CACheck and study the following re-
search questions(RQ1- 3 were studied earlier in Section 4):

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

A B C D E
Month Apple Orange Total Mo on Mo
1 | (Mo) (a) (b) (c=atb) Change (%)
212 2 =B2
3 S e B [(D3-D2)D2
4 =A3+14 |:'—‘ =B4-C4 =(D4-D3)/D3
5 =A4+1|6 =B5+C5 =(D5-D4)/D4

=C6 =(D6-D5)/D5

6 Suggested Repair:A6+1
. Suggested Value:7 _

6
7 =C7
8
9

Total =SUM(B2:B5)W=C5+C6+C7 =SUM(B9:C9)

Fig. 6. CACheckd screenshot for the spreadsheet in Fig. 1(a).

To answer question RQ6,we ran both CACheck and Am-
Check on the EUSES corpus,and manually validated all
detected smelly cell arrays to compare their performance,
i.e., precision (Section 6.3) and recall rate (Section6.5). We
further compared CACheck with Excel, UCheck/ Dimen-
sion and CUSTODES n Section 6.4. To answer question
RQ7,we additionally ran CACheck on all spreadsheetsin
the Enron corpus, and manually validated 700 randomly
sampled smelly cell arrays. We then compared statistical
characteristics ofthe detected results onthe EUSES and En-
ron corpora. We further sampled 50 spreadsheets from the
Enron corpus and created their ground truths . Based on
them, we measured C A C h e agekall mte, and compared
it to that for EUSESspreadsheets(Section 6.6). We have
also made our tool, experimental dataset and results avail-
able online for future research[62].

61Cel | ArraypnhéedStEGor pus
We ran CACheck on all spreadsheetsin the EUSEScorpus
to detect smelly cell arrays.

Table 5 gives the statistics of cell arrays detected for
each categoryof spreadsheetsin the EUSES corpus(Cate-
gory). It shows the statistics of cell arrays (Cell array) and
smelly cell arrays (Smelly cell array). It also lists the num-
ber of cell arrays (CA), number of smelly cell arrays (SCA),
and number of cell arrays suffering from missing formula
smells (MISS), inconsistent formula smells (INCO) and
both smells (Both). We observe that smelly cell arrays oc-
cur commonly in the EUSEScorpus: 15.5% (3,443 22,177
of the detected cell arrays suffer from ambiguous compu-

RQ4 (Precision): Can CACheck detect and repair smelly cethtion smells. Among these smelly cell arrays, 53.7%%6

arrays precisely?

RQ5 (Recall): Can CACheck detecmellycell arrayswith a
high recallrate?

RQ6 (Comparison) : How is CACheckcompard with exist-
ing techniquese.g., AmCheck Excel, UCheckDimension
andCUSTODES?

(1,849 3,443 suffer from missing formula smells, 49.3%
(1,699 3,443 suffer from inconsistent formula smells, and
3.0% (10% 3,443 suffer from both smells.

Table 5 also gives the statistics of homogeneous and in-
homogeneous cell arrays detected in the EUSEScorpus. It
shows the number of homogeneous cell arrays (Homo),

RQ7 (_Consistency): Can CACheck obtain consistent resultumber of inhomogeneous cell arrays (Inho), number of
on dlffel’en'[Spreadsheet COI’pDSSHCh as EUSES and Enrén sme"y homogeneous Ce” arrays (S—|0mo)’ and number Of

To answer question RQ4, we ran CACheck on all
spreadsheetsin the EUSES corpus(Section 6.1), and man-
ually validated all detected smelly cell arrays (Section6.2).
To answer question RQ5, we randomly sampled 50 spread-
sheets from the EUSES corpus, andmanually created the
ground truths for them (i.e., manually identifying well-
formed and smelly cell arrays). The process of subject se-
lection is explained in Section 6.5.1 We then measured CA-
Checkds roathesté 50 spreadsheetgSection 6.5).

smelly inhomogeneous cell arrays Snho).

We observe that 76.3%6 (16,928 22,177 of the detected
cell arrays are homogeneous cell arrays. Out of them,13.7%
(2,324 16,929 suffer from ambiguous computation smells .
We also observe that 23.7%6 (5,249 22,177 of the detected
cell arrays are inhomogeneous cell arrays. Out of them,
21.3% (1,119 5,249 suffer from ambiguous computation
smells. It seems that inhomogeneous cell arrays are more
error-prone.

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS

15

T A B L5E
Detected Cell Arraygnima.theocEUSBPlcacrabple
Category Cell array Smelly cell array
CA Homo Inho Inho/CA SCA SHomo Slnho SCA/CA MISS INCO Both
csl01 39 35 4 10.3% 12 12 0 30.8% 8 4 0
database 3,271 2,302 969 29.6% 448 358 90 13.7% 345 114 11
filby 0 0 0 n.a. 0 0 0 n.a. 0 0 0
financial 7,008 5,573 1,435 20.5% 1,259 869 390 18.0% 502 796 39
forms3 150 114 36 24.0% 16 5 11 10.7% 14 2 0
grades 2,955 2,275 680 23.0% 666 528 138 22.5% 335 354 23
homework 2,702 1,971 731 27.1% 343 137 206 12.7% 214 140 11
inventory 3,903 3,133 770 19.7% 517 287 230 13.2% 322 213 18
jackson 0 0 0 n.a. 0 0 0 n.a. 0 0 0
modeling 2,018 1,394 624 30.9% 182 128 54 9.0% 109 76 3
personal 131 131 0 0.0% 0 0 0 0.0% 0 0 0
Total 22,177 16,928 5,249 23.7% 3,443 2,324 1,119 15.5% 1,849 1,699 105

Therefore, we draw the following conclusion:

201 00aw EIlue00 EQOEBRDQwW 1DIDE
Ux Ul EE@UI G 10800 wb O wlaud ks i4 2
EOOxUUEUDEQL WEIO@@END U wb O
T1 01 OUVUWETI OOWEUUEaUOwP3 ¢

62 CACheckkréesci am odmel | vy

Det ectitohne fEOWASE S
We then investigate CACheckd s
array detection.

corpus
precision

6.21Smelly Cell Arrays

We first partition C A C h e od&tdcted smelly cell arrays
into sevencategories according to how many cells their in-
ferred "Q can cover in these arrays. The seven catego-
ries are: 100%,[90%, 10099, [80%, 90%), [70%, 80%), [60%,
70%), [50%, 60%) and [0%, 50%), which represent different
levels of coverage We then measureC A C h e @iedisi®n
on smell detection for the seven categoriesof cell arrays.
For this purpose, we manually validated all smelly cell ar-
rays detected in the EUSES corpus For each category, Ta-
ble 6 lists the number of smelly cell arrays (SCA), number
of missing formula smells (M-SCA), and number of incon-
sistent formula smells (I-SCA). These numbers are also ac-
companied with correspondin g numbers of validated -as-
true smelly cell arrays (TP).

well -formed and true smelly cell arrays. The precision for
missing formula cell arrays (970'1,849 = 52.59) is higher
than that for inconsistent formula cell arrays (660/1,699 =
38.899. We also observe that homogeneous cell arrays
(Homo-SCA; 1,2352,324 = 53.1% have a higher precision
than inhomogeneous cell arrays (Inho-SCA; 3571,119 =

Cel |l 31.@’/5. r:ig? 7 shows how the precision changes with dif-

ferent levels of coveragefor the detected smelly cell arrays

0 @AChECR), shdlly homdgenBotid dell arrays (CACheck-

Homo) and smelly inhomogeneous cell arrays (CACheck-
Inho). We observe that the precision roughly decreases
with the reduction in coverage. We also observethat there
is a sharp decreasewhen the coverageis lower than 70%.
Therefore, we recommend the level of coverage of 70% as
a reliable threshold for smelly cell array detection, where
the precision is 86.8% (1,386 1,597).

False positives. In Table 6, the values in the SCA/ TP
column also disclosefalse positivesin smelly cell array de-
tection. We analyzed the causes for the 211(= 1,597- 1,386)
false positives for the coveragein range [70%, 100%)]. There
are three main causes (1) Some spreadsheets use numbey
as labek. For example, in financial reports, end usersoften
use years like 2013 and 2014aslabels, which are, however,
represented in a number format . Our heuristics in cell ar-
ray extraction can misinterpret them as data cells. 6.2%

We observe that CACh e c k 6 s "Q n fiseable t® d (13 211) false positives belong to this case It should be

cover all the cellsin 1,184smelly cell arrays (i.e., coverage
of 100%) and 90% or more (but not 100%) cells in another
152smelly cell arrays (i.e., coverage inrange [90%, 100%0)).
This suggests that values and formulas in these 1,336 cell
arrays are highly compatible with the inferred "Q .In
other words, each of these 1,33&¢ell arrays that suffer from
missing formula or inconsistent formula smells very likely
prescribes common computational semantic s expressedby
the inferred "Q . Then these detected ambiguous com-
putation smells in these cell arrays (1,336 3,443= 38.8%)
are probably true. This provides an alternative for as-
sessing the quality of CACheck& smell detection results.
We can use these seven categories to rank the likeliness of
asmelly cell array being true (higher coverage, more prob-
ably true).

True positives. Out of the 3,443 smelly cell arrays de-
tected, we manually validated them and found that 1,586

(46.1%) of them are true. These 1,586 smelly cell arrays .

cover 7.8% (1,586/(22,177- (3,443- 1,586)) of all identified

easy for end usersto quickly validate such false positives.
(2) Some cells in a rowor column have the samecomputa-
tional semantics, but they are separated by empty cells.
CACheck thus extracted multiple column - or row-based
cell arrays, which should not be separated. 12.3% (26/ 211)
false positives belong to this case. (3) For the remaining

81.84 (172/211) false positives, the concerned cells in these
ranges contain complex computational semantics, which
CACheck could not effectively recognize or distinguish

currently . End users should manually confirm or reject

them for such cases.

