
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

CACheck: Detecting and Repairing Cell
Arrays in Spreadsheets

Wensheng Dou, Chang Xu, S.C. Cheung, and Jun Wei

Abstract—Spreadsheets are widely used by end users for numerical computation in their business. Spreadsheet cells whose

computation is subject to the same semantics are often clustered in a row or column as a cell array. When a spreadsheet

evolves, the cells in a cell array can degenerate due to ad hoc modifications. Such degenerated cell arrays no longer keep cells

prescribing the same computational semantics, and are said to exhibit ambiguous computation smells. We propose CACheck, a

novel technique that automatically detects and repairs smelly cell arrays by recovering their intended computational semantics.

Our empirical study on the EUSES and Enron corpora finds that such smelly cell arrays are common. Our study also suggests

that CACheck is useful for detecting and repairing real spreadsheet problems caused by smelly cell arrays. Compared with our

previous work AmCheck, CACheck detects smelly cell arrays with higher precision and recall rate.

Index Terms—Spreadsheet, cell array, ambiguous computation smell

—————————— ——————————

1 INTRODUCTION

preadsheets are generally developed and maintained
by end users who are not familiar with appropriate soft-

ware development practice. As a result, spreadsheets have
been found to be error-prone [45]. Spreadsheet errors can
induce great financial losses [43], [54]. Various techniques
have been proposed to improve the quality of spreadsheets.
Some examples include testing [1], [20], [37], error or smell
detection [6], [7], [29], [31], debugging [3], [47], and audit-
ing [11], [12], [16].

A spreadsheet comprises clusters of cells arranged in
rows and columns. We refer to a cell cluster that contains
cells as a cell array when these cells are subject to the same
computational semantics. For example, the cells [D2:D7] in
Fig. 1(b) implement the semantics of “Total” and uni-
formly follow a formula pattern of Di = Bi + Ci, where 2 ≤ i
≤ 7. Cells in a cell array are usually copy-equivalent [11],
although there are inconsistent cases. In our empirical
study, we found 591,413 non-equivalent cell arrays in the
19,963 spreadsheets in the EUSES [19] and Enron [26] cor-
pora, which are the two mostly cited spreadsheet corpora
so far. This indicates that cell arrays are common in real-
life spreadsheets.

Spreadsheet smells can occur due to a distortion of, or
an ambiguity in, the meaning of data or formulas [46].
Spreadsheet software like Excel provides two useful edit-
ing features, copy-and-paste and auto-fill, to reduce the
chances of introducing smells during the creation of new
cells in a cell array. Both features can help automatically
deduce a formula pattern from selected sample cells [55],
and apply it to the new cells in a cell array.

Although these two features provide convenience in ed-
iting spreadsheets, their application is restrictive in the
sense that end users have little control on the formula pat-
tern deduction process. They may not even be aware of the
deduced formula patterns. There are rare records (e.g.,
copy-paste tracking in XanaSheet [32]) in the new cells doc-
umenting that they have been created using these two fea-
tures, and therefore have to be consistently modified in fu-
ture. Little provision is offered to warn end users from
modifying these cells arbitrarily.

In principle, all cells in a cell array should prescribe the
same computational semantics. A cell array is said to suffer
from an ambiguous computation smell when there is more
than one computational semantics among the cells it con-
tains. Ad hoc modifications to these cells are one major
cause of ambiguous computation smells. For example, the
cell array [D2:D7] in Fig. 1(a) could be a consequence of ad
hoc cell modifications that result in four different formula
patterns, leading to an ambiguous computation smell.
Note that no warning is issued by Excel to alert end users
of such a smell. This smell can exist for a long time and
even be replicated to other spreadsheets without being dis-
covered. Even though each cell in this cell array [D2:D7] is
evaluated to a correct value, it can degenerate into errors
upon future updates of entries in columns B and C. For ex-
ample, the value in D2 would be incorrect if the value of
C2 is later updated to a non-zero value. As ambiguous
computation smells are vulnerable to errors, their early de-
tection is important. It is particularly the case for those
spreadsheets that have liability consequences such as com-
pany financial reports.

Spreadsheet software like Excel provides a mechanism
to detect cells with inappropriate formulas. However, the
detection is applicable only to the situation where: (a) a
cell’s formula is syntactically inconsistent with those of its
two adjacent cells, and (b) the formulas of the two adjacent
cells are syntactically consistent. As such, Excel is not able

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 W. Dou and J. Wei are with the State Key Laboratory of Computer Science,
the Institute of Software, Chinese Academy of Sciences, Beijing, China. E-
mails: {wsdou, wj}@otcaix.iscas.ac.cn.

 C. Xu is with the State Key Laboratory for Novel Software Technology and
the Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu, China. E-mails: changxu@nju.edu.cn.

 S.C. Cheung is with the Department of Computer Science and Engineer-
ing, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China. E-mail: scc@cse.ust.hk

S

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

to issue any warning for the cell array [D2:D7] in Fig. 1(a).
Besides, UCheck [4] and dimension inference [8] exploit in-
formation about labels and headers in spreadsheets to
check the type consistency of formulas. Since each cell in
the cell array [D2:D7] in Fig. 1(a) does not have any type
inconsistency, the smell cannot be detected by UCheck or
dimension inference, either. Some commonly used com-
mercial spreadsheet tools (e.g., Spreadsheet Professional
[56], OAK [57], EXChecker [58] and PerfectXL [59]) con-
sider cells D4 and D5 as errors with not quite relevant ex-
planations (e.g., due to the fact that the two cells reference
empty cells like C4 and C5). Some tools (e.g., OAK, EX-
Checker, Spreadsheet Detective [60] and Spreadsheet Au-
ditor [61]) adopt Clermont et al. [11]’s idea to annotate
copy-equivalent cells with colors, and assist end users to
locate potential inconsistencies. However, they do not au-
tomatically detect the smell in the cell array [D2:D7] in Fig.
1(a).

Like semantic bugs in programming languages [39], [51],
it is hard to identify which cells contain inappropriate for-
mulas, because this involves knowledge of intended se-
mantics, which often requires human judgments or speci-
fications. Automatic repairing of inappropriate cell formu-
las is another non-trivial challenge.

In this article, we focus on numeric cells whose numeric
value is either computed by a formula or given directly
without computation. Examples of these are cells A5 and
A6 in Fig. 1(a). We study the automated extraction of cell
arrays from numeric cells as well as the automated detec-
tion and repairing of those cell arrays that suffer from am-
biguous computation smells. Cells that are subject to the
same evaluation in a cell array are realized by the same for-
mula pattern. We found that 17.3% of consecutive numeric
cells share the same formula pattern while 82.7% do not.
The first key challenge is to identify which of these 82.7%
are cells belonging to some cell arrays even they do not
share the same formula pattern with their neighbors. Once
a cell array is identified to suffer from ambiguous compu-
tation smells, the repair action is to infer an appropriate
formula pattern so that its cells are subject to the same eval-
uation. The second key challenge is how to infer appropri-
ate formula patterns for repairing smelly cell arrays that
suffer from ambiguous computation smells. Our approach
automatically extracts computational semantics from cells
in a cell array, recovers its formula pattern, and further de-
tects smells in its contained cells. Thus, our approach could
detect smells without human judgments. Fig. 1(b) shows a
possible repairing of the spreadsheet in Fig. 1(a).

We evaluated our approach (CACheck) from three per-
spectives. First, we analyzed the EUSES [19] corpus to
learn how often smelly cell arrays can occur, and measured
the precision and recall rate of our approach for detecting
such cell arrays. Second, we compared CACheck with our
earlier version AmCheck in precision and recall on the
EUSES corpus. Third, we further analyzed a more recent
and industrial corpus Enron [26] to see whether we can ob-
tain results similar to those obtained from the EUSES cor-
pus. Our evaluation reports that: (1) 1,586 cell arrays in the
EUSES corpus suffer from ambiguous computation smells.
They cover 7.8% identified cell arrays. (2) Smelly cell arrays

reveal weakness and can cause errors in spreadsheets.
8,139 cells in the 1,586 smelly cell arrays were decided as
smelly. They contain either wrong values or formulas. This
number (8,139) occupies 25.9% of all cells in 1,586 smelly
cell arrays, or 3.3% of all cells in 20,320 cell arrays. (3) CA-
Check can detect 98.3% of the smelly cell arrays detected
by AmCheck, and 401 (out of 1,586) additional smelly cell
arrays that are missed by AmCheck. CACheck also has a
higher precision (86.8% vs. 71.9%) and recall rate (71.0% vs.
60.3%) than AmCheck. Other existing spreadsheet smell
detection techniques (e.g., Excel, UCheck/Dimension [4],
[8] and CUSTODES [10]) can detect at most 37.4% of CA-
Check’s detected smelly cells. (4) CACheck has compara-
ble precision (86.8% vs. 87.2%) and recall rate (71.0% vs.
72.7%) of smelly cell array detection on the EUSES and En-
ron corpora. Our approach can help end users detect and
repair such smells, thus improving the quality of their
spreadsheets.

We made the following main contributions in this arti-
cle:
 We empirically study the characteristics of cell ar-

rays in two spreadsheet corpora (EUSES and En-
ron). This study identifies several key observations
on cell arrays.

 We propose a novel approach, CACheck, to detect
and repair smelly cell arrays by identifying arrays
of cells that are subject to the same computational
semantics, inferring these cells’ formula patterns,
spotting incompatible patterns, and synthesizing
new patterns to repair the smells.

 We implement CACheck as a tool and evaluate it
experimentally on the EUSES and Enron corpora.

(a) A spreadsheet with ambiguous computation smells.

(b) The correct version of the spreadsheet in (a).

Fig. 1. A motivating example: the four cell arrays in (a) are ambigu-
ous; for each cell array, its contained cells do not all follow the same
formula pattern, e.g., the cells in CellArray2 do not uniformly follow
the formula pattern of Di = Bi + Ci (2 ≤ i ≤ 7); the spreadsheet in (b)
gives the correct version.

CellArray4

CellArray2 CellArray3

Correct Value: 7

CellArray1

Correct Value: 20%

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 3

Compared with our previous work AmCheck, CA-
Check detects smelly cell arrays with higher preci-
sion (86.8% vs. 71.9%) and recall rate (71.0% vs.
60.3%).

An earlier version of this work (AmCheck) appeared at
ICSE 2014 [17]. In this article (CACheck), we extend the
earlier version in five aspects. (1) We conduct an empirical
study on well-formed cell arrays in the EUSES and Enron
corpora (Section 4). The study finds two common struc-
tures by which spreadsheet cells with formulas are orga-
nized: homogeneous cell arrays and inhomogeneous cell arrays.
In a row-/column-based homogeneous cell array, the formula
of each cell consistently references cells from the same col-
umn/row as this cell, such as the column-based cell array
[D2:D7] in Fig. 1(b). In a row-/column-based inhomogeneous
cell array, the formula of each cell may reference cells from
columns/rows different from this cell, such as the column-
based cell arrays [A2:A7] and [E3:E7] in Fig. 1(b). (2) Am-
Check can only detect homogeneous cell arrays. However,
CACheck can detect both homogeneous and inhomogene-
ous cell arrays (Section 5.1), greatly improving its scope. (3)
We make several observations on cell arrays in our study.
CACheck leverages these observations to filter out
wrongly identified cell arrays, improving the precision of
cell array identification (Section 5.7). (4) AmCheck was
only evaluated on the EUSES corpus, while in this work,
we evaluate CACheck on both EUSES [19] and Enron [26]
corpora (Section 6), for more comprehensive comparison.
(5) Compared with AmCheck, CACheck provides higher
precision (86.8% vs. 71.9%) and recall rate (71.0% vs. 60.3%).

The remainder of this article is organized as follows.
Section 2 gives a motivating example and explains the use
of our technique. Section 3 defines and explains necessary
concepts like cell array and ambiguous computation smell.
Section 4 presents our empirical study on the EUSES and
Enron corpora. Section 5 elaborates on our smell detection
and repairing technique. Section 6 evaluates CACheck
with the EUSES and Enron corpora. Section 7 discusses re-
lated work, and finally Section 8 concludes this article.

2 MOTIVATION

In this section, we illustrate smelly cell arrays using an ex-
ample spreadsheet stemming from the EUSES corpus [19].
We then explain how to detect and repair such smelly cell
arrays.