6.22Smel ly Cell s

As mentioned earlier, some cells in a smelly cell array are
smelly. They suffer from either missing formula smells or
inconsistent formula smells. Further, a smelly cell may
contain a conformance error if its value does not conform
to that computed by the concerned cell array& inferred

16

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

T A B L6E
Det ected anSImevially d@eleld Ar rlaeyvse |@sb vabfridny étfheer eENUSES C
Smelly cell arrays Smelly cells
Coverage SCA/ M-SCA/ 1-SCA/ Homo-SCA/ Inho-SCA/ Fail to M-Cell/ 1-Cell/ CE/
TP TP TP TP TP repair TP TP TP
100% 1,184/ 679/ 525/ 877/ 307/ 9 2,477 2,478/ o/
1,02 661 449 831 261 2,445 2,251 0
152/ 118/ 40/ 101/ 51/ 1,259/ 84/ 226/
0, 0, v
[90%, 100%) | 7y, 85 33 85 27 0 1,186 77 131
164/ 106/ 66/ 112/ 52/ 804/ 218/ 398/
0, 0,
[80%, 90%) 117 78 45 86 31 3 724 140 323
97/ 59/ 49/ 64/ 33/ 343/ 144/ 262/
0, 0,
[70%, 80%) 65 41 28 48 17 5 315 88 201
406/ 141/ 272/ 320/ 86/ 396/ 470/ 749/
0, 0,
[60%, 70%) 74 31 47 65 9 3 209 175 294
1,042/ 440/ 607/ 619/ 423/ 659/ 890/ 1,496/
0, 0, ! !
[50%, 60%) 76 32 44 75 1 5 133 128 218
308/ 306/ 140/ 231/ 167/ 1,786/ 679/ 2,422/
0, 0, ! ’
0%, 50%) 50 42 14 45 5 21 202 66 291
Total 3,443/ 1,849/ 1,699/ 2,324/ 1,119/ 46 7,724/ 4,963/ 5,553/
1,58 970 660 1,235 351 5,214 2,95 1,458
=== AmCheck CACheck-Homo 6.2.3 Re pa irabil it y
100 OE—CAChECk"nhO ==¢=CACheck Table 6 also lists the number of true smelly cell arrays that
90.00% CACheck failed to repair (Fail to repair). Out of 1,586true
80'000/ smelly cell arrays, CACheck was able torepair 1,540(97.1%)
. 0
20,00% of them. It shows that CACheck is effective for repairing
. 0 .
smelly cell arrays automatically and correctly. The 46
60.00% . .
0,000 smelly cell arrays that CACheck failed to repair involve
20.00% cases ofincomplete input variables (26), complex table
0, .
40.00% structures (9), incomplete components (10), and too many
0,
30.00% wrong cells (1). We roughly observe
20.00% r e P A
pairo cases seem to relat
10.00% coverage. For example 45.7% (21/46) casesoccur to cell ar-
0.00% rays with coverage below 50% and this causes a failing

100% [90%, [80%, [70%, [60%, [50%, [0%,
100%) 90%) 80%) 70%) 60%) 50%)

Fig. 7. Precision comparison on smelly cell array detection for dif-
ferent levels of coverage on the EUSES corpus (horizontal axis:
coverage category, vertical axis: detection precision).

Table 6 shows the number of detected missing formula
cells (M-Cell) and number of detected inconsistent formula
cells (I-Cell). These numbers are also accompanied with
corresponding numbers of valida ted-astrue smelly cells
(TP) for comparison. We confirmed that a total of 8,139
(5,214 + 2,925)cells are truly smelly. Out of them, 5,214
cells suffer from missing formula smells, and 2,925 cells
suffer from inconsistent formula smells. The precision for
smelly cell detection is 64.26 (8,139/(7,724+ 4,963). These
8,139true smelly cells cover 25.9% ofall (31,457 cells from
1,586true smelly cell arrays, and 3.3% of all 50,245 cells
from all (20320 =22,177- (3,443- 1,586) detected well -
formed and true smelly cell arrays.

Besides, & shown in Table 6, CACheck detected a total
of 5,553conformance errors (CE) in the EUSES corpus We
manually validated them, and confirmed that 26.3%
(1,458 5,553 detected conformance errors are true ones.
We observe that mnformance errors occurring in cell ar-
rays with higher levels of coverage also have a higher
probability to be true. For example, 73.9% ©55886) de-
tected conformance errors are true in cell arrays with a
level of coveragein range [70%, 100%)].

rate of 42.0% (21/50). Besides, although 9 cases occur to cell
arrays with coverage of 100%, the concerned failing rate is
actually below as 0.8% (9/1,092).
Therefore, we draw the following conclusion:
" "T1TEOQOWEEOEI UIUBP 0DYiwEd
FEEOQWET wEwWUI OPEEOI wU
Il OOWEUUEawEI Ul EUPOOOuWDP
EUPOOwxUI EBUPOOWOI w wt
I xEDUGUOOA wEROOWHE WHNA B
UOWUEU

0
@

—;

63Compar
We now compare our CACheck with its predecessor, Am-
Check, published earlier. As mentioned, AmCheck can
only detect and repair homogeneous cell arrays while CA-
Check can do so for both homogeneous and inhomogene-
ous ones

We compared CACheck and AmCheck on the EUSES
corpus. We partition ed comparison results into seven cat-
egories as earlier, according to different levels of coverage
with respectto A mC h e adé&técted smelly cell arrays (i.e.,
how many cells their inferred "Q can cover in these ar-
rays). Table 7 lists the number of smelly cell arrays de-
tected by AmCheck (AmCheck/SCA), and number of val-
idated-as-true smelly cell arrays of AmCheck (Am-
Check/TP). As mentioned, all these detected smelly cell
are homogeneous.Fig. 7 also compares how the precision

t ha
e t

beomwe e nh e&CAC AammGlh e ¢ k

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 17

TABL7E
Compari sons between CACheck and AmCheck on

Coverage AmCheck CACheck-Homo Common Missed by CACheck Added by CACheck
SCA TP SCA TP SCA SCA TP Equal smell SCA TP
100% 993 822 877 831 836 157 27 8 41 36
[90%, 100%) 133 88 101 85 97 36 6 1 4 3
[80%, 90%) 215 90 112 86 110 105 6 1 2 2
[70%, 80%) 119 50 64 48 63 56 3 3 1 1
[60%, 70%) 440 69 320 65 317 123 6 4 3 2
[50%, 60%) 1,293 76 619 75 608 685 4 3 11 3
[0%, 50%) 974 44 231 45 223 751 2 1 8 3
Total 4,167 1,239 2,324 1,235 2,254 1,913 54 21 70 50

changes with different levels of coverage for smelly cell ar-
rays detected by CACheck and AmCheck. We observe that
the overall precision for CACheck is 46.1% asearlier calcu-
lated, whereas that for AmCheck is only 29.7%
(1,239/4,167). If we use 70% as theeliable threshold for
coverage-based smelly cell array extraction, we observe
that CACheckds
wher eas Amedisorcikahlg 71.9%(1,0501,460).

6311l nhomogeneous Cell
As shown in Table 6, CACheck detected 351 true smelly
inhomogeneous cell arrays (Inho-SCA/TP) . As mentioned
earlier, AmCheck was unable to detect any inhomogene-
ous cell array. As such, AmCheck missed at least 221%
(3851/1,586) true smelly cell arrays in the EUSES corpus.

632Homogeneous Cel |l
Both CACheck and AmCheck can detect homogeneous cell
arrays. Therefore, we are interesed in their comparison at
the aspect

Table 7 also lists the number of smelly homogeneous
cell arrays detected by CACheck (CACheck-Homo/SCA)
and number of validated -astrue smelly homogeneouscell

Arrays

responding smelly cells were already detected in other ex-
tracted cell arrays as reported by CACheck. As such, CA-
Checkactually only missed 1.7% (33/1,913)true smelly ho-
mogeneous cell arrays.At the same, CACheck successfully

filter ed out 63.5% ((1,913 54)/ (4,167- 1,239)) false posi-

tives in AmCheck6 s det e ct with m precisisnuof

p r e c assearlen cal¢ulated8 ®7.28o%1,913- 54)/1,913). For the 33indeed missed (true

smelly homogeneous) cell arrays, there are two cases (1)
Some cells do not havedependence similarity, and thus

AT T a ¥&check could not decide if they form any cell arrays. 17

cell arrays belong to this case. (2)Somecell arrays overlap
with other cell arrays . As including the latter into the set of

cell array candidates can introduce less conformance errors

than including the former, the former cell arrays were
missed. 16cell arrays belong to this case.

From Table 7, we also observe that CACheck detected
70 additional smelly homogeneous cell arrays (Added by
CACheck/SCA) that AmCheck could not detect, and 50 of
them were validated as true (Added by CACheck/TP) .
This is more than what CACheck missed (33). These50cell

arrays were not decided as cell arrays by AmCheck, as they

do not follow A mC h e ccklltasay extraction heuristics.
Nevertheless, C A C h e addpénslence similarity checking

t

S

arrays of CACheck (CACheck-Homo/TP). We observe \yorks for them and can precisely capture them. This indi-

that CACheckds precision whereas 3¢ 4% 1t RSB35/ EA8Hédkos i mproved
AmChe q)‘e(ﬁsmn isonly 297’/0(1,239/4,167)Slmllarly, ristics ar e effective and cou|

if we use 70% as thereliable threshold for coverage-based
smelly homogeneous cell array extraction, we observe that
CACh e c led@s®n ip91.0% (1,050/1,154), whereas Am-
C h e c préxision is only 71.9% (1,050/1,460).This indi-
cates that CACheck is more precise ttan AmCheck even if
we only compare the detection of smelly homogeneous cell
arrays. The improvement is mainly attributed to CA-
Checkds filtering rul es,
arrays.