2.1 Example

Fig. 1(a) shows a spreadsheet that computes monthly har-
vest of fruits. A cell array, which consists of numeric cells,
can exhibit two kinds of ambiguous computation smells:

Missing formula smell. This ambiguous computation
smell occurs when some cells in a cell array do not pre-
scribe any formula. Such a smell can be introduced to a cell
array when end users override the formula in a cell with a
plain value. For example, CellArray1 [A2:A7] is subject to
the computation of “Month” with an intended formula
pattern of Ai = Ai-1 + 1, where 3 ≤ i ≤ 7 (we use subscript to
represent row number). Unlike cells A3, A4 and A5, the
values of cells A6 and A7 are not computed by formulas.

Note that, the first cell A2 in CellArray1 gives a base value,
which is not computed by a formula.

Inconsistent formula smell. This ambiguous computa-
tion smell occurs when the cells in a cell array prescribe
different formula patterns. Such a smell can be introduced
to a cell array when end users specify the formula of a cell
in the cell array inappropriately without preserving the
cell array’s computational semantics. For example, CellAr-
ray2 [D2:D7] is subject to the computation of “Total” with
an intended formula pattern of Di = Bi + Ci, where 2 ≤ i ≤ 7.
End users may understand that there is no orange output
in February, and thus leave C2 empty. They specify a for-
mula that ignores C2 at D2, and as a result CellArray2 pre-
scribes more than one formula pattern. Inconsistent for-
mula smells also occur at CellArray3 [E3:E7] and CellAr-
ray4 [B9:C9].

Although CellArray2 and CellArray4 in Fig. 1(a) suffer
from ambiguous computation smells, the values given by
their cells are appropriate. However, the smells can lead to
errors in D2 and C9 if C2 is updated later with any non-
zero value. Besides, problems can arise when end users ap-
ply copy-and-paste or auto-fill operations to these cell ar-
rays later. A cell array suffering from ambiguous compu-
tation smell likely contains an error (e.g., A7 and E7) if no
formula patterns can be found to compute the values in it.

2.2 CACheck Overview

Several technical challenges need to be addressed in the
detection and repairing of cell arrays with ambiguous com-
putation smells in spreadsheets. We explain them using
the example in Fig. 1(a). First, does a cell (e.g., A3) belong
to a cell array? If yes, does this cell belong to a row-based
cell array (e.g., [A3:B3]) or column-based cell array (e.g.,
[A2:A7])? What are other cells for this cell array? Second,
do the cells in a cell array prescribe semantically different
formula patterns? Note that we consider two formula pat-
terns (e.g., x + x and 2*x) to be the same if the formulas
derived from these patterns offer the same computation.
Third, how may one construct an appropriate formula pat-
tern for a cell array that prescribes more than one formula
pattern? This is a challenging question because there are
chances that none of cells in such a cell array is using an
appropriate formula, e.g., cells B9 and C9 in CellArray4.
Even worse, cells in such a cell array may prescribe con-
flicting formulas patterns, e.g., cells D4 and D5 in CellAr-
ray2. Fourth, some cells (e.g., A6) in a cell array may pre-
scribe no formula. The values of these cells (e.g., A7) may
even conflict with their appropriate formula patterns.

In our earlier work AmCheck [17], we addressed the
challenge of cell array extraction by assuming that a cell
array’s orientation (row-based or column-based) and its
contained cells are determined by its referenced cells, i.e.,
homogeneous cell arrays (each cell in a row-/column-
based cell array references only the cells that share the
same column/row as this cell). However, our empirical
study reveals that a significant amount (21.0%) of cell ar-
rays are inhomogeneous, which AmCheck fails to extract.
For example, AmCheck does not work for CellArray3
[E3:E7] (column-based cell array), because cell E3 refer-
ences D2, which does not share the same row as E3. Even

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

worse, AmCheck would assume [A3:B3], [A4:B4] and
[A5:B5] as candidate cell arrays, but we can see that they
are not true cell arrays. The true cell array should be Cel-
lArray1 [A2:A7]. Note that the cell array [A2:A7] cannot be
extracted by AmCheck because it is column-based and
each of its cells references a cell in another row (different
from this cell). Therefore, AmCheck could miss true cell ar-
rays, and introduce false cell arrays.

Our CACheck adopts new heuristics to extract cell ar-
rays, and does not assume their orientations in advance.
The basic idea is that if two adjacent cells share the same
input dependence, they would belong to the same cell ar-
ray. This relaxed constraint helps detect more cell arrays,
such as CellArray1 [A2:A7], [A3:B3], [A4:B4] and [A5:B5].
However, which cell arrays are true? We did an empirical
study on real-life cell arrays to understand how cell arrays
are used (e.g., how cell arrays are structured in spread-
sheets). Then, we leverage the observations (e.g., non-
equivalent cell arrays rarely overlap) from this empirical
study to filter out wrongly identified cell arrays, such as
[A3:B3], [A4:B4] and [A5:B5] (i.e., these cell arrays overlap
with the true one [A2:A7]).

CACheck infers formula patterns by means of con-
straints in two steps. First, it uses values and formulas in a
cell array to infer underlying constraints of formula pat-
terns prescribed by this cell array. Second, it uses the in-
ferred constraints to derive target formula patterns. CA-
Check uses component-based program synthesis [22], [36]
to construct candidate formula patterns for repairing
smelly cell arrays. To achieve this, CACheck needs to cope
with the noises induced by conflicting formulas (e.g., D4
and D5) and potential errors (e.g., A7). For example, CA-
Check can construct a candidate formula pattern (Bi + Ci,
where 2 ≤ i ≤ 7) to repair the smelly cell array CellArray2
in Fig. 1(a), and a candidate formula pattern (SUM(X2, X3,
X4, X5) + X6 + X7, where X = {B, C}) to repair the smelly cell
array CellArray4. It can also use its inferred formula pat-
terns to detect errors (e.g., A7 and E7) in smelly cell arrays.

3 CELL ARRAYS AND AMBIGUOUS COMPUTATION

SMELLS

In this section, we introduce the spreadsheet programming
model, and explain key concepts such as cell array and am-
biguous computation smell for subsequent discussions. To
ease presentation, we refer data cells to those cells whose

numeric values are given directly without computation
and formula cells to those cells whose numeric values are
computed by formulas, unless otherwise specified.

3.1 Spreadsheet Programming Model

A spreadsheet can be modeled as a set of cells with expres-
sions, which are indexed by two-dimensional cell addresses
(a row index and a column index, e.g., B1 or C2) [5]. The
expression of a data cell and a formula cell is given by its
numeric value and formula, respectively. A formula refer-
ences another cell by means of a cell reference, which de-
notes the referenced cell’s address. Let R be the set of cell
references, EXP be the set of expressions, and V be the set
of plain values. A cell’s expression exp is either a plain
value (𝑣 ∈ 𝑉), a cell reference (𝑟 ∈ 𝑅), or a function (𝜑) ap-
plied to one or more expressions. Functions used in
spreadsheets include basic operators (e.g., “+”, “”, “*”,
“/”) as well as other built-in functions from spreadsheet
software (e.g., SUM, AVERAGE and MAX). Formally, a
cell’s expression exp is:

𝑒𝑥𝑝 = 𝑣 | 𝑟 | 𝜑(𝑒𝑥𝑝1, … , 𝑒𝑥𝑝𝑛).
We define a reference-fetching function 𝜎(𝑒𝑥𝑝), which

returns the set of cell references used in a cell’s expression
exp. Formally, 𝜎(𝑒𝑥𝑝) is:

𝜎(𝑒𝑥𝑝) = {

∅ 𝑒𝑥𝑝 ∈ 𝑉;
{𝑒𝑥𝑝} 𝑒𝑥𝑝 ∈ 𝑅;

𝜎(𝑒𝑥𝑝1) ∪ … ∪ 𝜎(𝑒𝑥𝑝𝑛) 𝑒𝑥𝑝 = 𝜑(𝑒𝑥𝑝1, … , 𝑒𝑥𝑝𝑛).

Most spreadsheet systems have two built-in styles for
representing a cell reference, namely, A1 and R1C1 repre-
sentations [52], and they can be either absolute or relative. An
absolute reference points to a particular cell, and keeps point-
ing to this cell when it is copied to another cell. A relative
reference presents the cell address offset between the cur-
rent cell and the referenced cell, and the offset keeps un-
changed when the reference is copied to another cell. In the
A1 representation style, a cell at the X-th column and y-th
row is notated as Xy in relative reference (e.g., B5), or Xy
in absolute reference (e.g., B5). For example, the spread-
sheet in Fig. 1(a) uses the A1 representation (all are relative
references). On the other hand, in the R1C1 representation
style, a cell at n rows below and m columns right to the
current cell is notated as R[n]C[m] (in relative reference; [n]
(or [m]) can be omitted when n = 0 or m = 0), and a cell at
the n-th row and m-th column is notated as RnCm (in ab-
solute reference). For example, the spreadsheet in Fig. 2
uses the R1C1 representation (all are relative references).

Fig. 2. The earlier spreadsheet in Fig. 1(a) is now given in the R1C1 representation style, in which four cell arrays are ambiguous, e.g., cells in

CellArray2 do not have semantically equivalent formulas in the R1C1 representation style.

CellArray4

CellArray2 CellArray3CellArray1

(A) (E)(D)(C)(B)

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 5

In subsequent discussions, we assume that expression exp
and function 𝜎(𝑒𝑥𝑝) use the R1C1 representation, unless
otherwise specified.

An interesting observation is that cell formulas prescrib-
ing the same formula patterns typically have semantically
equivalent R1C1 representations. For example, the formula
“B5 + C5” in cell D5 in Fig. 1(a) is “RC[-2] + RC[-1]” in the
R1C1 representation, as shown in Fig. 2. It means a sum-
mation of two values. The first value is given by a cell at
the same row but two columns left. The second value is
given by a cell at the same row but one column left. Fig. 2
also gives corresponding R1C1 representations for all for-
mulas in the spreadsheet in Fig. 1(a). We can observe that
some of them are semantically equivalent and some are
similar with each other. We use such features to detect cell
arrays and find their contained smells.

3.2 Cell Array

In a spreadsheet, cells with the same computational se-
mantics are usually grouped together in a row or column.

Definition 1: A cell array is a consecutive range of cells
(e.g., [A2:A7], [D2:D7], [E3:E7] and [B9:C9] in Fig. 1(b)) pre-
scribing certain computational semantics.

Since cells in a cell array often use formulas to express
such computational semantics, we name a cell array’s com-
putational semantics as its formula pattern (𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛). In sub-

sequent discussions, we assume that formula patterns al-
ways use the R1C1 representation for ease of presentation.
Let CellArray be the set of cells in a cell array. We say that
a cell array is well-formed if the following condition holds:

∀𝑐1, 𝑐2 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, 𝜎(𝑐1. 𝑒𝑥𝑝) = 𝜎(𝑐2. 𝑒𝑥𝑝)
⋀ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡(𝑐1. 𝑒𝑥𝑝, 𝑐2. 𝑒𝑥𝑝).

The first condition states that any two cells’ expressions
in this cell array share the same cell references. The second
condition states that any two cells’ expressions should be
evaluated to the same output value given the same input
values to their cell references. For example, two expres-
sions “2 * (R[-2]C + R[-1]C)” and “2 * R[-2]C + 2 * R[-1]C”
are semantically equivalent although they are syntactically
different. Our CACheck checks well-formedness using
constraint solver Z3 [42]. Since a well-formed cell array has
all its expressions semantically equivalent, we can take any
of them as the cell array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

Note that the concept of cell array proposed in this arti-
cle differs slightly from copy equivalence (i.e., two cells’
expressions are identical) proposed by Clermont et al. [11],
[12], [41]. In order to detect computational semantic smells,
we require that: (1) any two cells’ expressions in a cell array
are evaluated to the same output value given the same in-
put values (i.e., their expressions may be syntactically dif-
ferent but should be semantically equivalent; we adopt Z3
[42] to check expressions’ equivalence), and (2) the cell ar-
ray’s contained cells are consecutive in layout. However,
for cells that are copy equivalent [11], it is assumed that: (1)
their expressions must be identical, and (2) they are not
necessary to be topologically adjacent (e.g., they can be
separated by some other cells with different expressions).

We can classify cell arrays based on either their orienta-
tion or the way they reference other cells in their formulas.

Based on their orientation, cell arrays can be classified into
row-based and column-based:

Row-based cell array. It comprises consecutive non-
empty cells in a row. For example, [B9:C9] in Fig. 1(b) is a
row-based cell array.

Column-based cell array. It comprises consecutive non-
empty cells in a column. For example, [D2:D7] in Fig. 1(b)
is a column-based cell array.