We also concernhow different the smelly homogeneous
cell arrays detected by CACheck and AmCheck are. Table
7 shows the comparison results. We observe that 97.0%
(2,254 2,329 smelly homogeneous cell arrays detected by
CACheck could also be detected by AmCheck (Common
SCA), but 45.9% (1,913 4,167 smelly cell arrays detected
by AmCheck were missed by CACheck (Missed by CA-
Check/SCA). However, we note that this only compares
detection results, but not validation results. Thus we man-
ually validated all these 1,913missed smelly cell arrays,
and found that only 2.8% (54/1,913) of them are true
smelly cell arrays (Missed by CACheck/TP) . Besides, h 21
out of the 54true smelly cell arrays (Equal smell), their cor-

whi @

true homogeneous cell arrays with a precision of 71.4% (50

/70).
Therefore, we draw the following conclusion:
T 1B ey p s hw D OT 0001 1 O
1 0001 1 ARBEDU DOGERHUO Oa wE]
Ul EG@PUUIT EwE a @ OGN Tuig @ wi kil
Ul OPEIEWI Wi ©0E wiE@EWu EQEI WO
BUEEGW® ODI WO ¥ ullaududes Uil indrua
0" 1 Iz Bty x U ILErodpauE @ w z w Ul
UD@@udOOT 1 O OUUWEUOGUWE O
I T 1T 1T UDWNRBYU

64Compar ws sohhdechni ques

We then compare our CACheck with Excel, UCheck/Di-
mension [4], [8] and CUSTODES [10]. These techniques
mainly focus on syntactic smells (e.g., division by zero in
Excel, type inconsistency in a formula [4], [8], and outliers
in a cell cluster [10]), while CACheck focuses onsemantic
smells that violate computational semantics of concerned
cell arrays, as mentioned earlier. These techniquesadopt
different mechanismsand may possibly detect smells that
CACheck cannot (e.g.,division by zero in Excel), and may
also detect some smells that CACheck can as well (e.g., a

d

18

cell suffers from both semantic and syntactic smells). In or-
der to exhibit the differences in the scope of focused smells
between these techniques and CACheck our experimental
comparisons rely on checking the applicability of other
techniques to detecting those smells detected by CACheck
Specially, we investigate how many of CAChecké s 8,
validated -astrue smells can alsobe detected bythesetech-
niques.

641 Comparison with Excel

Microsoft Excel has built-in support for detecting syntactic
smells (inconsistencies) in spreadsheetcells. However, its
detection is subject to a few limitations. First, Excel consid-
ers only row -based or column-based ranges of three con-
secutive cells, and tries to detect smells in such ranges. Sec-

ond, it detects only those smells thatthe middle c el | &6 s

mula expressionis syntactically different from those of its
two adjacent cells, while the two adjacentcellsd f o rexau
pressions are identical themselves. Besides,Excel also sup-
portsdetecting some well-known calculation errors like di-
vision by zero. In Table 8, the Excel column shows that Ex-
cel can give warnings for only 2.2% (175/8,139) validated -
astrue smelly cells detected by CACheck. Therefore, we
considerthat CACheck ds ¢ ap abaltothat gf
E x ¢ e | &is chdcking mechanisms.

642Compari s@heliknmensi on

The general idea of UCheck[4] and Dimension|[8] is to ex-
ploit information i n spreadsheets about labels and headers
to check the type inconsistency of formulas in spreadsheet
cells. UCheck usesthe concept of unit to represent the type
of a cell,e.g.,cell E4 represents the tarvest of apples in June,
and cell F5 represents the havest of oranges in July.
UCheck defines some rules toenforce that one should not
sum E4 and F5up. Dimension detects smellswhen it finds
that units of measurement are used incorrectly in formulas.
For example, one should not add two cell s with time and
distance types, respectively, together.

CACheck has several advantages over UCheck/Dimen-
sion: (1) In the EUSES corpus, CAChecldetected 8,139 true
smelly cells, whereas UCheck/Dimension detected only
695true smelly cells as reported in their latest work [9]. (2)
CACheck can detect and repair smelly cells by suggesting
intended formula patterns and calculated values , whereas
UCheck/Dimension can only detect smelly cells without
repair suggestions. (3) CACheck can detect and repair
missing formula cells, whereas UCheck/Dimension can-
not. (4) CACheck can detectand repair smelly cells that do
not violate UCheck/Dimension & schecking rules, e.g.,
smelly cells in Fig. 1(a). (5) CACheck does not rely on un-
reliable header/ label information , whereas UCheck/Di-
mension relies much on such information, which may in-
cur problems when the information is missing or inc om-
plete.

The tool we obtained for experiments has implemented
both UCheck and Dimension. So we conducted experi-
ments by not splitting it into two parts , astheir latest work
[9] did . In Table 8, the UCheck/Dimension column shows
that UCheck/Dimension detected only 0.2% (20/8,139)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

T A B LSE
Tr Bane |l ey D&t e btyedi f f er enitn -
EUSES corpus
Category | CACheck Excet D}ﬂnihnescio"/ '+ CUSTODES'
cs101 22 0 0 5
1 34&abase | 3,650 57 1 1,317
filby 0 0 0 0
financial 1,491 36 4 627
forms3 8 0 0 3
grades 1,322 25 10 468
homework 285 29 0 96
inventory 981 22 1 434
jackson 0 0 0 0
modeling 380 6 4 90
personal 0 0 0 0
Total 8,139 175 20 3,040

* Tjegwymbers in the columns show how many of CACh e c k 6 ¢
dated-as-true smelly cells could be detected by the corresponding
techniques.

a

validated -astrue smelly cells by checking type incon-
sistency. Still, we note that if a type inconsistency does not
relate to any cell array, CACheck may not be able to detect
it. Therefore, CACheckd s ¢ a pisobthodonat ty that of

UCheck/ Dimension, and they can detect different types of
snfells0 F t hogon

643Compari sOuLSwWODHBS

We also compare our CACheck to another more recent
technique CUSTODES[10]. CUSTODES uses strong fea-
tures (e.g., the same or similar R1C1 expressionsand cell
referenceg and weak features (e.g., same labelsand font
colors) to classify cells into different clusters. It then uses
outlier detection to identify smelly cells in each cluster.For
example, in Fig. 1(a), CUSTODEScan extract{D4, D5, D9}
as a cell clustersince the three cells share thér cell refer-
ences in the R1C1 representationCUSTODEScan also ex-
tract other four cell clusters for this example: {A3:AG},
{D2:D3}, {D6:D7} and {E3:E7}. We canobservethat CUSTO-
DESOs concept of <cell
concept of cell array.

Our investigation suggests that CACheck has several
advantages over CUSTODES (1) CUSTODES:is learning-
based and relies its threshold settings. Although its current
implementation used default settings for all experiments,
it did not guarantee for its best performance. It may cause
false positives or negatives, as we observed in experiments.
Nevertheless, CACheck does not have this issue. (2) CA-
Check can detect and repair smelly cells by suggesting in-
tended formula patterns and corresponding values,
whereas CUSTODEScan only detect smelly cells without
repair suggestions. (3) CUSTODES detects a cell cluster
mainly by the equivalence of formulas contained by its
cells, while CACheck detects a cell array mainly by the
consecutive nature of its cells. Therefore, although CUS-
TODES can detect cell clusters that contain non-consecu-
tive cells, it may also causeCUSTODESto miss important
smelly cells. For example, in Fig. 1(a), cells D2 and D3 con-
tain equivalent formulas in the R1C1 representation, and
thus CUSTODESextracts them into a cell cluster. However,
this prevents CUSTODESfrom further considering D4, D5,

GA Qihset cekr 6 si

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 19

T A B L9E
Compari sons between CACheck and AmCheck on the
Statistics of sampled spreadsheets CACheck AmCheck
Category ss Work- For- CA SCA Smelly CA/ SCA/ Smelly CA/ SCA/ Smelly
sheet mula cell TP TP cell/TP TP TP cel/TP
9/ 4/ 6/ 8/ 4/ 6/
csl0l 1 1 40 8 5 10 5 4 6 4 4 6
528/ 70/ 215/ 506/ 99/ 208/
database 7 32 3,345 555 104 378 499 65 197 247 60 143
) . 193/ 61/ 213/ 183/ 58/ 187/
financial 11 30 1,372 201 74 276 184 57 190 168 48 140
8/ o/ o/ 40/ 36/ 72/
forms3 1 1 52 12 0 0 8 0 0 2 0 0
118/ 22/ 70/ 29/ 8/ 34/
grades 8 21 1,665 119 24 69 115 20 46 29 8 24
69/ 18/ 34/ 68/ 25/ 25/
homework 8 15 1,000 88 23 48 57 1 16 48 10 10
. 67/ 15/ 30/ 163/ 131/ 146/
inventory 8 11 9,967 68 15 30 67 15 30 47 15 30
) 86/ 8/ 24/ 67/ 71 23/
modeling 6 17 595 85 7 23 85 7 23 67 7 23
1,078/ 198/ 592/ 1,064/ 368/ 701/
Total 50 128 18,036 1,136 252 834 1020 179 508 814 152 386

D6 and D7 into this cell cluster under default threshold set- i i

tings, and as a result, CUSTODESHails to find that D2 and ~ 9->1 Experi mentsal Subject

D3 are actually smelly. Nevertheless, CACheck does not Manually building ground truths for all true smells in

have this problem for this example. (4) C A C h e srkellys EUSES spreadsheets is extremely difficult, aswe are not
cell detection is based on aghorgqfthgsespeaqshesisand wealsgeanpatfigdgheir o ¢
pattern, while CUSTODESuses outlier detection to iden- cOrresponding authors. Therefore, we randomly sampled

tify smelly cells. This might cause CUSTODESto misjudge 50 spreadsheets:from those with cell arrays f_or measuring
situations and incur false positives. For example, in Figg CACheckds recal |l r awite AmChedk c o
1(a), CUSTODES considers {D4, D5, D9} as a cell cluster, (both requiring cell arrays). We mangally obtain ed all

but CUSTODES cannot figure out which of them are well-formed and smelly cell arrays in these sampled
smelly sinceall three cells have different formulas. As a re- spreadsheetsasour ground truth s.

su. CUSTODES cannot deniy e cell Da a5 smely. 2 24 o Pomgachaie suent 1 feb sarpe
without taking more information under default threshold P ys.

. eachrandomly sampled spreadsheet from the EUSES cor-
settings.

. . _ pus, we (authors and the two students) checked eachof its
To validate our analysis for CUSTODES we ran CUS .contai(ied orksheetsfor cell arraysin ividuallge}, and then

TODESG s i mpl ementati on (obomi r.o0m_ | t I
disctissed duf flﬂd?}lngs tobe?ner 3r8ra Wolkndet that does
the_ EUSEScorpus, and checked how manyof CACh e ¢ kn& Zontain any cell array or cannot be understood by any
validated -astrue smelly cells could be detected by CUS- ;0 ¢ o \we removed it from consideration . If a spread-
TOPES In Table 8, the CUSTODEScolumn gives the com- sheet containsat least one worksheetremaining, we kept
parison results. We observe that CUSTODESdetected only . -)
. this spreadsheet Otherwise, it was also removed from con

37.%% (3,040/8,139) true smelly cells, which were detected _. - . . .

; sideration. We repeated this sampling process until 50
by CACheck. Thus, CUSTODES missed a lot that were spreadsheetswere collected
achieved by CACheck, and this suggests that CACheck has Table 9 gives the statistics of the 50 sampled spread-

gillun\;\(/1 uen atd vziﬁtziggz??(t)ggg'lr;?DESl o dnott Ctompr?r?r'] sheetsfrom the EUSES corpus We observe thatthe 50sam-
m ’” € Iloi(rel it a wiracted cell cl iyratshot ;ecncfna pled spreadsheets (SS)are distributed in eight different

smetly celis In 1ts extracted cefl clusters thal may not nec- categories, including 128 worksheets (Worksheet) and
essarily contain consecutive cells. Therefore, we consider 18.036 formulas Forrpula% our manual inspe%tion of these
thatour CACheck6s capabilityCUSs sBréahslﬂeoetgiae tfies a'tdtal (Sfaﬁ’i‘?;% cell arrays (CA).

TODES Among them, 252 cell arrays are smelly (SCA). We also
65 CACh e cRkedcsalinl Smel |y Cel | identifigdy834 smelly cells (Smellycell) from them.

Det ectoont he EUSES Cor pus We note that our sampling process might bias those
spreadsheets that contain cell arrays. In our early expei-
ments on the whole EUSES corpus, we found that CA-
Check detected many false smelly cell arrays in only few
spreadsheets. For example, CACheck detected 56%out of

We next measure C A C h e adcal sate on its smelly cell
array detection for the EUSES corpus. As this measure-
ment involves ground truths for all true smells in spread-
sheets, which requires substantial manual effort, we con-

ducted experiments only on a sampled subset of spread- the total of 1,857) false smelly cell arrays in only two
sheets from the EUSES corpus. We also compared the re- spreadsheets. AmCheck detecteda similar number of false

call rate between CACheck and AmCheck. smelly cell arrays in the two spreadsheets. Thus, we need
to filter out such spreadsheets clearly different from others

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLUB
Mi ssCeed | Arrays on the Sampled EUSES Spr
Common causes CACheck AmCheck
Category CA Plain Wrong Empty Func Detected Wrong Detected Wrong Inho (Com-
value cell line range range mon)
cs101 8 1 2 0 0 5 0 4 0 1(0)
database 555 17 31 6 0 499 2 447 25 33(4)
financial 201 14 3 0 0 184 0 168 0 16(0)
forms3 12 0 0 0 4 8 0 4 0 4(0)
grades 119 3 0 0 0 115 1 29 0 87(0)
homework 88 12 12 0 1 57 6 48 0 17(2)
inventory 68 0 0 0 1 67 0 a7 0 21(1)
modeling 85 0 0 0 0 85 0 67 0 18(0)
Total 1,136 47 48 6 6 1,020 9 814 25 197(7)
. . \ B C D E
in sampled spreadsheets. Qur sampling process used) 2012 2013 2014 2015
ohaving cell arrayso6é as a cCcr 2 Iteml|3 4 5 6 spr ea
sheds do not contain any cell array. Still, our sampling 3 ltem2 5 6 ! 8
process also filtered out other spreadsheets that contain no - ';i':j’ 27 ;0 ;; ;
cell array. According to our understanding, these spread- ' (a) Cell array [B5:E5] with plain values only.
sheets likely fall in the category of low coverage, since . . . :
ocontaining amd ceddt eaenelddcdl al " oz 2013 2014 005
arrayo6 a (us, ouedarapling grocessmight cause 2 Iteml |3 |4 5 6
CACheck and AmCheck to detect less smelly cell arrays 3 Ttem2 |5 6 7 8
from spreadsheets with coveragein range [0%, 70%), since 4] Reomd 9 10 1L L S
) 5 Total |=SUM(B2:B4) =SUM(D2:D4)|=SUM(E2:E4)
most of them should have been filtered out. Neverth eless
for coverage in other ranges like 100%,[90%, 100%), [80%, (b) Cell array [B5:ES] with an empty cell.
90%) and [70%, 80%), C A C h e ddétdited smelly cell ar- A B C D E F G H
rays are distributed as (133,14, 18, 9) and (1,184, 152, 164, ' 2012 2013 2014 2015
97,andAmCheckds detected digmbl | oo ; 8 :
uted as (139,7, 36, 10 and (993, 133, 215, 119respectively, | Ttem3 |9 10 1 12
for the 50 sampled spreadsheets andall EUSESspread- 5 Total |=SUM(B2:B4) |=SUM(D2:D4)| |=SUM(F2:F4) |=SUM(H2:H4

sheets We observe thatthe two pairs of distribution data
are comparable in percentage.As suggestedearlier, a cov-
erage of 70% can be a reliable thresbld for effective smelly
cell array detection in practice. Thus, our sampling process
is still reasonableand can refl ect
Checkds performance and

6.5.2 SmeylCle | | sArr ay

Table 9 also compares the detection results for CACheck
and AmCheck on the sampled spreadsheets. For cell array

(c) Cell array [B5:H5] contains empty lines inside.

Fig. 8. Simplified spreadsheet examples with missed cell arrays, ex-
tracted from the EUSES corpus.

CACheckds

co mﬁﬁ:f’ Fab

and Am-
nei Neggraa{dtviecse
We then further analyze missed cell arrays (false negatives)
on the 50 sampled spreadsheetsfor CACheck and Am-
Check.
Table 10 lists missed cell arrays for CACheck and Am-

extraction, the precision for CACheck and AmCheck is 94.6% Check, according to our ground truths . CACheck missed

(1,020/1,078) and 76.5% (814/1,064)respectively (CA/TP) .
For smelly cell array detection, the precision for CACheck
and AmCheck is 90.4% (179/198) and 41.3% (152/368)re-
spectively (SCA/TP) . For smelly cell detection, the preci-
sion for CACheck and AmCheck is 85.8% (508/592) and
55.1% (386/701), respectively (Smelly cell/TP). We ob-
serve that CACheck detected more cell arrays and smelly
cell arrays with a higher precision.

In this group of experiments, recall rate is our main fo-
cus. For cell array extraction, the recall rate for CACheck
and AmCheck is 89.8% (1,020/1,136) and 71.7%
(814/1,136), respectively. For smelly cell array detection,
the recall rate for CACheck and AmC heck is 71.0%
(179/252) and 60.3% (152/252) respectively. For smelly
cell detection, the recall rate for CACheck and AmCheck is
60.9% (508/834) and 46.3% (386/834)respectively (Smelly
cell). We observe that CACheck has largely improved the
recall rate as compared to AmCheck, i.e.,greatly reducing
missed smelly cell arrays and smelly cells.

10.2% ((2,1360 1,020) / 1,136) cell arrays, whereasAm-
Check missed 28.3% ((1,136 814) / 1,136) cell arrays. This
big difference has beencaused by AmCheck being unable
to extractinhomogeneous cell arrays, as mentioned earlier.
Table 10 also lists four common reasons (Common
causes)explaining why false negatives occurred to both
CACheck and AmCheck: (1) 4.1% (47/1 ,136) cell arrays
(i.e.,18.7% @7/252) smelly cell arrays) contain plain values
only (Plain value). It is difficult to figure out whether the
concerned cells with only plain values contain the same
formula pattern or not, since there is no clue on how these
values are calculated. One example is thecell array [B5:E5]
in Fig. 8(a). (2)4.2% @8/1,136) cell arrays contain empty
cells, string cells, or error cells (Wrong cell). Both CACheck
and AmCheck split such cell arrays into multiple smaller
ones, as separatedby such cells. One example is the cell
array [B5:E5] in Fig. 8(b). (3) 0.5%(6/1,136) cell arrays con-
tain empty lines inside for layout purposes. Similarly, CA-
Check and AmCheck split them into multiple smaller ones.