Based on how they reference other cells in formulas, cell
arrays can be classified into homogeneous and inhomoge-
neous:

Homogeneous cell array. A row-/column-based cell ar-
ray is homogeneous if the expression of each contained cell
c reference only cells in the same column/row as that of c.
For example, in the cell array [D2:D7] (column-based cell
array) in Fig. 1(b), cell D2 references cells B2 and C2 (the
same row as D2) as inputs, and cell D3 references cells B3
and C3 (the same row as D3) as inputs. Therefore, the cell
array [D2:D7] is homogeneous. The cell array [B9:C9] in
Fig. 1(b) is homogeneous, too.

Let row represent the row index of a cell c or a cell refer-
ence cr, and col represent the column index of a cell c or a
cell reference cr. Formally, a cell array CellArray is homo-
geneous if the following condition holds:

For row-based CellArray,
∀𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∀𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑐𝑜𝑙 = 𝑐. 𝑐𝑜𝑙).

For column-based CellArray,
∀𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∀𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑟𝑜𝑤 = 𝑐. 𝑟𝑜𝑤).

Inhomogeneous cell array. A row-/column-based cell
array is inhomogeneous if it contains a cell c whose expres-
sion references some cells in a column/row different from
that of c. For example, in the cell array [A2:A7] (column-
based cell array) of Fig. 1(b), cell A3 references cell A2 (dif-
ferent row from cell A3) as its input. Therefore, the cell ar-
ray [A2:A7] is inhomogeneous. In cell array [E3:E7] (col-
umn-based cell array), cell E3 references cells D2 (at a dif-
ferent row from cell E3) and D3 (at the same row as cell E3)
as its inputs. Therefore, the cell array [E3:E7] is inhomoge-
neous, too.

Formally, a cell array CellArray is inhomogeneous if the
following condition holds:

For row-based CellArray,
∃𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∃𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑐𝑜𝑙 ≠ 𝑐. 𝑐𝑜𝑙).

For column-based CellArray,
∃𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∃𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑟𝑜𝑤 ≠ 𝑐. 𝑟𝑜𝑤).

3.3 Ambiguous Computation Smell

If a cell array is not well-formed, we say that it suffers from
an ambiguous computation smell or it is smelly. Smells can oc-
cur in a cell array when end users make ad hoc modifica-
tions to its cells. Such modifications can be made by inex-
perienced end users to accommodate last-minute modifi-
cations under tight deadlines. We find two common types
of ambiguous computation smell: missing formula smell and
inconsistent formula smell, as explained earlier. A missing for-
mula smell occurs in a not well-formed cell array when it
contains a data cell. An inconsistent formula smell occurs in
a not well-formed cell array when it has two formula cells
with semantically different expressions. A cell array of

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

more than two cells can suffer from missing formula and
inconsistent formula smells at the same time.

Definition 2: A conformance error occurs when the value
of a cell in a cell array does not conform to that computed
by this cell array’s formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛:

∃𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, 𝑐. 𝑣𝑎𝑙𝑢𝑒 ≠ 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑐. 𝑖𝑛𝑝𝑢𝑡𝑠).

A conformance error may be caused by improper mod-
ifications to a cell array such that it suffers from ambiguous
computation smells. Conformance errors reflect true data
discrepancies in spreadsheets, such as cells A7 and E7 in
Fig. 1(a).

4 EMPIRICAL STUDY ON WELL-FORMED CELL

ARRAYS

In this section, we report our findings from an empirical
study on well-formed cell arrays in the EUSES [19] and En-
ron [26] corpora. We aim to understand the use of cell ar-
rays in real-life spreadsheets. We focus on the following
three research questions:

RQ1: How commonly are cell arrays used in spreadsheets?
RQ2: How common are homogeneous and inhomogeneous cell

arrays? Especially, are inhomogeneous cell arrays common?
RQ3: How are cell arrays structured in spreadsheets? Espe-

cially, does a cell array often occupy a whole range of consec-
utive cells? Do cell arrays overlap?

To answer questions RQ13, we conducted an empirical
study on the EUSES and Enron corpora. We extracted all
well-formed cell arrays from these spreadsheets, and ana-
lyzed them statistically for answering these questions. We
have also made our tool and empirical results available
online for future research [62].

4.1 Subject Selection and Well-Formed Cell Array
Extraction

Subject selection. The EUSES corpus consists of 4,037
spreadsheets from 11 categories. These spreadsheets were
mainly collected over the web by search engines. Since its
creation in 2005, the EUSES corpus has been widely used
for spreadsheet research although the corpus may not nec-
essarily represent spreadsheets used in companies. The
EUSES corpus is the most cited one among all spreadsheet
corpora so far. The Enron corpus is a recent collection that
consists of 15,926 spreadsheets, which were extracted from
the Enron Email Archive, within the Enron Corporation
[38]. The Enron corpus is considered a collection that rep-
resents spreadsheets used in a typical enterprise.

In Table 1, columns 2-4 list the statistics of the EUSES
and Enron corpora. There are 19,963 spreadsheets (SS) in
total. We found that 97.8% (19,527/19,963) of spreadsheets
in these two corpora could be parsed by the Apache POI
[63] that we used to parse spreadsheets (Processed SS).

Some pre-1995 (BIFF5 format) spreadsheets cannot be pro-
cessed by the Apache POI. We did not attempt to recover
these spreadsheets as the recovery process may not be con-
tent preserving. Moreover, these spreadsheets may no
longer well represent those being used nowadays. Among
the spreadsheets that can be parsed, 55.1% (10,754/19,527)
of them contain formula cells.

Extracting well-formed cell arrays. We examine consec-
utive formula cells clustered in a row or column, and con-
sider a cell cluster to be a well-formed cell array if: (1) the
cluster is not a subset of any other cell array, (2) each cell
in the cluster has a semantically equivalent expression in
the R1C1 representation style. The first condition enforces
that a cell array’s neighboring cells should not have the
same formula pattern as this cell array. The second condi-
tion enforces that all the cells in a cell array should pre-
scribe the same formula pattern.

Filtering well-formed cell arrays. Cell arrays in a com-
pact region may prescribe the same computational seman-
tics. For example, in Fig. 3(a), cells in the region [A2:D4] all
have the same formula pattern. One can obtain a set of
three row-based cell arrays [A2:D2], [A3:D3] and [A4:D4],
and another set of four column-based cell arrays [A2:A4],
[B2:B4], [C2:C4] and [D2:D4]. These two sets of cell arrays
overlap. We consider the two sets are semantically equiv-
alent because either of them can represent the computa-
tional semantics of the whole region [A2:D4]. Keeping one
of them in cell array extraction is enough. The other one
can be filtered out.

We use two criteria to filter out equivalent sets of cell
arrays. First, the remaining sets contain all the cells of the
ones that are filtered out. Second, the number of overlap-
ping cells among the remaining ones is minimized. If there
are more than one solution satisfying both criteria, we
choose the solution that contains the least number of cell
arrays. Based on these criteria, the set of three row-based
cell arrays [A2:D2], [A3:D3] and [A4:D4] is selected in the
cell array extraction of the spreadsheet in Fig. 3(a). The
other set of four column-based cell arrays are filtered out.

TABLE 1
Statistics of Our Study Subjects

Corpus

Subjects Cell arrays

SS
Processed

SS

SS with

formulas

SS with

CA

Initial

CA
CA

SS with CA/

SS with formulas

Average CA per

SS with CA

EUSES 4,037 3,737 1,617 1,118 26,393 21,427 69.1% 19
Enron 15,926 15,790 9,137 6,298 1,177,967 569,986 68.9% 91

Total 19,963 19,527 10,754 7,416 1,204,360 591,413 69.0% 80

(a)

(b)

Fig. 3. Spreadsheets with overlapping cell arrays.

(A) (C)(B) (D)

(A) (C)(B) (D)

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 7

For the spreadsheet in Fig. 3(b), the cell array extraction se-
lects cell arrays [A2:A4] and [A4:D4].

Table 1 lists the numbers of cell arrays extracted from
the two corpora. We in total extracted 1,204,360 cell arrays
(Initial CA), and after filtering, we obtained 591,413 (CA)
cell arrays, which occupy 49.1% (CA/Initial CA). In the fol-
lowing, we study these obtained remaining non-equiva-
lent well-formed cell arrays.

4.2 RQ1: How Commonly are Cell Arrays Used in
Spreadsheets?

Table 1 also gives how commonly cell arrays are used in
real-life spreadsheets. Among 10,754 spreadsheets with
formulas (SS with formulas), 7,416 spreadsheets (SS with
CA) have used cell arrays. Interestingly, the percentage of
spreadsheets that use cell arrays (SS with CA/SS with for-
mulas) is almost the same in the EUSES and Enron corpora.
On average, there are 80 (Average CA per SS with CA) cell
arrays in a spreadsheet with cell arrays. The Enron corpus
(91) uses cell arrays more often than the EUSES corpus (19),
and the ratio is about 4.8 (91/19). This suggests that cell
arrays are used more often in the Enron corpus. Therefore,
we make the following observation:

Observation 1: Cell arrays are commonly used in real-
life spreadsheets. The Enron corpus uses cell arrays more
often than the EUSES corpus.

4.3 RQ2: How Common are Homogeneous and
Inhomogeneous Cell Arrays?

In our earlier work AmCheck [17], we assume that each cell
in a row-/column-based cell array references only the cells
that share the same column/row as this cell. Therefore,
AmCheck can only detect homogeneous cell arrays. Thus,
we care about how commonly homogeneous and inhomo-
geneous cell arrays are used in real-life spreadsheets. Table
2 lists the statistics of all cell arrays (CA), homogeneous cell
arrays (Homogeneous) and inhomogeneous cell arrays (In-
homogeneous). We observe that 79.0% cell arrays are ho-
mogeneous. This result suggests that AmCheck’s assump-
tion (i.e., most cell arrays are homogeneous) is reasonable,
and AmCheck can detect most (79.0%) cell arrays. Still, we
also observe that about 21.0% cell arrays are inhomogene-
ous. As a result, AmCheck would thus miss all these inho-
mogeneous cell arrays, whose percentage is not negligible.
Therefore, we make the following observation:

Observation 2: Inhomogeneous cell arrays are also com-
mon (21.0%) in real-life spreadsheets. One needs to ex-
tend AmCheck in order to detect such cell arrays.

4.4 RQ3: How are Cell Arrays Structured in
Spreadsheets?

Given a well-formed cell array, if neither of its two neigh-
boring cells is a data cell or formula cell (i.e., they are

empty or labels), we say that this cell array occupies a
whole range of consecutive cells in a row or column. For
example, in Fig. 1(b), cell arrays [D2:D7] and [E3:E7] both
occupy a whole range of consecutive cells. However, cell
array [B9:C9] does not occupy a whole range of consecu-
tive cells, due to the existence of cell D9 (formula cell). Ta-
ble 3 shows that only 60.4% well-formed cell arrays occupy
a whole range of consecutive cells (Whole1). Interestingly,
the EUSES and Enron corpora have almost the same ratio.

We further investigated whether a whole range of con-
secutive cells in a row or column often form a well-formed
cell array. To carry out the investigation, we consider those
ranges of consecutive numeric cells that contain at least
one formula cell and are bound by non-numeric cells at
both ends. We extracted 3,056,367 ranges of consecutive
cells from the EUSES and Enron corpora. Among them, we
found that only 17.3% share the same formula patterns (i.e.,
they are well-formed cell arrays), while 82.7% do not
(Whole2). This leads us to make the following observation:

Observation 3: Consecutive cells in the same row or col-
umn do not necessarily form a cell array.

The observation suggests that one cannot simply aggre-

gate consecutive cells in the same row or column to form a
cell array. We need a more precise way to identify cell ar-
rays.

We are also interested in finding whether cell arrays
could possibly overlap with each other in spreadsheets. If
two cell arrays have shared cells, we say that they overlap.
For example, in Fig. 3 (a), two cell arrays [A2:A4] and
[A2:D2] share cell A2; in Fig. 3 (b), two cell arrays [A2:A4]
and [A4:D4] share cell A4. If two cell arrays overlap, they
should have the same formula pattern. As a result, two
row-/column-based cell arrays should not overlap. This is
because if they overlap, they should be merged into a sin-
gle cell array.

Cell arrays can overlap in two ways: redundant and
non-redundant. As mentioned earlier in cell array extrac-
tion (Section 4.1), a cell array is redundant if all of its cells
are contained by other cell arrays. Such overlapping is re-
dundant and can be removed. For example in Fig. 3(a), all
cells in range [A2:D4] share the same formula pattern, and
the three row-based cell arrays ([A2:D2], [A3:D3] and
[A4:D4]) and four column-based cell arrays ([A2:A4],
[B2:B4], [C2:C4] and [D2:D4]) overlap. Therefore, we need
only to extract the three row-based cell arrays. By doing so,
our extracted cell arrays do not overlap.