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 21

TABLEAE
Compar iofCAlCheckds Detected Cell Arrays on the
Corpus Cell array Smelly cell array
P CA Homo Inho Inho/CA SCA SHomo Sinho SCA/CA MISS INCO Both
EUSES 22,177 16,928 5,249 23.7% 3,443 2,324 1,119 15.5% 1,849 1,699 105
Enron 455159 342,992 112,167 24.6% 58514 28,815 29,699 12.9% 43,343 16,993 1,822
Total 477,336 359,920 117,416 24.6% 61,957 31,139 30,818 13.0% 45,192 18,692 1,927
TABUE —+—EUSES Enron
Detected and Val i dat etdh eS nke 100.00%
Corpus 90.00% [
0,
Coverage SCA Sample Estimated TP 80.00% \\
SCA TP 70.00% \Q
100% 21,692 100 91 19,740 60.00%
[90%, 100%) 3,771 100 88 3,318 hadd
[80%, 90%) 2,047 100 66 1,351 50.00%
[70%, 80%) 1,521 100 60 913 40.00%
[60%, 70%) 3,135 100 20 627 30.00%
[50%, 60%) 16,107 100 3 483 20,0004 \
[0%, 50%) 10,241 100 12 1,229 hadd — .
Total 58,514 700 340 27,661 10.00% Ne—

One example is thecell array [B5:H5] in Fig. 8(c). (4) 0.5%
(6/1,136) cell arrays contain complex Excd functions
(Func), such as STDEVand SUMPRODUCT, which the
current CACheck and AmCheck implementations do not
support and need extension. Besides the four common rea-
sons, CACheck and AmCheck may extract larger or
smaller ranges of consecutive cellsrather than expected,
leading to missed cell arrays. Table 10also liststhe number
of such missed cell arrays (Wrong range). CACheck and
AmCheck missed 0.8%(9/1,136) and 2.2%(25/1,136) such
cells arrays, respectively.

Finally, we found that a mong those cell arrays missed
by AmCheck, 61.2% (197/322) of them are inhomogeneous
ones Thispart contributes to a
low recall rate, as compared to CACheck, which was de-
signed to be able to extract inhomogeneous cell arrays

Therefore, we draw the following conclusion:
"OOXIER W P OT T 1 EOCO T EBwid O
x UAWI T wUWiERHEMOQO WE UUE a wl |
Ahd AU wUOwWWNG Wik OudaOudl U0 &
UP®OWOOwt YouAl wUOwWA hud Yy

66Cel |l Array DetEesa t@mornp ufsor
The previous experiments and comparisons show that our
CACheck performs much better than AmCheck, no matter
on the precision or recall rate, with respect to the EUSES
corpus. In the following, we extend our evaluation on CA-
Check to another even huge Enron corpus. We also com-
pare CACheck&s
corpus.

6.6.1Cel |
Tablellcompar es
EUSESand Enron corpora. It studies detected cell arrays
(Cell array) and detected smelly cell arrays (Smelly cell ar-
ray). It lists the number of cell arrays (CA), number of
smelly cell arrays (SCA), and number of cell arrays suffer-
ing from missing formula smells (MISS), inconsistent for-
mula smells (INCO), and both smells (Both). Table 11 also
lists the numbers of homogeneous (Homo and SHomo)

Ar riaoyn Det ect

0.00%
100% [90%, [80%, [70%, [60%, [50%, [0%,
100%) 90%) 80%) 70%) 60%) 50%)

Fig. 9. Precision comparison on smelly cell array detection for dif-
ferent levels of coverage on the EUSES and Enron corpora (hori-
zontal axis: coverage category, vertical axis: detection precision).

and inhomogeneous (Inho and Sinho) cell arrays. We ob-
serve that the percentage of inhomogeneous cell arrays
against all cell arrays is 23.76 and 24.6% (Inho/CA) , re-
spectively, for the EUSES and Enron corpora They are
close to each other. Besidesthe percentage of smelly cell
arrays is 15.8% and 12.9% SCA/CA), respectively, for the
two corpora. They are also close and comparable.
Therefore we draw the following conclusion

o PR P e SR E
UEI 60

T EYIl WEOOXEUEEOI w x1

Ei OOWEUUEaAUWEOE&UO] 00a wk

6.6.2Det echtrieocni si on
Wet hen investigate
ray detection for the Enron corpus.
Following our earlier experimental processfor the pre-
useo%s udy on the EUSES corpus(Section 6.2), we parti-
tion C h e déte@ted smelly cell arrays into seven cat-
egories according to their levels of coverage (i.e., how
many cellsin percentagetheir inferred "Q can coverin
these arrays). Table 12lists the number of smelly cell arrays
(SCA) for each category.Since the total number (58,514) is

eval uati on EUSES u*]“qesa”d ImBCh tpq{e tiga% tha&(ﬁ 44@ }t‘or the EUSES cor-

pus, it is almost impossible to valida te aII of them. Sowe
adopted another soft way by sampling and estimation. We
randomly sampled 100 smelly cell arrays (Sample/S CA)

C A Ch e cek dirays aheahe e forteach category and manually validated them. This ac-

counts for 700 smelly cell arrays, which occupy 1.2%
(700/ 58,519 of all detected cell arrays. For each category,
Table 12 lists the number of validated -astrue smelly cell
arrays (Sample/ TP).

Fig.9c ompar es CpkeCisian orksihally cell ar-
ray detection for different levels of coverage onthe Enron
and EUSEScorpora. We observe that the two groups of

CACheckos

F

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TAB L1E3
Compari LChlse dko6sR&eeabvbh the Sampled EUSES and E
Corpus Statistics of sampled spreadsheets CACheck (recall rate)
P SS Worksheet Formula CA SCA Smelly cell CA SCA Smelly cell
EUSES 50 128 18,036 1,136 252 834 1,020 (89.8%) 179 (71.0%) 508(60.9%)
Enron 50 102 27,547 1,175 128 483 1,058 (90.0%) 93 (72.7%) 321 (66.5%)

precision values are close to each other Based on valida- o)
tion results on sampled smelly cell arrays, we estimate that Q4 (Precision): Can CACheck detect and repair smelly cell

there are a total of 27,661 smelly cell arrays (Estimated TP arraysz‘recisAeI)‘/?\ e s e e se A s e s s o s 2
in Table 12) in the Enron corpus. If one considers 70% as - Ol wOE a ubJAY | ulUg 1Y 10 ue® IV BLH BO 1wk O O

the reliable threshold for coverage-based cell array extrac- ' QUW T 1 EOZ UHOP Y aukt)UGE a (D Bl E |
tion, CA C h e cptedsion on smelly cell array detection Ul BUwE O U URUEXU®EOHE } BUFUEIIWEDW O w O I wl
for the Enron corpus is 87.2 (25,322 29,03), while the , CACheck is able to repair 1,540 (97.1%) ofts 1,586de-
precision for the EUSES corpus is 86.%, as earlier meas- tected true smelly cell arrays.

ured. This indicates that CACheck has a comparable preci-

sion on smelly cell array detection for the Enron and RQS5 (Recall): Can CACheck detecimelly cell arrays witha

high recallrate?

EUSEScorpora. C A Ch e crécallsrate for cell array extraction and
663Detection Recall smelly cell array detection is 89.8% and 71.0%, respec-
Wenexti nvesti gat erecdll fat o smell§ sell tively , which is both promising.

array detection for the Enron corpus.

Similarly, we followed our earlier experimental process
for the recall study on the EUSES corpus(Section6.5), and
randomly sampled 50 spreadsheets from the Enron corpus.
However, we found many similar spreadsheets and work-
sheets in the Enron corpus. This was caused by the fact that
the Enron corpus contains many series of different ver-
sions of spreadsheets or worksheets, which were extracted
from email correspondences[18], [26]. Thus, we only se-
lected one spreadsheetor worksheet if multiple similar
ones were found. We believe that this treatment could

RQ6 (Comparison): How is CACheck compadewith existing
techniques, e.g., AmCheé&kcel UCheckDimension andCUS-
TODES?
CACheck detects 401 6ut of a total of 1,586 additional
true smelly cell arrays that are missed by AmCheck.
If one uses the coverage of70% asa reliable threshold
for smelly cell array detection, the precision for CA-
Check and AmCheck is 86.8%and 71.9% respectively.
The recall rate for CACheck and AmCheck on smelly
cell array detection is 71.0% vs. 60.3%, respectively
Excel, UCheck/ Dimension and CUSTODEScan detect

make our sampled spreadsheets more representatie for - 5
the Enron corpus. only 2.2%, 0.2% and37.4% (out of 8,139)CAChec k 6 s
Table 13gives the statistics of the sampled spreadsheets validated -as-true smelly cells, respectively.

from the Enron corpus (columns 2- 7 for row Enron). Our
sampled 50 Enron spreadsheets(SS)contained 102 work-
sheets (Worksheet) and 27,547 formulas (Formula). Fol-
lowing our earlier inspection process for the EUSEScorpus,
our manual inspection of these Enron spreadsheets identi-
fied a total of 1,175cell arrays (CA). Among them, 128cell
arrays are smelly (SCA). We also identified 483smelly cells
(Smelly cell) from smelly cell arrays. >
Table 13alsoc o mpar es Crdalhrateslorotee
EUSESand Enron corpora (columns 8-10). We observe
that C A C h e aekdll mtes for cell array detection (89.8% :
vs. 90.0%; CA), smelly cell array detection (71.0%vs. 72.7%; EUSES and Enron corpora isalso comparable (71.0% vs.
SCA) and smelly cell detection (60.9% vs. 66.5%; Smelly 72.7%).
cell) are close to each otherfor the EUSES and Enroncor- gg Threats to Validit y
pora. This suggeststhat CACheck has a comparablerecall
rate on smelly cell array detection for the EUSESand Enron
corpora.
Therefore, we draw the following conclusion:

— — < e r tential threats in our evaluation .
" "1 1 EOw!l EUuw E wUEIOBBgER GEUY ; ;

i it T s . A Representativeness ofstudied spreadsheets To general-
WA 6 EOA LE EOOUNEY T wY OB WO P P g

.......... ize the conclusions made in our experimental evaluation,
the studied spreadsheets as experimental subjects should
be representative. We selected the EUSES and Enron cor-

67Research Questions Revi spPofetygo well-known and large spreadsheet corpora,

Finally, we revisit our research questions RQ4 7: which have been well recognized and widely used for
spreadsheetrelated research studies[9], [25], [31], [53].

RQ7 (Consistency): Can CACheck obtain consistent results on
different spreadsheet corpora, such as the EUSES and Enron cor-
pora?

The EUSESand Enron corpora have comparable per-
centages on inhomogeneous cell arrays and smelly cell
arrays against all detected cell arrays.

The precision of smelly cell array detection on the
EUSES and Enron corporais comparable (86.8% vs.
87.2%).

The recall rate of smelly cell array detection on the

While our experimental evaluation shows that CACheck is
promising for detecting and repairing ambiguous compu-
tation smells in real-life spreadsheets,we discuss some po-

x OB E

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 23

Smelly cell array validation . Our experimental evalua-
ti on on Quelidion anisndely cell array detection,
as well asits comparisons to existing work , relies on the
validation of its detected smelly arrays. Due to the fact of
lack of responsible authors, we manually validated these
detected smelly arrays in their concerned spreadsheets.In
order to reduce possible mistakes we could introduce, we
adopted some helping strategies: (1) Some tables or work-
sheets are similar to each other, and they help us double
check our validation results . (2) We tried to understand the
semantics ofcell arrays according to their related labels, ra-
ther than treating cell array extraction and smelly cell array
detection simply as a syntactic process (3) Some cells in
smelly cell arrays, although containing unusual plain val-
ues (e.g., 12,98), could be successfully recovered by our
inferred formula pattern . Such discovered knowledge
(missing formula) helped us double check related cell ar-
rays and their intended formula patterns .

Spreadsheet selectionfor the recall study. The recall
study requires ground truths for all studied spreadsheets.
To reduce our efforts, we sampled 50 spreadsheets from
the EUSES corpus and manually identified their contained
cell arrays and smelly ones. Our sampling was random,
but focusing on those spreadsheetsthat we can fully un-
derstand (i.e., those spreadsheets any one of us could not
understand or we do not agree on with each other were
discarded). Similar treatments were also applied to the re-
call study on the Enron corpus. Still, as mentioned earlier,
our sampled spreadsheets have comparabledistribution s
of smelly cell arrays with respect to the whole EUSEScor-
pus. We consider that this should alleviate possible threats
in our sampling process. If one, who has different domain
knowledge , samples spreadsheés from the EUSES corpus
in a different way , the corresponding recall rate might be
different (not large, we believe). We note that our experi-
mental process canstill be similarly applied and thus reus-
able.

7 RELATBVMORK

In this section, we present and discuss related work in re-
cent years. We focus on those pieces of work that concern
spreadsheet quality (e.g., spreadsheet erros, auditing, er-
ror detection, debugging and testing), and techniques re-
lated to our CACheck approach (e.g., program synthesis
and semantic bug analysis).

Spreadsheet errors Spreadsheet erors are common [44],
[45], [46]. They can cause serious financid loss [54]. The
ambiguous computation smell s studied in this article may
not causeerrors immediately , but would degrade spread-
sheets dquality gradually and boost potential errors.
Spreadsheets suffeing from ambiguous computation
smells contain unclear or even conflicting computation al
semantics, which make them difficult to maintain in a cor-
rect way.

Spreadsheet auditing . Auditing is a way to maintain for
spr eads he e todadilitate awiting,t Cyermoni et al.
[11], [12], [41] proposed high -level structures (logical aregs
by aggregating cells to help end users understand large

spreadsheets, such ascopy equivalencg.e., two cells6for-
mulas are identical), logical equivalencé . e. , t wo
mulas differ only in co nstant values and absolute refer-
encey, structural equivalencéi.e., two ¢ e | fdrrsulas differ
in constant values and absolute/ relative references, and
the same operatorsor functions are applied in t he same or-
der). These bgical areasassistend usersto better under-
stand conceptual models behind spreadsheets, and to find
smelly cellsin spreadsheets more easily Thus, some com-
mercial spreadsheet tools (e.g.,0AK [57], EXChecker[58],
Spreadsheet Detective[60] and Spreadsheet Auditor [61])
have adopted this idea. The concept ofcell array proposed
in this article is similar to copy equivalence. However, sev-
eral differences exist: (1) The auditing technique visualizes
logical areas in spreadsheets, and as& end users to spot
dangerous parts in them, while CACheck spots smelly
cells automatically. (2) The auditing technique requires
that, for two cellsin a certain kind of logical area, their for-
mulas should have the same operators and functions ap-
plied in the same order. This would exclude cell arrays,
like [D2:D7] and [B9:C9]in Fig. 1(a), from consideration. (3)
CACheck can aggregate smelly cells that do not satisfyre-
quirements of logical areas, such as cells with inconsistent
or even missing formula s, while the auditing technique
cannot. (4) CACheck can repair smelly cells by suggesting
their intended formula patterns , while the auditing tech-
nique does not support this. (5) CACheck can rank smelly
cell arrays according to their different levels of coverage,
while the auditing technique needsend users toaudit cells
inside or adjacent to logical areasindividually .
Spreadsheet error ctection and debugging Various
techniques have been proposedto detect and debug errors
in spreadsheets. A recent survey [35] provides in -depth re-
views of these techniques. It summarizes many main
spreadsheet error detection techniques For example,
UCheck [4] and dimension inference [8] use a type system
to check unit and dimension errors, respectively. They fo-
cus on whether units can be combined correctly into one
cell. Smellsheet Detective[14], [15] detects statistical smells,
type smells, content smells and functional dependence
smells. Hermans et al. proposed visualizing spreadsheets
by dataflow graphs [28], and detected inter-worksheet
smells in these graphs [30]. They also proposed detecting
smellsfrom data clones[31], spreadsheet formulas[29] and
lookup functions [25]. Commercial spreadsheet tools (e.g.,
Spreadsheet Professional[56], OAK [57], EXChecker [58]
and PerfectXL [59]) can detect various syntactic errors (e.g.,
referencing empty cells, division by zero , and so on). These
pieces of work focus more or lesson syntactic errors, while
our CACheck focuseson missing formula and inconsistent
formula smells, which concern semantic errors. Our CA-
Check also detects conformance errors caused by ambigu-
ous computation smells. Its scope isthus orthogonal to ex-
isting work . Besides, according to the spreadsheet research
survey [35], due to the structure of spreadsheets (e.g.com-
putations are hidden behind the cells), locating spread-
sheet errors is typically a hard task. Thus, many debug-
ging techniques have been developed for spreadsheets,

24

e.g., slicing-based debugging [47], spectrum-based fault lo-
calization [33], [48], constraint-based fault localization [34],
repair-based debugging techniques [3], and so on. These
debugging techniques wusuall
tions or judgments about outputs of certain cells. Therefore,
our CACheck differs from these debugging techniques in
that it does not rely on such expectations or judgments to
work .

Spreadsheet nodeling and testin g. Constructing rigor-
ous models (explicit abstractions) for spreadsheets[2], [13],
[27] can help end usersreduce chances of introducing am-
biguous computation smells. Yet, constructing such mod-
els from spreadsheetscan be challenging. Its effectiveness
depends largely on the correctness ofunderlying spread-
sheets, and ambiguous computation smells can reduce its
precision and thus effectiveness Instead of introducing an
explicit abstraction, XanaSheet[32] employs origin track-
ing techniques to maintain a live connection between the
source and destination of copy-paste actions. Whenever a
copied formula is edited, the modification can be trans-
formed and replayed on the original and all other copies.
Thus, inconsistent modifications of copy-pasted cellscould
be avoided. Our CACheck also concerns this problem and
addressesit by using both heuristics and formula synthesis.
Spreadsheet esting (possibly based on models)[1], [5], [20],
[37] is a related topic, and its error detection capabilities
need to rely on test oracles provided by users(e.g., testfor-
mulas extracted from reference [24] or manual confirma-
tion directly from users). Our CACheck extracts partial
computational semantics from cell contents and recovers
intended formula patterns. Thus, CACheck does not re-
quire explicit test oracles to work . Ambiguous computa-
tion smells may also affect spreadsheettesting, and CA-
Check assists spreadsheettesting by detecting and repair-
ing smelly cells.