Cell arrays can also overlap in a non-redundant way,
which requires a different treatment. For example, in Fig.
3(b), cell arrays [A2:A4] and [A4:D4] overlap on cell A4,
but neither of them can represent the other. Therefore, we

TABLE 2
Statistics of Well-formed (Homogeneous and Inhomoge-

neous) Cell Arrays

Corpus CA Homogeneous Inhomogeneous

EUSES 21,427 16,383 (76.5%) 5,044 (23.5%)
Enron 569,986 450,691 (79.1%) 119,295 (20.9%)

Total 591,413 467,074 (79.0%) 124,339 (21.0%)

TABLE 3
Layout Statistics of Well-formed Cell Arrays

Corpus CA Whole1 Whole2 Overlap

EUSES 21,427 12,612 (58.9%) 13.2% 110 (0.5%)
Enron 569,986 344,790 (60.5%) 17.4% 3,487 (0.6%)

Total 591,413 357,402 (60.4%) 17.3% 3,597 (0.6%)

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

need to keep both overlapping cell arrays during extrac-
tion. Table 3 lists the statistics of overlapping cell arrays in
the EUSES and Enron corpora (Overlap). We observe that
cell arrays rarely (0.6%) overlap in real-life spreadsheets.
Therefore, we make the following observation:

Observation 4: Cell arrays rarely overlap in real-life
spreadsheets.

4.5 Summary

The above observations enable us to effectively identify
cell arrays in real-life spreadsheets, and support follow-up
detection and repairing of smells in these cell arrays.

For example, observation 2 motivates us to identify both
homogeneous and inhomogeneous cell arrays in spread-
sheets. Observation 3 suggests the cell extraction technique
should be capable to identify cell arrays that may not oc-
cupy whole rows or columns. Observation 4 can be lever-
aged to filter out wrongly identified cell arrays. The meth-
odology elaborated in the next section embodies these
ideas.

5 DETECTING AND REPAIRING SMELLY CELL

ARRAYS

After analyzing a given spreadsheet, CACheck reports all
detected smelly cell arrays with repair suggestions. Fig. 4
shows its architecture. CACheck heuristically extracts cell
arrays from a spreadsheet (Section 5.1), and detects
whether each of them is smelly via constraint solving (Sec-
tion 5.2). CACheck infers a cell array’s formula pattern
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 in two steps. First, CACheck uses values and for-
mulas in a cell array to derive constraints associated with
its intended formula pattern (Section 5.3). Second, CA-
Check infers the formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 based on these
constraints. In order to expedite the inference process, CA-
Check combines heuristics (Section 5.4) and program syn-
thesis techniques (Section 5.5). After the inference, CA-
Check identifies smelly cells in a cell array and their con-
tained conformance errors, if any, based on its inferred
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Section 5.6). Finally, CACheck identifies and re-
moves false positives based on the observations from Sec-
tion 4, as well as the inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Section 5.7).

5.1 Extracting Cell Arrays

The first challenge of smelly cell array detection is to iden-
tify cell arrays from a given spreadsheet, which has no rec-
ord about which cells were previously prepared by copy-
and-paste or auto-fill operations. We observe that a
spreadsheet snippet usually provides useful hints about
boundaries of cell arrays. Besides, the cells in a cell array
often have similar formulas. Their formulas can be similar
by means of referencing the same cells or referencing dif-
ferent cells with the same R1C1 representation. Such simi-
larity facilitates our cell array identification and extraction.

We first identify spreadsheet snippets. Related data or
formulas in a spreadsheet are often clustered together in a
rectangle circumscribed by empty cells or labels [27]. We
refer to such rectangles of cells as snippets. Examples of
spreadsheet snippets in Fig. 1(a) include two rectangles
comprising cells [A2:E7] and [B9:D9], respectively.

To identify snippets, we adopt a cell classification strat-
egy, similar to what Abraham and Erwig [4] proposed. We
define a fence as a row or column of cells that comprises
only empty cells or labels in a spreadsheet. We use fences
to identify boundaries for each spreadsheet snippet. Other
cells inside the identified boundaries are considered as
cells of this snippet.

We describe our spreadsheet snippet identification al-
gorithm as follows. Initially, each spreadsheet is consid-
ered as one snippet. We then identify fences in this snippet,
and divide this snippet into more by the identified fences.
For each newly identified snippet, we repeat this refine-
ment until no further snippet can be identified.

We next extract cell arrays from the identified snippets.
As observed earlier, the cells in a cell array are often similar
in how their formulas reference other cells. We capture this
similarity by means of dependence similarity.

Given a pair of cells, c1 and c2, from a consecutive range
of numeric cells in a row or column (e.g., CellArray2 in Fig.
1(a)), if c1 and c2 satisfy one of the following four conditions,
they are said to have dependence similarity:

Condition 1. Either c1 or c2 is a data cell. Since one has
no idea on how the value in a data cell is computed, this
data cell can potentially have any dependence on other
cells. Therefore, we consider that a data cell has depend-
ence similarity with any other cell. For example, in Fig. 1(a),
cells A6 and A7 are both data cells, and thus they have de-
pendence similarity.

Condition 2. Both c1 and c2 are formula cells, and they
reference some cells in common. For example, cells E3 and
E4 in Fig. 1(a) commonly reference cell D3, and thus they
have dependence similarity.

Condition 3. Both c1 and c2 are formula cells and they
do not reference any cell in common, but they reference
some cells in the same way. For example, in Fig. 1(a), cells
D3 and D4 reference cells B3 and B4, respectively (D4 also
references C4, but it is not important here and so omitted).
Although B3 and B4 are not the same cell, they are refer-
enced in the same way (same distance to D3 and D4), and
therefore their references are the same in the R1C1 repre-
sentation, i.e., R[-2]C, as shown in Fig. 2. Thus, cells D3 and
D4 also have dependence similarity.

Condition 4. Both c1 and c2 are formula cells and they
do not satisfy condition 2 or 3, but there exists another cell
c3 from the same consecutive range, such that: (1) c1 and c3
satisfy condition 2 or 3, and (2) so do c2 and c3. For example,
in Fig. 1(a), cells D2 and D7 do not satisfy either condition
2 or 3, but: (1) D2 and D4 satisfy condition 3, and (2) so do
D7 and D4. Then cells D2 and D7 satisfy condition 4. As a
result, they also have dependence similarity.

Spreadsheet Cell Array
Extraction

Formula Pattern
Recovery

Annotated

Cell Array Filtering

Fig. 4. CACheck’s architecture.

Spreadsheet

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 9

Overall, our cell array extraction algorithm works as fol-
lows. For each identified spreadsheet snippet, it examines
consecutive cells clustered in a row or column, and consid-
ers a cluster as a cell array if: (1) the cluster is not a subset
of another already identified cell array, (2) each pair of cells
in the cluster has dependence similarity, and (3) at least
one cell in the cluster is a formula cell. The algorithm may
have three outcomes:
 Cell array: A row- or column-based cell array is suc-

cessfully identified and extracted. Two examples are
[D2:D7] and [B9:C9] in Fig. 1(a).

 Plain value: A consecutive range of cells in a row or
column are all data cells. One cannot tell whether they
prescribe the same business concept and are subject to
certain computational semantics. We do not consider it
as a cell array.

 Others: It does not belong to the above two cases. To
play safe, we also do not consider it as a cell array.
Note that the cell arrays we now extract can be either

well-formed or smelly. Therefore, the above four condi-
tions relax the ones we use to extract well-formed cell ar-
rays earlier in Section 4.1. For example, the above condition
1 can help detect cell arrays that suffer from missing for-
mula smells. Conditions 2, 3 and 4 can help detect cell ar-
rays that suffer from inconsistent formula smells.

5.2 Detecting Smelly Cell Arrays

Next, let us explain how to check whether an extracted cell
array is smelly or not.

According to our earlier Definition 1, a cell array is well-
formed if: (1) it contains only formula cells, (2) all its ex-
pressions share the same cell references, and (3) all its ex-
pressions are semantically equivalent. If a cell array does
not satisfy any of the above conditions, it suffers from am-
biguous computation smells, and is thus smelly.

As such, we partition the extracted cell arrays into two
groups: well-formed and smelly. In the following, we ex-
amine smelly cell arrays to repair their contained smells by
recovering their intended formula patterns.

5.3 Extracting Formula Pattern Constraints

To detect and repair a smelly cell array, CACheck needs to
recover its formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. To do so, we first ex-
tract constraints behind the formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

Our idea was inspired by component-based program
synthesis, which synthesizes a loop-free program from
components, input-output pairs and specifications used by
this program [22], [36]. The synthesis is based on three as-
sumptions: (1) Existing expressions in a cell array are good
hints for inferring its formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛; (2) Most cell

values should be correct for this cell array, and they can
serve as 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ’s input-output pairs; (3) Components in

expressions used by this cell array are often those used by
this cell array’s formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 . Under these as-

sumptions, CACheck recovers a smelly cell array’s in-
tended formula pattern by extracting its constraints from
the cells of this cell array, and combining them appropri-
ately. The extraction process consists of four parts, i.e., ex-
tracting input variables, functions, input-output pairs and

components from a smelly cell array, as follows:
1) All cell references used by expressions in a cell array

are considered as input variables for this cell array’s
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. For example, in Fig. 1 (a), input variables for

CellArray1 are R[-1]C, input variables for CellArray2
are RC[-2] and RC[-1], input variables for CellArray3
are R[-1]C[-1] and RC[-1], and input variables for Cel-
lArray4 are R[-7]C, R[-6]C, …, R[-2]C. The process may
extract irrelevant input variables, which could be re-
moved later. Let IV be the set of a cell array’s input var-
iables, and xi be the i-th input variable in IV. After ex-
tracting n input variables for 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , we can model

𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 as a conceptual function like 𝑓(𝑥1, 𝑥2, … 𝑥𝑛). For-

mally, IV is defined as:
𝐼𝑉 = 𝜎(𝑐1. 𝑒𝑥𝑝) ∪ 𝜎(𝑐2. 𝑒𝑥𝑝) … ∪ 𝜎(𝑐𝑚. 𝑒𝑥𝑝),

where 𝑐1, 𝑐2, … 𝑐𝑚 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦.
2) Existing expressions in the cell array are extracted as

functions. For example, one can extract four functions
from CellArray2, namely, f(x1, 0) = x1, f(x1, x2) = x1 + x2,
f(x1, x2) = x1 – x2 and f(0, x2) = x2. These functions are
considered as specifications in component-based pro-
gram synthesis [22], [36].

3) All data (including those calculated by expressions) in
the cell array are considered as input-output pairs. For
example, in Fig. 1 (a), input-output pairs in CellArray2
include <(2, 0), 2>, <(4, 0), 4>, <(6, 0), 6>, <(0, 5), 5> and
<(0, 6), 6>.

4) All operators and constants used by expressions in the
cell array are considered as components. Note that we
also consider a constant as a component that returns
this constant value. For example, in Fig. 1 (a), compo-
nents from CellArray1 include “+” and constant (1),
components from CellArray2 include “+” and “–”,
components from CellArray3 include “–” and “/”, and
components from CellArray4 include “+” and SUM.
Some components might be irrelevant, but could be re-
moved later. If CACheck fails to find any operator from
a cell array, it would add basic operators (e.g., +, –, *, /)
as components.
All thus extracted input variables, functions, input-out-

put pairs and components are constraints used for recover-
ing or synthesizing a smelly cell array’s intended formula
pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛, as explained in the following.

5.4 Recovering 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏

We observe that a cell array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can exist in functions
extracted from the cell array’s formula cells. For example,
function f(x) = x + 1 extracted from formula cells in CellAr-
ray1 in Fig. 1(a) is a good candidate for recovering CellAr-
ray1’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. This observation enables us to recover a cell
array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 based on a candidate set of functions ex-
tracted from its formula cells. This can significantly reduce
the cost of formula pattern inference since program syn-
thesis [22], [36] is typically expensive. We aim to select a
function that contains all input variables and covers all
cells in a cell array as its 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. We say that a function co-
vers a data cell when the cell’s value can be computed by
this function. For example, the value (6) of cell A6 in Cel-
lArray1 in Fig. 1(a) can be computed by f(x) = x + 1, where

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

x represents the cell reference R[-1]C. We say that a func-
tion covers a formula cell if the function is compatible with
the one extracted from this cell in the sense that both can
return the same outputs values given the same input val-
ues. For example, function f(x1, x2) = x1 + x2 is compatible
with function f(x1, 0) = x1 extracted from cell D2 in Fig. 1(a).
Note that the second parameter needs to bind to zero for
both functions to take the same values as inputs. However,
function f(x1, x2) = x1 + x2 is not compatible with function
f(x1, x2) = x1 – x2 extracted from cell D4 in CellArray2 in Fig.
1(a). This is because their output values are different when
x1 and x2 are set to 0 and 1, respectively.