Program synthesis. Our CACheck is based on compo-
nent-basedprogram synthesis[22], [36]. Typically, the pro-
gram synthesis technique [22], [36] can automatically gen-
erate loop-free programs based ona user-provided input -
output oracle (e.g.,input -output pairs [36] or specifications
[22]) and components. Regarding our problem (automati-
cally detecting smells in smelly cell arrays without u ser in-
tervention), the input -output oracle and components are
unavailable forsynt hesi zi ng a smel |l
pattern. Sothe original program synthesis technique [22],
[36] cannot be directly used by CACheck. Thus, CACheck
needs toextract such components and input -output oracle
(i.e., input -output pairs and specifications) from smelly cell
arrays, and alleviates their noises when adapting the pro-
gram synthesis technique [22], [36] for spreadsheet smell
detection. Program synthesis has also been used for other
purposes in the spreadsheet research, e.g., stringransfor-
mation from examples [21], table transformation [23], and
number transformation [50]. In this article, we use pro-
gram synthesis in a novel way to detect and repair ambig-
uous computation smells in spreadsheets by recovering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Semantic bugs. Similar to smells in spreadsheets, se-
mantic bugs are alsoa dominant cause for software failures
[39], [51]. Most semantic bugs require domain knowledge
tp undeestared ndeétectoand raepairg39]s MUVIe[40paadcDea -
fUse [45] can detect semantt bugs related to inconsistent
updates to correlated multi -variables and datafl ow inten-
tions, respectively, in software. They rely on invariant min-
ing and detection techniques. Our CACheck uses adiffer-
ent approach by inferring intended computational seman-
tics by heuristics and program synthesis techniques.

8 CONCLUSI ON

In this article, we study the problem of extracting cell ar-
rays and detecting ambiguous computation smells from
spreadsheets Such smellsare causedby end usersdad hoc
modifications to spreadsheet cells that should stick to cer-
tain computational semantics. We propose a novel ap-
proach, CACheck, to detect and repair ambiguous compu-
tation smells by inferring intended formula pattern s for
smelly cell arrays in spreadsheets. This also helps detect
challenging conformance errors in spreadsheets which
would otherwise be left unnoticed . Our experimental eval-
uation based ontwo large-scale spreadsheet corpora re-
veals that smelly cell arrays are common, and CACheck is
capable of detecting smelly cells effectively with a high
precision and recall rate.

In future, we plan to study more spreadsheetsand iden-
tify other types of ambiguous computation smells. For ex-
ample, in our recall study (Section6.5.3, we found that a
non-negligible proportion (about 18.7 %) of true smelly cell
arrays have only plain values (i.e., no formula at all for all
concerned cellg. Our current CACheck is still unable to de-
tect such smelly cell arrays and synthesize formula pat-
terns for them. We plan to further investigate them and
come up with an approach to detecting them and inferring
their intended formula patterns . Besides, CACheck ex-
tracts cell arrays that contain only consecutive cells, and
this may prevent it from detecting challenging smelly cell
arrays that contain non-consecutive cells We are also in-
terested in extending CACheck for such cases.

ACKNOWLEDGMENT

Yhe Suthdrs wisttd thaRK/TSES ediford dnB'dhbnPmous re-
viewers for their valuable comments on improving this ar-
ticle. This work was supported in part by Beijing Natural
Science Foundation (4164104)National Key Research and
Development Plan (2016YFB1000808 Research Grants
Council (General Research Fund611811)of Hong Kong,
National Natural Science Foundation (Grant Nos.
61472174, 91318301, 613214df China, and the Collabo-
rative Innovation Center of Novel Software Technology
and Industrialization of China.

REFERENCES

1] R. Abraham
Aut omati c

and M.
Test Case

Er wi g, 0 .
Generat

computational semantics aligned to the actual computa-
tionsin smelly cell arrays.

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 25

(2]

(3]

[4]

(5]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

IEEE Symposium on Visual Languages and Hur@en- Ambiguity Harmful? Detecting and Repairing

tric Computing (VL/HCC), 2006, pp.43350. Spreadsheet Smells Due to Ambiguous Computa-

R. Abraham and M. Er wi g, otl ind re JPdceadimgs of taar36th mtereasional Confer-
from Spr ea Poteedngssfthé 28th interna- ence on Software Engineering (ICSE)14, pp. 848858.

tional Conference on Software Engineering (ICS0P6, [18] W. Dou, L. Xu, S.C. Cheung, C. Gao, J. Wei, and T.

pp. 1826191. Huang, OVEnron: A Versione
R. Abraham and M. Erwi g, O0OGamad DRédlugt e dd BEwa leBabdieedings & tha | y
sheet Debugger for End Users , 6Prdceedings of the 38th International Conference on Software Engineering
29th International Conference on Software Engineering (ICSE SEIP) 2016 pp. 162171

(ICSE), 2007, pp. 258260. [19 M. Fisher and G. Rot her mel

R. Abraham and M. Er wi g, 0 US6Heat Cokpus: AASheBanl Resauidtesfdr Supporting Ex-
Type Checker fDYVis. IlangdCoftdmite r s, gerimentation with Spreadsheet Dependability

vol. 18, no. 1, pp. 7895, 2007. Me ¢ h a n i ACMSIGSOFT Softw. Eng. Notewol.
R.Abraham and M. Erwig, OMut at BOpno.4(pp.&5,a000r s f or

Spr e ad s lkEEeTtass, Softw. Engvol. 35, no. 1, [20] G. Rothermel, L. Li, C. Dupuis, and M. Burnett,

pp. 940108, 2009. OWhat You See I s What You T
D. W. Barowy, D. Gochev, and E. D. Berger, Testing Form-b ased Vi sual Moceed-r a n
0CheckCel |l : Data Debuggi ng ifge of th&Siptermatodat Coeferdnce 00 Software Engi-
Proceedings of the ACM International Confeteron Ob- neering (ICSE) 1998, pp. 198207.

ject Oriented Programming Systems Languages Applicf2l] S. Gul wani , OAut omat i img S
tions (OOPSLA) 2014, pp. 508523. Spreadsheets Using Inputo ut put Ex aRmpl es

M. Burnett and M. Er wi g, 0 Vceedingslof tiye 38thuAnual ACM SIGPILASIGACT
ference rules about dBER | e s Sympabsiumoan &Pringiges ,ofoProgramming Languages
Symposia on Human Centric Computing Languages and (POPL), 2011, pp. 318330.

Environmerts (HCC), 2002, pp. 14@148. [22] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan,

C. Chambers and M. Erwig, 0ASBtymnmdteisad-fsde &tfeeglrta anBiocéedings of

Di mensi on Errors J WVis. 8gng. e a d théd 32edtACM 8IGPLAN Conference on Programming
Comput, vol. 20, no. 4, pp. 269283, 2009. Language Design and Implementation (PL22P11, pp.

C. Chambers and M. Er wig, 628MReasoning About

Spreadsheets with Labels and Dimen s i o0 4. 9/is.6 [23] W. R. Harris and S. Gul warr

Lang. Comput.vol. 21, no. 5, pp. 248262, 2010. Transformations f Proceediigx a mp
S. C. Cheung, W. Chen, Y. L i the 32ral M@M SIGPIANX GonferénWbS Fr@ramming
DES: Automatic Spreadsheet Cell Clustering and Language Design and Implementation (PL2P11, pp.
Smel | Detection Using Stron3lm®hd Weak Features, o

in Proceedings of the 38th Internation@bnference on [24] F . Her mans, Ol mproving Spre
Software Engineering (ICSE2016 pp. 464475 in Proceedings of the Conference of the Center for Ad-
M. Cl ermont , OA Scal abl e ApwmncedaStubieston Cofaparative Raesbaecle (CASCON)
Vi sualization, 6 2003. 2013 pp. 56069.

M. Cl ermont and R. Mi tt eg25mé&i r Heomaws t i Bg Aiawagleogl! ou,
Spreadsheet Proaalings ofshe ldterman ing Problematic Lookup Func
tional Conferace on Information Systems Implementa- in IEEE Symposium on Visual Languages and Human
tion and Modeling 2003, pp. 8897. Centric Computing (VL/HCC) 2015, pp. 158157.

J. Cunha, M. Er wi g, and [26 FSHermansara E. MuphytHo rhd t, i @osE n& porne a
Inferring ClassSheet Model ssfieeims Sameé aReshated, Bmainl s :

IEEE Symposium on Visual Languages and Hur@en- in Proceedings of the International Conference on Soft-
tric Computing (VL/HCC) 2010, pp. 933100. ware Engineering (ICSERO015, pp. 816.
J. Cunha, J. P. Fernandes, P. Martins, J. Mendes, and[27] F . Her mans, M. Pinzger, an

J. Saraiva, 0Smell Sheet D e t ternatichlly ExtractiAg Class ®iagraine from Speetide c t -
ing Bad Smell s i [EEESSympesath s h e 8 h 8 ¢ 6 Brocéedings of the 24th European Conference
on Visual Languages and Hum&entric Computing on ObjectOriented Programming (ECOOR)2010, pp.
(VL/HCC), 2012, pp. 248244. 52075.