Algorithm 1 gives our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 recovery algorithm. The

algorithm returns NULL if it fails to recover any 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛

from functions extracted from a given cell array. If only
one function can be extracted from a cell array, it is treated

as the cell array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Lines 13). Otherwise, a function

that can cover (by the Coverage method) all data and for-

mula cells in the cell array (Lines 410) is treated as 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

The Coverage method (Lines 1327) computes the ratio
of cells a function can cover against all cells in the cell array.
Lines 17-19 (or Lines 21-23) check whether a formula (or
data) cell is covered by a function.

5.5 Synthesizing 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏

The 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 recovery algorithm returns NULL when it fails
to identify an appropriate 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 for a smelly cell array
from its extracted functions. When this happens, CACheck
would try to synthesize 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 using component-based
program synthesis [22], [36].

Let us first review how component-based program syn-
thesis works for constructing a program. Program synthe-
sis first derives constraints (constraintsps) for the target pro-
gram to be synthesized based on a set of components and
input-output pairs, which can be generated by specifica-
tions [22] or provided by users [36]. It then solves con-
straintsps to synthesize the program. If the input-output
pairs provided are not sufficiently restrictive, multiple can-
didate programs can be synthesized (all satisfying con-
straintsps). Then more input-output pairs are used to pro-
vide additional constraints to further strengthen con-
straintsps until a unique program is synthesized.

Algorithm 2 gives the pseudo-code of our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 syn-

thesis algorithm. There are three challenges in synthesiz-
ing 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 : (1) Component-based program synthesis re-

quires users to explicitly provide components and input-
output pairs. The algorithm addresses this using con-
straints extracted from cells in a smelly cell array (Section
5.3). (2) Functions extracted from a smelly cell array may
not be compatible with one another. For example, two
functions f(x1, x2) = x1 + x2 and f(x1, x2) = x1 – x2 extracted
from CellArray2 in Fig. 1(a) are not compatible. This can
cause our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 synthesis to fail. (3) Data cells may con-

tain incorrect values, which cannot be computed by the cell
array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 even if it is correct. Such incorrect values

can also cause our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 synthesis to fail.

To tackle the second challenge, Algorithm 2 classifies
extracted functions into compatible groups using the
Classify method (Line 1) such that all functions in each

group are compatible. The method classifies as many dis-
tinct compatible functions into each group as possible. The
Classify method classifies functions by adding them it-
eratively into compatible groups. When it comes across a
function f that cannot be added into any existing group, it

creates a new compatible group (Lines 2425) and itera-
tively adds in other functions compatible with this new

group (Lines 2630). Note that a function is allowed to be
in multiple compatible groups. For example, we can obtain
two compatible groups from CellArray2 in Fig. 1(a): (1) f(x1,
0) = x1, f(x1, x2) = x1 + x2 and f(0, x2) = x2; (2) f(x1, 0) = x1 and
f(x1, x2) = x1 – x2.

To tackle the third challenge, Algorithm 2 synthesizes
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates in two steps. The two-step synthesis is

motivated by two observations: (1) the inclusion of input-
output pairs derived from incorrect data cells can result in
unsuccessful 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 synthesis, but one has no prior

knowledge of which data cells are incorrect; (2) the addi-
tional constraints of input-output pairs are useful for prun-
ing inappropriate 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates. In the first step, the

algorithm uses the constraints provided by functions in
each compatible group to synthesize 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates

with the SynFPattern method (Line 5). The method is
implemented to follow the component-based synthesis
technique [22] by treating functions as specification inputs.
It generates a 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidate set for each compatible

group. If the functions in a group are not restrictive enough,
the set can contain multiple candidates. In other words, all
functions in the group collectively constitute only a partial
specification for the 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 synthesis. The algorithm then

takes the second step to enrich the specification with addi-
tional constraints given by input-output pairs using the
Refine method (Line 6). For each 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidate set,

the method iteratively prunes inappropriate candidates
from the set using the input-output pairs from the given
cell array while ignoring those that lead to no solution.
This relieves us from the need for identifying incorrect

__

Algorithm 1. 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏 recovery algorithm.
__

Input: IV (input variables), FUNC (functions), IO (input–out-

put pairs), CA (cell array).

Output: F (target formula pattern) or NULL.
 1: if (FUNC.length == 1)

 2: return FUNC.get(0);

 3: end if

 4: foreach fn in FUNC do

 5: if fn contains all input variables in IV then

 6: if (Coverage(fn, CA) == 100%) then

 7: return fn;

 8: end if

 9: end if

10: end for

11: return NULL;

12:

13: method Coverage(fn, CA)

14: coveredCells = 0;

15: foreach cell in CA do

16: if (cell.type == FORMULA) then

17: if (!input. fn(input)cell.exp(input)) then

18: coveredCells ++;

19: end if

20: else // Plain value case

21: if (fn(cell.input) == cell.value) then

22: coveredCells ++;

23: end if

24: end if

25: end for

26: return coveredCells / CA.length;

27: end method

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 11

data cells and excluding their associated input-output
pairs. Details of this pruning process can be found in re-

lated work [36]. The Refine method would return a
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidate randomly if there are multiple remain-

ing ones for each set as its result. Finally, among all re-
turned 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates, Algorithm 2 selects the one that

covers the most cells in the given cell array as its synthe-

sized 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Lines 710).

We note that program synthesis relies heavily on its un-
derlying constraint solver. As in practice, we also set up a
timeout limit for solving constraints. The limit, say 5
minutes, is set with respective to each compatible group.
Upon timeout, we conservatively select one function,
which currently covers the most cells in the given cell array,

as its 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Lines 1219).

For the four smelly cell arrays in Fig. 1(a), their 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛

can be recovered by Algorithm 1 or synthesized in the first
step of Algorithm 2. So we consider a more complicated
example, cell array [C2:C6], as shown in Fig. 5. From this
cell array, one can extract two functions (f(x1, 0) = x1 and
f(x1, x2) = x1 + x2 + 1), four input-output pairs (IO = {<(2, 0),
2>, <(3, 2), 9>, <(4, 3), 7>, <(5, 4), 10>}), and three compo-
nents (two “+” operators and one constant (1)).

When Algorithm 2 starts, its Classify method (Line 1)
partitions the above two functions into two different com-
patible groups: (1) f(x1, 0) = x1 and (2) f(x1, x2) = x1 + x2 + 1.
We use the first compatible group to explain our two-step
synthesis, and show this process in Table 4. During synthe-
sis, we need to prune inappropriate 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates by

iteratively adding input-output pairs, which are generated

from the first compatible group (SynFPattern) or se-

lected from IO (Refine). In the first iteration, SynFPat-
tern uses an input-output pair <(1, 0), 1> to generate its

initial set of 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates. This input-output pair is

generated from function f(x1, 0) = x1 in the compatible
group. Then SynFPattern generates six 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candi-

dates: f(x1, x2) = x1, f(x1, x2) = x1 + x2, f(x1, x2) = x2 + 1, f(x1, x2)
= 1, f(x1, x2) = x1 + x2 + x2 and f(x1, x2) = x2 + x2 + 1. Note that
if multiple 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates are equivalent, only one

would be generated, e.g., f(x1, x2) = x1 + x2 and f(x1, x2) = x2
+ x1 are equivalent and thus only the former remains. Then
in the second iteration, in order to prune some 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can-

didates, SynFPattern uses another input-output pair <(2,
0), 2>, which is also generated from function f(x1, 0) = x1
itself. This time SynFPattern generates only three
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates: f(x1, x2) = x1, f(x1, x2) = x1 + x2 and f(x1, x2)

= x1 + x2 + x2 (the other three are pruned). Note that now
SynFPattern can no longer further prune 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candi-

dates by only using input-output pairs generated from
function f(x1, 0) = x1. Therefore, Algorithm 2 moves on to
the Refine method (Line 6). Refine would use input-
output pairs from IO to further prune 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates.

Since the input-output pair <(2, 0), 2> from IO has been

used, in the third iteration, Refine uses the second input-
output pair <(3, 2), 9> from IO. Unfortunately, none of the
remaining three 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates can satisfy this pair,

and thus this pair is ignored (in fact, this pair is a wrong

input-output pair). In the fourth iteration, Refine uses the

third input-output pair <(4, 3), 7> from IO. This time Re-
fine generates a unique 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidate: f(x1, x2) = x1 +

x2 (the other two are pruned). Now we finish the synthesis
process and return f(x1, x2) = x1 + x2 as the formula pattern
for the first compatible group.

5.6 Identifying Smelly Cells

CACheck infers a smelly cell array’s formula pattern
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 successfully if it can recover or synthesize 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛
for this cell array. When successful, CACheck uses the in-
ferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 to check whether some cells contained in the
cell array are smelly, and repair them if necessary.

We consider a cell in a cell array smelly if it is a data cell
(i.e., missing formula smell), or it is a formula cell but its

Algorithm 2. 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏 synthesis algorithm.
__

Input: IV (input variables), FUNC (functions), IO (input–out-

put pairs), COMP (components), CA (cell array).

Output: F (target formula pattern).

 1: groups = Classify(FUNC); // Get compatible groups

 2: pert = 0; F = NULL;

 3: while groups not EMPTY do

 4: group = groups.removeOne(); // Retrieve one group

 5: formulas = SynFPattern (IV, COMP, group);

 6: formula = Refine(IV, COMP, formulas, IO);

 7: if (formula NULL && Coverage(formula, CA)>pert) then

 8: pert = Coverage(formula, CA); // Measure percentage

 9: F = formula;

10: end if

11: end while

12: if (F = NULL) then // Synthesis fails

13: foreach fn in FUNC do

14: if (Coverage(fn, CA) > pert) then

15: pert = Coverage(fn, CA);

16: F = fn;

17: end if

18: end for

19: end if

20: return F;

21:

22: method Classify(FUNC)

23: groups = EMPTY;

24: while (initFuncFUNC. initFunc non-classified) do

25: newGroup = {initFunc};

26: foreach func in FUNC\newGroup do

27: if (!fn newGroup. in. fn(in) func(in)) then

28: newGroup.add(func);

29: end if

30: end for

31: groups.add(newGroup); // All in newGroup classified

32: end while

33: return groups;

34: end method

TABLE 4
Two-step synthesis process

Iteration IO pair Candidates

1 <(1, 0), 1>
f(x1, x2)=x1; f(x1, x2)=x1+x2;
f(x1, x2)= x2+1; f(x1, x2)=1;

f(x1, x2)=x1+x2+x2; f(x1, x2)=x2+x2+1

2 <(2, 0), 2>
f(x1, x2)=x1; f(x1, x2)=x1+x2;

f(x1, x2)=x1+x2+x2

3 <(3, 2), 9> none

4 <(4, 3), 7> f(x1, x2)=x1+x2

Fig. 5. A more complicated smelly cell array for synthesis, in which
cells [C2:C6] should uniformly follow a formula pattern of Ci = Ai +
Bi (2 ≤ i ≤ 6).

(A) (C)(B)

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

expression is not semantically equivalent to the inferred
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (i.e., inconsistent formula smell). Then, according
to our earlier Definition 2, CACheck can further check
whether a smelly cell suffers from a conformance error.

In identifying smelly cells, we notice one subtle but im-
portant issue that should be handled specially. In some cell
arrays, a cell’s value computation depends on another,
which further depends on its next, forming a continual
chain with all concerned cells in the same cell array. We
call such cell arrays as chained cell arrays. For a chained cell
array, its first several cells in the chain, whose computation
does not depend on any other cells, contain initial (plain)
values for the whole cell array. We should remove them
from consideration of candidates for smelly cells. For ex-
ample, in Fig. 1(b), each cell (except A2) in cell array
[A2:A7] references its immediately above cell in its value
computation, and thus this cell array is a chained one. The
first cell A2 offers the initial value (2) for the whole cell ar-
ray. Therefore, cell A2 should not be considered smelly.