J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva,[28] F. Hermans, M. Pinzger, and A. van Deursen, 0OSup-
0OTowards a Catal og of Copr e a gastihgePeofessiBnaleSpréadshe@t Users by Generat-
putational Science and Its Applicatign012, pp. 208 ing Leveled Dat af PraceedinDd of g r
216. International Conference on Software Engineering
J. S. Davis, 0Tools flard. Spr ((CSE)R01E ppt458460di t i ng, 6

Hum.-Comput. Stud, vol. 45,n0. 4, pp. 429442, 1996. [29] F . Her mans, M. Pinzger, an
w. Dou, S. C. Cheung, and J .tectilgeGode Sédllsin Spreadsheett For

26

(30]

[31]

(32

[36]

[37]

[38]

[39]

[40]

[41]

Proceedings of International Conference on Software
Maintenance (ICSM) 2012, pp. 408418. [42]
F. Her mans, M. Pinzger,
tecting and Visualizing Inter -worksheet Smells in
Spr e ad s h Breceeslings of fHaternational Con-
ference on Software Engineering (ICSE)12, pp. 44®
451.

F. Hermans, B. Sedee, M. Pinzger, and A. van
Deursen, oOData Clone Det e
Spr e ad s h Breceeslingd of thaaInternational Con-
ference on Software Emgiering (ICSE)2013, pp. 298

301. [45]
F. Her mans and T. v aPasted e r
Tracking: Fixing Spreadsheets Without Breaking

T h e m, Broceéedings of the 1st International Conferf46]
ence on Live Coding (ICLC2015.

B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E.
Getzner, 00On the Empiri c @l
calization Techni gueRocekedr
ings of the 16th International Conference on Fundamental
Approaches to Software Engineering (FASE)13, pp.
68082.

D.Jannachand T Sc hmi t sased®Mgnadsis |
of Spreadsheet Programs: A Constraintbased De-
buggi ng A pAotonn Saftva. Erg. vol. 23, no.
1, pp. 1055144, 2014.

D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa,
0OAvoiding, Finding and oi xi
A Survey of Automated Approaches for Spreadsheet

QA , J6Syst. Softw.vol. 94, pp. 129150, 2014.

S. Jha, S. Gulwani, S. A. Seshia, and Ashish Tiwari,

0 Or aguideel Component -based Program Synthe-

s i s, Rroceedings of the 32Nd ACM/IEEE Interna-[50Q]
tional Conference on Software Engineering (IG2B}0,

pp. 2153224.

K.J. Rothermel, C. R. Cook, M. M. Burnett, J. Schon-
feld, T. R. G. Gr een,
Testing in the Spreadsheet Paradigm: An Empirical
Ev al uat Procaedidgs of thiaternational Confer-
ence on Software Engineering (ICSEQ00, pp. 23@239.
B. KI i mt and Y. Yang,
p us , OFirsti Conference on Email and Aripam [53]
(CEAS) in Cooperation with AAAl and The International
Association for Cryptagic Research and The IEEE Tech-
nical Committee on Security and Priva@004. [54]
L. Lu, A. C. Arpaci -Dusseau, R. H. Arpaci-Dusseau,
and S. Lu, OA Study of
in Proceedings of the 11th USENIX Conference on Fi[B5]
and Storage Tedbologies (FAST,)2013, pp. 3B44.

S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A.
Popa, and Y. Zhou,
Multi -variable Access Correlations and Detecting
Rel ated Semantic and
ceedings of twentfirst ACM SIGOPS symposium on [57]
Operating systems principles (SOSRPO07, pp. 108116.

R. Mittermeir and M.
Structures in
of the Ninth Working Conference on Reverse Engineering

[43]

(48]

[49]

(52

ol nt ruBA,wa. L3 \Yileytcbne 20BBnr o n

OMUVI [56/AbSpmabidshkky

@Vek r mo Mprs2016].Fi ndi ng
Spr e PocddagstS8IPo B Chemcsk ér i &

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(WCRE), 2002, pp. 225232.

L. de Moura and N. Bj Brner ,

andS Al. v evrarodeebirgs of she mMheorydabde Practice of

Software, 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems
(TACAS/ETAPS) 20@8, pp. 330340.

R. Panko, OFacing the
r o r Begi® Linevol. 37, no. 5, pp. 10, 2006.
iRon RRndP¥in&walainzdat §on Aiumr i
PankodHa |l ver son Taxonomy of
Decis. Support Systvol. 49, no. 2,pp. 2353244, 2010.
S. G. Powel | , K. R. Baker,
Révoem, ob6Cdphye Literature o
Decis. Support Systvol. 46, no. 1, pp. 128138, 2008.
K. Rajalingham, D. R. Chadwick, and B. Knight,
0Classificatiporreadsdcfeet S
ArXiv08054224 Cs2008.
Ev aRaliad h weni mo,f

Probl

ge
Sp

Er

G.auRat hLeor-me | ,

S Ppreadaheetsh éAp tlrsegratedi Wethodology for

Spreadsheet Test i ngCMaShH De
PLAN Not., vol. 35, no. 1, pp. 2938, 1999.

J. R. Ruthruff M\.Burnett, and G.
active Fault Localization Techniques in a Spread-
sheet E n v i IEEE Trams. Sdfty. &ngvol. 32,
no. 4, pp. 213239, 2006.

Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and
W. Zheng, o0Do | Uidoe?: DefUse: Wr o |
BafinitiBnp-Use lavargarmssfoz DeteeingrConcusrency

and Sequent iPeoteed®gs@fsthe ACM in-
ternational conference on Object oriented programming
systems languages and applications (OOPS2A)1L0, pp.
1605174.

R. Singh and S.Gul wani , 0Synthesi z
Transformations from Input -Out put Exampl e
Proceedings of the 24th International Conference on Com-
puter Aided Verification (CAV) 2012, pp. 634651.

Rot

a n {b1] GL. TaR € tLiu,&rLimx. Wang, & VZNo8,laMiCTZhai,

0Bug Charattcs in OperEmSour
pir. Softw. Eng, vol. 19, no. 6, pp. 16681705, 2014.

J. Walkenbach, Excel 2013 Power Programming with
Cor -

R. Zhang, C. Xu, S. C. Cheung, P. Yu, X. Ma, and J.

Lu, 0 How Ef $pecadsheet Anontakes be
Detected: An Em®Syst $obtva2016.St u d
OEuropean Spreadsheet Ri s k
[Online]. Available: http://www.eusprig.org/hor-

L i n u xor-BtoriesdrtmIJAceessedm0tMar-a80l15).t i on, 0

OHow use thes Abhtot &ml i noO
[Online]. Available: http://support.mi-
crosoft.com/kb/291359. [Accessed: 10-Mar-2015].
| Irfefred snigonal . ¢
[Ac-

t o

http://www.spreadsheetinnovations.com/.

@ n ¢ u rceseed: ©9Apr-B01Gl.s , 6 i n

00OAK Operis An@nling]ls Availabl&i t . 6
http://www.operisanalysiskit.com/. [Accessed: 09 -
Hi gh

[Onl i ne].
http://www.finsburysolutions.com/exchecker/.

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 27

[Accessed: 09Apr -2016].

[599 oPerfect XL. O [Onl ine]. Availabl e: http://info-
tron.nl/en/home -2/. [Accessed: 09-Apr -2016].
[60] 0 Spreadsheet Detective. O [Onl ine]. Avail abl e:

http://www.spreadsheetdetective.com/. [Accessed:
09-Apr -20186].

[61]] 0 Spreadsheet Audi tor . ¢ [Onl i ne]. Avail abl e:
https://www.spreadsheetauditor.com/. [Accessed:
09-Apr -20186].

[62] 0 CACheck project. 6 [Onl i ne]. Avail abl e:
http://www.tcse.cn/~wsdou/project/cellarray.
[Accessed: 14Apr -2016].

[63] 0 Ap ac he-the Qava API for Microsoft Docu-
ments. o6 [Online]. Available: http://poi.apache. org/
[Accessed: 13Feb-2016].

Wenshemgrecei ved the doctoral degree in
computer sctcieemadIraggni -

versity of Chinesei Ac20&mhMy of Sciences
He ans assistanttlpeofassotutaea of

Software, Chinese Academy of Sciences (I S-
CAS) His research endutserests include
software epgogeamiagal ysi s, testing

and debugging, cloud computing, and big data
software engineering

Changr Xaei ved the doctoral degree in com-
puter science andhenbongering from
Kong University of Stnence and Technology.

2010, he joined Nanjing University, where he is
an associate professor with the State Key Labor -
atory for Novel Software Technology and the De-
partment of Computer Science and Technol ogy.

He participates actively in program and organi z-
ing commi tatf @es iaft emnati onal sof twar e

engineering c onfcehraeg meedas . t hiee co

FSE 2014 SEES Symposium and MI DDLE-

WARE 2013 Doctoral Symposi um. His research interests include big
data software engineering, software testing and analysis, and adap
tive and esnbemdded sy

SC.Cheumgceived his doctoral degree in
Computing from the I mperial College London. 1In
1994, he joined The Hong Kong University of
Science and Technol ogy, where he is a full pro-

1 ! fessor of Computer Science and Engineering.

N He particiyatmspraedri amland organi z-

%’ ing committees of maj or international software
engineering conferences. He was the General
Chair of the 22nd ACM SI GSOFT International

4 Symposium on the Foundations of Software En-
gineering (FSE 2014). He was a director of the

Hongn&oR & D Center for Logistics & Supply Chain Management

Enabling Technol ogies. His research interests include program analy

sis, testing and debugging, big data software, c¢cloud computing, i ni

net of things, and mining software repository.
Jun Weiceived the PhD degree in computer
science in 1997 from the Wuhan University,
China. He was a visiting researcher in the CSE
Depart ment, Hong Kong University of Science
and Technology, in 2000. He is a professor in the
I nstitute of Sofemwnref Ehinese Acad
ences (I SCAS). His area of research is software
engineering and distributed computing, with em-

phasi s on -maddtdewairset ri buted soft -
ware engineering.