5.7 Filtering Cell Arrays

As discussed earlier in Section 5.1, we use relaxed condi-
tions to extract cell arrays, which can be either well-formed
or smelly. However, due to this relaxation, our cell array
extraction might incur false positives, i.e., a consecutive
range of cells is mistakenly extracted as a cell array but it
is not actually. For example, in Fig. 1 (a), cells [A3:B3] form
a consecutive range, and they coincidentally satisfy condi-
tion 1 in our extraction. As a result, cells [A3:B3] are ex-
tracted as a cell array. However, we consider this cell array
a false positive. This is because the two cells do not pre-
scribe the same computational semantics (cell A3 is com-
puted from cell A2, meaning a previous month, while cell
B3 represents the amount of apple harvest in March). Sim-
ilar cases also occur in cells [A4:B4] and [A5:B5]. As such,
one needs to filter out such false positives in cell array ex-
traction.

We note that our filtering is based on the earlier obser-
vations we made in the empirical study in Section 4, as well
as the formula patterns, which are either recovered or syn-
thesized, as discussed in Section 5.4 or 5.5. Therefore, we
discuss our cell array filtering after them. We will use four
examples of extracted cell arrays for illustration in the fol-
lowing discussions. They are [A2:A7], [A3:B3], [A4:B4] and
[A5:B5] from Fig. 1 (a), among which we aim to identify the
latter three as false positives.

Let 𝐶𝐴 be the set of extracted cell arrays. Our cell array
filtering aims to select a subset of 𝐶𝐴 to satisfy certain con-
straints. Let 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 be the subset (𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 ⊆ 𝐶𝐴). We col-
lect constraints on 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 , and generate all possible
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates to find one that satisfies these con-
straints. This process needs to consider the following two
requirements:

1) From observation 4 in Section 4, cell arrays rarely
overlap (only 0.6% cases). This suggests that, given a pair
of extracted cell arrays that overlap (i.e., some of their cells
are shared), one of them is probably a false positive. There-
fore, we require that all cell arrays in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 should not
overlap. In order not to mistakenly miss cell arrays,
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 should also be maximized with respect to 𝐶𝐴. This

means that any cell array in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 must overlap
with at least one cell array in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡. Considering the four
extracted cell arrays [A2:A7], [A3:B3], [A4:B4] and [A5:B5],
we have two 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates: 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A2:A7]} or
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A3:B3], [A4:B4], [A5:B5]}.

2) The first requirement tries to isolate true positives
from false positives, but one has no idea which 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡
candidate best suits the characteristics of true positives (i.e.,
real cell arrays). We observe that even if a true positive suf-
fers from ambiguous computation smells, its recovered or
synthesized formula pattern can cover most of its con-
tained cells. This means that a majority of its cells have cor-
rect values, and its contained conformance errors, if any,
would be few. For example, in cell array [A2:A7] (true pos-
itive), all its cells except one (A7) have correct values. How-
ever, cells in a wrongly extracted cell array (false positive)
cannot easily be covered by its recovered or synthesized
formula pattern since its contained cells are put together in
an unreasonable way. Thus one can easily detect conform-
ance errors in a false positive. For example, in cell array
[A3:B3] (false positive), its recovered formula pattern is R[-
1]C + 1. Then cell B3 contains a conformance error (its
value is 2 rather than 3). Similarly, one can also detect one
conformance error (at cell B4) for cell array [A4:B4] (false
positive) and one conformance error (at cell B5) for cell ar-
ray [A5:B5] (false positive). As such, taking each 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡
candidate as a unit, one can detect one conformance error
in the first candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A2:A7]}, but three con-
formance errors in the second candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A3:B3],
[A4:B4], [A5:B5]}. Therefore, we should select a 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡
candidate, which has the minimal number of conformance
errors, to win the best chance of isolating false positives
from our consideration.

The above filtering process works on observations and
heuristics, but it is highly effective in isolating true posi-
tives from false positives. For example, our later experi-
ments reported that the overall removal precision is as
high as 97.2%. In the following, we elaborate on the details
of this filtering process.

5.7.1 Generating 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 Candidates

According to the first requirement, the cell arrays in each
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate must not overlap. Each 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candi-
date is also a maximal subset with respect to 𝐶𝐴 in the
sense that any cell array in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 must overlap with
at least one cell array in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡. We use the following two
constraints to generate such 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates.

Constraint 1: Given any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate, for any two
cell arrays in 𝐶𝐴 that overlap with each other, at most one
of them can be in this 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate. For example, cell
arrays [A2:A7] and [A3:B3] overlap. Then they must go to
two different 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates. If two cell arrays
𝑐𝑎𝑖 and 𝑐𝑎𝑗 overlap, we denote this overlapping relation-

ship as 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑐𝑎𝑖 , 𝑐𝑎𝑗). Then, this constraint can be spec-

ified formally as (𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 represents any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate):

⋀ (𝑐𝑎𝑖 ≠ 𝑐𝑎𝑗⋀𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑐𝑎𝑖 , 𝑐𝑎𝑗)) ⇒ (𝑐𝑎𝑖

𝑐𝑎𝑖,𝑐𝑎𝑗∈𝐶𝐴

∉ 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 ∨ 𝑐𝑎𝑗 ∉ 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡).

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 13

Constraint 2: Given any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate, for any cell
array ca in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 , there exists at least one cell array
in this 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate that overlaps with ca. This con-
straint makes sure that any cell array in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 can-
not be added into this 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate (i.e., already max-
imized). This constraint can be specified formally as

(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 represents any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate):

⋀ ∃𝑐𝑎′ ∈ 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑐𝑎, 𝑐𝑎′)

𝑐𝑎∈(𝐶𝐴−𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡)

.

Any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate must satisfy both constraints 1
and 2. Consider our earlier example: 𝐶𝐴 = {[A2:A7],
[A3:B3], [A4:B4], [A5:B5]}. Its two 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates are
thus: 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A2:A7]} or 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A3:B3], [A4:B4],
[A5:B5]}.

In order to obtain all 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates, a straightfor-
ward way is to generate them by enumerating all subsets
of 𝐶𝐴, and check whether they satisfy both constraints 1
and 2. However, it would be exponentially complex. We
choose to speed up this process based on the overlapping
relationship. The key idea is to remove those subsets that
do not satisfy constraint 1 or 2 as early as possible.

Our 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate generation algorithm (Algo-
rithm 3) takes all extracted cell arrays (i.e., 𝐶𝐴) as input,
and returns all 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates. Its kernel part is the

Generate method (Lines 827), which first selects those
cells arrays that do not overlap with any other cell array

into a candidate subset (𝑐𝑢𝑟𝐶𝐴𝑠) (Lines 913). If this step
already selects all available cell arrays, we successfully
find one 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate and add it into the result (Lines
14-18). Otherwise, we still have some remaining cell arrays
not selected (in 𝑟𝑒𝑠𝑡𝐶𝐴𝑠), and we know that they overlap
with at least one cell array also not selected yet (in 𝑟𝑒𝑠𝑡𝐶𝐴𝑠),
but never overlap with any other cell array in 𝑐𝑢𝑟𝐶𝐴𝑠 .
Then we consider selecting these remaining cell arrays in
an iterative and recursive way. We consider each remain-
ing cell array ca in turn as follows (Lines 20-26). (1) We add
ca into 𝑐𝑢𝑟𝐶𝐴𝑠 and at the same time remove those cell ar-
rays overlapping with ca from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 (Lines 22-23). By
doing so, we again are able to possibly select more non-
overlapping cell arrays from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 into 𝑐𝑢𝑟𝐶𝐴𝑠 (Lines 9-
13). If this selects all remaining cell arrays, we find a new
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate (Lines 14-18). Otherwise, we consider
the new 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 and 𝑐𝑢𝑟𝐶𝐴𝑠 at a finer granularity and re-
start the Generate method recursively (Line 24). (2) When
we complete considering the current ca, we restore the
original 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 and 𝑐𝑢𝑟𝐶𝐴𝑠 (Line 25), and then consider
the next ca until we complete considering all remaining cell
arrays in 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 . In the above steps, we make two in-
tended efforts. (1) We keep adding non-overlapping cell
arrays into 𝑐𝑢𝑟𝐶𝐴𝑠. This is for avoiding generating those
subsets that are not maximal. (2) Whenever we add a cell
array into 𝑐𝑢𝑟𝐶𝐴𝑠, we also remove its overlapping cell ar-
rays from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠. This is for avoiding generating those
subsets that contain overlapping cell arrays.

Consider our earlier example: 𝐶𝐴 = {[A2:A7], [A3:B3],
[A4:B4], [A5:B5]}. Since each cell array in 𝐶𝐴 overlaps with
at least another cell array, we do not select any cell array
into 𝑐𝑢𝑟𝐶𝐴𝑠 in the first step (Lines 9-13). Then in the first

iteration (Lines 20-26), we select cell array [A2:A7] into
𝑐𝑢𝑟𝐶𝐴𝑠, and at the same time remove cell arrays [A3:B3],
[A4:B4] and [A5:B5] from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠, since they all overlap
with [A2:A7]. Thus, we generate the first candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡
= {[A2:A7]} (this iteration completes quickly as 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 is
empty). In the second iteration, we restart this process by
first recovering original 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 (containing four cell ar-
rays) and 𝑐𝑢𝑟𝐶𝐴𝑠 (empty). This time, we select another cell
array [A3:B3] into 𝑐𝑢𝑟𝐶𝐴𝑠, and at the same time remove
cell array [A2:A7] from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 , since it overlaps with
[A3:B3]. Now, 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 becomes {[A4:B4], [A5:B5]}. During

recursively invoking the Generate method, we select the
two non-overlapping cell arrays ([A4:B4] and [A5:B5]) into
𝑐𝑢𝑟𝐶𝐴𝑠 (Lines 9-13). Since now 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 is empty, we gen-
erate the second candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A3:B3], [A4:B4],
[A5:B5]}.

We note that Algorithm 3 may generate duplicated
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates. For example, when we go ahead with
the third iteration, a duplicated candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 =
{[A4:B4], [A3:B3], [A5:B5]} is generated. Since the ordering
does not matter for set elements, this candidate is the same
as the second one. Algorithm 3 would keep only one copy
for duplicated 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates (Lines 15-16). For this
example, the algorithm would eventually generate two
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates.

5.7.2 Selecting 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 Candidates

With generated 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates, we use the following
strategy for final selection.

As mentioned earlier, we aim to minimize the number
of conformance errors in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates, to win the

Algorithm 3. 𝑪𝑨𝒔𝒆𝒍𝒆𝒄𝒕 candidate generation algorithm.
__

Input: CAs (inputted cell arrays).

Output: candidates (all 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates).

 1: candidates = EMPTY;

 2: curCAs = EMPTY; // The current candidate

 3: Generate(CAs, curCAs);

 4: return candidates;

 5:

 6: // Any two cell arrays from restCAs and curCAs,

 7: // respectively, do not overlap

 8: method Generate(restCAs, curCAs)

 9: foreach ca in restCAs do

10: if (GetOverlap(ca, restCAs) = EMPTY) then

11: restCAs.remove(ca); curCAs.add(ca);

12: end if

13: end for

14: if (restCAs = EMPTY) then

15: // Duplicated candidates are ignored

16: candidates.add(curCAs);

17: return

18: end if

19: // All cell arrays in restCAs overlap with others

20: foreach ca in restCAs do

21: tmpRestCAs = restCAs; tmpCurCAs = curCAs; // Backup

22: restCAs.remove(ca); curCAs.add(ca); // Select ca

23: restCAs.remove(GetOverlap(ca, restCAs));

24: Generate(restCAs, curCAs);

25: restCAs = tmpRestCAs; curCAs = tmpCurCAs; // Restore

26: end for

27: end method

28:

29: // Get cell arrays in restCAs, which overlap with ca

30: method GetOverlap(ca, restCAs)

31: overlapCAs = EMPTY;

32: foreach tmp_ca in restCAs do

33: if (ca tmp_ca && overlap(ca, tmp_ca)) then

34: overlapCAs.add(tmp_ca); // ca overlaps with tmp_ca

35: end if

36: end for

37: return overlapCAs;

38: end method

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

best chance of isolating false positives from our considera-
tion. Let ca.errors be the number of conformance errors in a
cell array ca, and 𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡) be the number of con-
formance errors in all cell arrays in a 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate.
Formally, 𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡) is defined as:

𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡) = ∑ 𝑐𝑎. 𝑒𝑟𝑟𝑜𝑟𝑠.

𝑐𝑎∈𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡

We select as the final result the 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate that
has the minimal 𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡) value. If there are multiple
choices, we select the one having the least number of cell
arrays. Then the set of cell arrays in this final 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 can-
didate is our filtering result. Smell detection results are ad-
justed accordingly with this set (e.g., dropped if the con-
cerned cell arrays are not in this set).

6 EVALUATION

We implemented our smelly cell array detection approach
as a tool named CACheck. CACheck builds on the Apache
POI library [63] to manipulate spreadsheets in Excel files.
CACheck loads an Excel file, analyzes its cell arrays, and
generates comments explaining whether they contain am-
biguous computation smells and what they are, as well as
corresponding repairs suggested.

We implemented CACheck in Java 7 and used Z3 [42]
as its underlying constraint solver. To be user-friendly,
CACheck transforms an inferred formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛

back to its A1 representation, e.g., RC[-2] + RC[-1] is trans-
formed to B2 + C2 for cell D2 in Fig. 1(a). For visualization,
CACheck marks its detection results by three annotations:
(1) Cell arrays that suffer from ambiguous computation
smells are colored in yellow; (2) Spreadsheet comments are
added to smelly cells for suggesting their corresponding
repairs; (3) Conformance errors are colored in red with
comments explaining their reasons. These annotations can
assist end users to quickly validate the reported problems.
Fig. 6 gives a screenshot of CACheck’s detection reports
regarding problems identified for our motivating example
in Fig. 1(a).

We then evaluate CACheck and study the following re-

search questions (RQ13 were studied earlier in Section 4):
RQ4 (Precision): Can CACheck detect and repair smelly cell

arrays precisely?
RQ5 (Recall): Can CACheck detect smelly cell arrays with a

high recall rate?
RQ6 (Comparison): How is CACheck compared with exist-

ing techniques, e.g., AmCheck, Excel, UCheck/Dimension
and CUSTODES?

RQ7 (Consistency): Can CACheck obtain consistent results
on different spreadsheet corpora, such as EUSES and Enron?
To answer question RQ4, we ran CACheck on all

spreadsheets in the EUSES corpus (Section 6.1), and man-
ually validated all detected smelly cell arrays (Section 6.2).
To answer question RQ5, we randomly sampled 50 spread-
sheets from the EUSES corpus, and manually created the
ground truths for them (i.e., manually identifying well-
formed and smelly cell arrays). The process of subject se-
lection is explained in Section 6.5.1. We then measured CA-
Check’s recall rate on these 50 spreadsheets (Section 6.5).

To answer question RQ6, we ran both CACheck and Am-
Check on the EUSES corpus, and manually validated all
detected smelly cell arrays to compare their performance,
i.e., precision (Section 6.3) and recall rate (Section 6.5). We
further compared CACheck with Excel, UCheck/Dimen-
sion and CUSTODES in Section 6.4. To answer question
RQ7, we additionally ran CACheck on all spreadsheets in
the Enron corpus, and manually validated 700 randomly
sampled smelly cell arrays. We then compared statistical
characteristics of the detected results on the EUSES and En-
ron corpora. We further sampled 50 spreadsheets from the
Enron corpus and created their ground truths. Based on
them, we measured CACheck’s recall rate, and compared
it to that for EUSES spreadsheets (Section 6.6). We have
also made our tool, experimental dataset and results avail-
able online for future research [62].

6.1 Cell Array Detection for the EUSES Corpus

We ran CACheck on all spreadsheets in the EUSES corpus
to detect smelly cell arrays.

Table 5 gives the statistics of cell arrays detected for
each category of spreadsheets in the EUSES corpus (Cate-
gory). It shows the statistics of cell arrays (Cell array) and
smelly cell arrays (Smelly cell array). It also lists the num-
ber of cell arrays (CA), number of smelly cell arrays (SCA),
and number of cell arrays suffering from missing formula
smells (MISS), inconsistent formula smells (INCO) and
both smells (Both). We observe that smelly cell arrays oc-
cur commonly in the EUSES corpus: 15.5% (3,443/22,177)
of the detected cell arrays suffer from ambiguous compu-
tation smells. Among these smelly cell arrays, 53.7%
(1,849/3,443) suffer from missing formula smells, 49.3%
(1,699/3,443) suffer from inconsistent formula smells, and
3.0% (105/3,443) suffer from both smells.

Table 5 also gives the statistics of homogeneous and in-
homogeneous cell arrays detected in the EUSES corpus. It
shows the number of homogeneous cell arrays (Homo),
number of inhomogeneous cell arrays (Inho), number of
smelly homogeneous cell arrays (SHomo), and number of
smelly inhomogeneous cell arrays (SInho).

We observe that 76.3% (16,928/22,177) of the detected
cell arrays are homogeneous cell arrays. Out of them, 13.7%
(2,324/16,928) suffer from ambiguous computation smells.
We also observe that 23.7% (5,249/22,177) of the detected
cell arrays are inhomogeneous cell arrays. Out of them,
21.3% (1,119/5,249) suffer from ambiguous computation
smells. It seems that inhomogeneous cell arrays are more
error-prone.

Fig. 6. CACheck’s screenshot for the spreadsheet in Fig. 1(a).

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 15

Therefore, we draw the following conclusion:

Smelly cell arrays commonly exist in real-life
spreadsheets, e.g., in the EUSES corpus. Ambiguous
computation smells are also common for inhomo-
geneous cell arrays, which thus deserve detection.

6.2 CACheck’s Precision on Smelly Cell Array
Detection for the EUSES corpus

We then investigate CACheck’s precision on its smelly cell
array detection.

6.2.1 Smelly Cell Arrays

We first partition CACheck’s detected smelly cell arrays
into seven categories according to how many cells their in-
ferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can cover in these arrays. The seven catego-
ries are: 100%, [90%, 100%), [80%, 90%), [70%, 80%), [60%,
70%), [50%, 60%) and [0%, 50%), which represent different
levels of coverage. We then measure CACheck’s precision
on smell detection for the seven categories of cell arrays.
For this purpose, we manually validated all smelly cell ar-
rays detected in the EUSES corpus. For each category, Ta-
ble 6 lists the number of smelly cell arrays (SCA), number
of missing formula smells (M-SCA), and number of incon-
sistent formula smells (I-SCA). These numbers are also ac-
companied with corresponding numbers of validated-as-
true smelly cell arrays (TP).

We observe that CACheck’s inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is able to

cover all the cells in 1,184 smelly cell arrays (i.e., coverage
of 100%), and 90% or more (but not 100%) cells in another
152 smelly cell arrays (i.e., coverage in range [90%, 100%)).
This suggests that values and formulas in these 1,336 cell
arrays are highly compatible with the inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. In

other words, each of these 1,336 cell arrays that suffer from
missing formula or inconsistent formula smells very likely
prescribes common computational semantics expressed by
the inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. Then these detected ambiguous com-

putation smells in these cell arrays (1,336/3,443 = 38.8%)
are probably true. This provides an alternative for as-
sessing the quality of CACheck’s smell detection results.
We can use these seven categories to rank the likeliness of
a smelly cell array being true (higher coverage, more prob-
ably true).

True positives. Out of the 3,443 smelly cell arrays de-
tected, we manually validated them and found that 1,586
(46.1%) of them are true. These 1,586 smelly cell arrays

cover 7.8% (1,586/(22,177 (3,443 1,586))) of all identified

well-formed and true smelly cell arrays. The precision for
missing formula cell arrays (970/1,849 = 52.5%) is higher
than that for inconsistent formula cell arrays (660/1,699 =
38.8%). We also observe that homogeneous cell arrays
(Homo-SCA; 1,235/2,324 = 53.1%) have a higher precision
than inhomogeneous cell arrays (Inho-SCA; 351/1,119 =
31.4%). Fig. 7 shows how the precision changes with dif-
ferent levels of coverage for the detected smelly cell arrays
(CACheck), smelly homogeneous cell arrays (CACheck-
Homo) and smelly inhomogeneous cell arrays (CACheck-
Inho). We observe that the precision roughly decreases
with the reduction in coverage. We also observe that there
is a sharp decrease when the coverage is lower than 70%.
Therefore, we recommend the level of coverage of 70% as
a reliable threshold for smelly cell array detection, where
the precision is 86.8% (1,386/1,597).

False positives. In Table 6, the values in the SCA/TP
column also disclose false positives in smelly cell array de-

tection. We analyzed the causes for the 211 (= 1,597 1,386)
false positives for the coverage in range [70%, 100%]. There
are three main causes: (1) Some spreadsheets use numbers
as labels. For example, in financial reports, end users often
use years like 2013 and 2014 as labels, which are, however,
represented in a number format. Our heuristics in cell ar-
ray extraction can misinterpret them as data cells. 6.2%
(13/211) false positives belong to this case. It should be
easy for end users to quickly validate such false positives.
(2) Some cells in a row or column have the same computa-
tional semantics, but they are separated by empty cells.
CACheck thus extracted multiple column- or row-based
cell arrays, which should not be separated. 12.3% (26/211)
false positives belong to this case. (3) For the remaining
81.5% (172/211) false positives, the concerned cells in these
ranges contain complex computational semantics, which
CACheck could not effectively recognize or distinguish
currently. End users should manually confirm or reject
them for such cases.

6.2.2 Smelly Cells

As mentioned earlier, some cells in a smelly cell array are
smelly. They suffer from either missing formula smells or
inconsistent formula smells. Further, a smelly cell may
contain a conformance error if its value does not conform
to that computed by the concerned cell array’s inferred
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

TABLE 5
Detected Cell Arrays in the EUSES corpus (n.a.: not applicable)

Category
Cell array Smelly cell array

CA Homo Inho Inho/CA SCA SHomo SInho SCA/CA MISS INCO Both

cs101 39 35 4 10.3% 12 12 0 30.8% 8 4 0

database 3,271 2,302 969 29.6% 448 358 90 13.7% 345 114 11

filby 0 0 0 n.a. 0 0 0 n.a. 0 0 0

financial 7,008 5,573 1,435 20.5% 1,259 869 390 18.0% 502 796 39

forms3 150 114 36 24.0% 16 5 11 10.7% 14 2 0
grades 2,955 2,275 680 23.0% 666 528 138 22.5% 335 354 23

homework 2,702 1,971 731 27.1% 343 137 206 12.7% 214 140 11

inventory 3,903 3,133 770 19.7% 517 287 230 13.2% 322 213 18

jackson 0 0 0 n.a. 0 0 0 n.a. 0 0 0

modeling 2,018 1,394 624 30.9% 182 128 54 9.0% 109 76 3

personal 131 131 0 0.0% 0 0 0 0.0% 0 0 0

Total 22,177 16,928 5,249 23.7% 3,443 2,324 1,119 15.5% 1,849 1,699 105

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Table 6 shows the number of detected missing formula
cells (M-Cell) and number of detected inconsistent formula
cells (I-Cell). These numbers are also accompanied with
corresponding numbers of validated-as-true smelly cells
(TP) for comparison. We confirmed that a total of 8,139
(5,214 + 2,925) cells are truly smelly. Out of them, 5,214
cells suffer from missing formula smells, and 2,925 cells
suffer from inconsistent formula smells. The precision for
smelly cell detection is 64.2% (8,139/(7,724 + 4,963)). These
8,139 true smelly cells cover 25.9% of all (31,457) cells from
1,586 true smelly cell arrays, and 3.3% of all (250,245) cells
from all (20320 = 22,177 (3,443 1,586)) detected well-
formed and true smelly cell arrays.

Besides, as shown in Table 6, CACheck detected a total
of 5,553 conformance errors (CE) in the EUSES corpus. We
manually validated them, and confirmed that 26.3%
(1,458/5,553) detected conformance errors are true ones.
We observe that conformance errors occurring in cell ar-
rays with higher levels of coverage also have a higher
probability to be true. For example, 73.9% (655/886) de-
tected conformance errors are true in cell arrays with a
level of coverage in range [70%, 100%].

6.2.3 Repairability

Table 6 also lists the number of true smelly cell arrays that
CACheck failed to repair (Fail to repair). Out of 1,586 true
smelly cell arrays, CACheck was able to repair 1,540 (97.1%)
of them. It shows that CACheck is effective for repairing
smelly cell arrays automatically and correctly. The 46
smelly cell arrays that CACheck failed to repair involve
cases of incomplete input variables (26), complex table
structures (9), incomplete components (10), and too many
wrong cells (1). We roughly observe that such “failed to
repair” cases seem to relate to cell arrays with a level of low
coverage. For example, 45.7% (21/46) cases occur to cell ar-
rays with coverage below 50%, and this causes a failing
rate of 42.0% (21/50). Besides, although 9 cases occur to cell
arrays with coverage of 100%, the concerned failing rate is
actually below as 0.8% (9/1,092).

Therefore, we draw the following conclusion:

CACheck can effectively detect smelly cell arrays.
70% can be a reliable threshold for effective smelly
cell array detection, where it corresponds to a de-
tection precision of 86.8%. Besides, CACheck can
repair true smelly cell arrays with a 97.1% success-
ful rate.

6.3 Comparison between CACheck and AmCheck

We now compare our CACheck with its predecessor, Am-
Check, published earlier. As mentioned, AmCheck can
only detect and repair homogeneous cell arrays, while CA-
Check can do so for both homogeneous and inhomogene-
ous ones.

We compared CACheck and AmCheck on the EUSES
corpus. We partitioned comparison results into seven cat-
egories as earlier, according to different levels of coverage
with respect to AmCheck’s detected smelly cell arrays (i.e.,
how many cells their inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can cover in these ar-
rays). Table 7 lists the number of smelly cell arrays de-
tected by AmCheck (AmCheck/SCA), and number of val-
idated-as-true smelly cell arrays of AmCheck (Am-
Check/TP). As mentioned, all these detected smelly cell
are homogeneous. Fig. 7 also compares how the precision

TABLE 6
Detected and Validated Smelly Cell Arrays with Different Levels of Coverage in the EUSES Corpus

Coverage

Smelly cell arrays Smelly cells

SCA/

TP

M-SCA/

TP

I-SCA/

TP

Homo-SCA/

TP

Inho-SCA/

TP

Fail to

repair

M-Cell/

TP

I-Cell/

TP

CE/

TP

100%
1,184/
1,092

679/
661

525/
449

877/
831

307/
261

9
2,477/
2,445

2,478/
2,251

0/
0

[90%, 100%)
152/
112

118/
85

40/
33

101/
85

51/
27

0
1,259/
1,186

84/
77

226/
131

[80%, 90%)
164/
117

106/
78

66/
45

112/
86

52/
31

3
804/
724

218/
140

398/
323

[70%, 80%)
97/
65

59/
41

49/
28

64/
48

33/
17

5
343/
315

144/
88

262/
201

[60%, 70%)
406/

74
141/

31
272/

47
320/

65
86/

9
3

396/
209

470/
175

749/
294

[50%, 60%)
1,042/

76
440/

32
607/

44
619/

75
423/

1
5

659/
133

890/
128

1,496/
218

[0%, 50%)
398/

50
306/

42
140/

14
231/

45
167/

5
21

1,786/
202

679/
66

2,422/
291

Total
3,443/
1,586

1,849/
970

1,699/
660

2,324/
1,235

1,119/
351

46
7,724/
5,214

4,963/
2,925

5,553/
1,458

Fig. 7. Precision comparison on smelly cell array detection for dif-
ferent levels of coverage on the EUSES corpus (horizontal axis:

coverage category, vertical axis: detection precision).

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 0 0 % [9 0 % ,

1 0 0 %)

[8 0 % ,

9 0 %)

[7 0 % ,

8 0 %)

[6 0 % ,

7 0 %)

[5 0 % ,

6 0 %)

[0 % ,

5 0 %)

AmCheck CACheck-Homo

CACheck-Inho CACheck

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 17

changes with different levels of coverage for smelly cell ar-
rays detected by CACheck and AmCheck. We observe that
the overall precision for CACheck is 46.1% as earlier calcu-
lated, whereas that for AmCheck is only 29.7%
(1,239/4,167). If we use 70% as the reliable threshold for
coverage-based smelly cell array extraction, we observe
that CACheck’s precision is 86.8% as earlier calculated,
whereas AmCheck’s precision is only 71.9% (1,050/1,460).

6.3.1 Inhomogeneous Cell Arrays

As shown in Table 6, CACheck detected 351 true smelly
inhomogeneous cell arrays (Inho-SCA/TP). As mentioned
earlier, AmCheck was unable to detect any inhomogene-
ous cell array. As such, AmCheck missed at least 22.1%
(351/1,586) true smelly cell arrays in the EUSES corpus.

6.3.2 Homogeneous Cell Arrays

Both CACheck and AmCheck can detect homogeneous cell
arrays. Therefore, we are interested in their comparison at
the aspect.

Table 7 also lists the number of smelly homogeneous
cell arrays detected by CACheck (CACheck-Homo/SCA)
and number of validated-as-true smelly homogeneous cell
arrays of CACheck (CACheck-Homo/TP). We observe
that CACheck’s precision is 53.1% (1,235/2,324), whereas
AmCheck’s precision is only 29.7% (1,239/4,167). Similarly,
if we use 70% as the reliable threshold for coverage-based
smelly homogeneous cell array extraction, we observe that
CACheck’s precision is 91.0% (1,050/1,154), whereas Am-
Check’s precision is only 71.9% (1,050/1,460). This indi-
cates that CACheck is more precise than AmCheck even if
we only compare the detection of smelly homogeneous cell
arrays. The improvement is mainly attributed to CA-
Check’s filtering rules, which effectively prune invalid cell
arrays.

We also concern how different the smelly homogeneous
cell arrays detected by CACheck and AmCheck are. Table
7 shows the comparison results. We observe that 97.0%
(2,254/2,324) smelly homogeneous cell arrays detected by
CACheck could also be detected by AmCheck (Common
SCA), but 45.9% (1,913/4,167) smelly cell arrays detected
by AmCheck were missed by CACheck (Missed by CA-
Check/SCA). However, we note that this only compares
detection results, but not validation results. Thus we man-
ually validated all these 1,913 missed smelly cell arrays,
and found that only 2.8% (54/1,913) of them are true
smelly cell arrays (Missed by CACheck/TP). Besides, in 21
out of the 54 true smelly cell arrays (Equal smell), their cor-

responding smelly cells were already detected in other ex-
tracted cell arrays as reported by CACheck. As such, CA-
Check actually only missed 1.7% (33/1,913) true smelly ho-
mogeneous cell arrays. At the same, CACheck successfully
filtered out 63.5% ((1,913 54) / (4,167 1,239)) false posi-
tives in AmCheck’s detection results with a precision of
97.2% ((1,913 54)/1,913). For the 33 indeed missed (true
smelly homogeneous) cell arrays, there are two cases: (1)
Some cells do not have dependence similarity, and thus
CACheck could not decide if they form any cell arrays. 17
cell arrays belong to this case. (2) Some cell arrays overlap
with other cell arrays. As including the latter into the set of
cell array candidates can introduce less conformance errors
than including the former, the former cell arrays were
missed. 16 cell arrays belong to this case.

From Table 7, we also observe that CACheck detected
70 additional smelly homogeneous cell arrays (Added by
CACheck/SCA) that AmCheck could not detect, and 50 of
them were validated as true (Added by CACheck/TP).
This is more than what CACheck missed (33). These 50 cell
arrays were not decided as cell arrays by AmCheck, as they
do not follow AmCheck’s cell array extraction heuristics.
Nevertheless, CACheck’s dependence similarity checking
works for them and can precisely capture them. This indi-
cates that CACheck’s improved cell array extraction heu-
ristics are effective and could take back AmCheck’s missed
true homogeneous cell arrays with a precision of 71.4% (50
/ 70).

Therefore, we draw the following conclusion:

CACheck detects 401 (351 inhomogeneous and 50
homogeneous) additional true smelly cell arrays
that are missed by AmCheck. If one sets 70% as the
reliable threshold for coverage-based cell array ex-
traction, CACheck’s precision is 86.8%, higher than
AmCheck’s precision, 71.9%, and CACheck’s preci-
sion on homogeneous cell array detection is even
higher, 91.0%.

6.4 Comparison with other Techniques

We then compare our CACheck with Excel, UCheck/Di-
mension [4], [8] and CUSTODES [10]. These techniques
mainly focus on syntactic smells (e.g., division by zero in
Excel, type inconsistency in a formula [4], [8], and outliers
in a cell cluster [10]), while CACheck focuses on semantic
smells that violate computational semantics of concerned
cell arrays, as mentioned earlier. These techniques adopt
different mechanisms and may possibly detect smells that
CACheck cannot (e.g., division by zero in Excel), and may
also detect some smells that CACheck can as well (e.g., a

TABLE 7
Comparisons between CACheck and AmCheck on the EUSES Corpus

Coverage
AmCheck CACheck-Homo Common

SCA

Missed by CACheck Added by CACheck

SCA TP SCA TP SCA TP Equal smell SCA TP

100% 993 822 877 831 836 157 27 8 41 36
[90%, 100%) 133 88 101 85 97 36 6 1 4 3
[80%, 90%) 215 90 112 86 110 105 6 1 2 2
[70%, 80%) 119 50 64 48 63 56 3 3 1 1
[60%, 70%) 440 69 320 65 317 123 6 4 3 2
[50%, 60%) 1,293 76 619 75 608 685 4 3 11 3
[0%, 50%) 974 44 231 45 223 751 2 1 8 3

Total 4,167 1,239 2,324 1,235 2,254 1,913 54 21 70 50

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

cell suffers from both semantic and syntactic smells). In or-
der to exhibit the differences in the scope of focused smells
between these techniques and CACheck, our experimental
comparisons rely on checking the applicability of other
techniques to detecting those smells detected by CACheck.
Specially, we investigate how many of CACheck’s 8,139
validated-as-true smells can also be detected by these tech-
niques.

6.4.1 Comparison with Excel

Microsoft Excel has built-in support for detecting syntactic
smells (inconsistencies) in spreadsheet cells. However, its
detection is subject to a few limitations. First, Excel consid-
ers only row-based or column-based ranges of three con-
secutive cells, and tries to detect smells in such ranges. Sec-
ond, it detects only those smells that the middle cell’s for-
mula expression is syntactically different from those of its
two adjacent cells, while the two adjacent cells’ formula ex-
pressions are identical themselves. Besides, Excel also sup-
ports detecting some well-known calculation errors like di-
vision by zero. In Table 8, the Excel column shows that Ex-
cel can give warnings for only 2.2% (175/8,139) validated-
as-true smelly cells detected by CACheck. Therefore, we
consider that CACheck’s capability is orthogonal to that of
Excel’s built-in checking mechanisms.

6.4.2 Comparison with UCheck/Dimension

The general idea of UCheck [4] and Dimension[8] is to ex-
ploit information in spreadsheets about labels and headers
to check the type inconsistency of formulas in spreadsheet
cells. UCheck uses the concept of unit to represent the type
of a cell, e.g., cell E4 represents the harvest of apples in June,
and cell F5 represents the harvest of oranges in July.
UCheck defines some rules to enforce that one should not
sum E4 and F5 up. Dimension detects smells when it finds
that units of measurement are used incorrectly in formulas.
For example, one should not add two cells with time and
distance types, respectively, together.

CACheck has several advantages over UCheck/Dimen-
sion: (1) In the EUSES corpus, CACheck detected 8,139 true
smelly cells, whereas UCheck/Dimension detected only
695 true smelly cells as reported in their latest work [9]. (2)
CACheck can detect and repair smelly cells by suggesting
intended formula patterns and calculated values, whereas
UCheck/Dimension can only detect smelly cells without
repair suggestions. (3) CACheck can detect and repair
missing formula cells, whereas UCheck/Dimension can-
not. (4) CACheck can detect and repair smelly cells that do
not violate UCheck/Dimension’s checking rules, e.g.,
smelly cells in Fig. 1(a). (5) CACheck does not rely on un-
reliable header/label information, whereas UCheck/Di-
mension relies much on such information, which may in-
cur problems when the information is missing or incom-
plete.

The tool we obtained for experiments has implemented
both UCheck and Dimension. So we conducted experi-
ments by not splitting it into two parts, as their latest work
[9] did. In Table 8, the UCheck/Dimension column shows
that UCheck/Dimension detected only 0.2% (20/8,139)

validated-as-true smelly cells by checking type incon-
sistency. Still, we note that if a type inconsistency does not
relate to any cell array, CACheck may not be able to detect
it. Therefore, CACheck’s capability is orthogonal to that of
UCheck/Dimension, and they can detect different types of
smells.

6.4.3 Comparison with CUSTODES

We also compare our CACheck to another more recent
technique CUSTODES [10]. CUSTODES uses strong fea-
tures (e.g., the same or similar R1C1 expressions and cell
references) and weak features (e.g., same labels and font
colors) to classify cells into different clusters. It then uses
outlier detection to identify smelly cells in each cluster. For
example, in Fig. 1(a), CUSTODES can extract {D4, D5, D9}
as a cell cluster since the three cells share their cell refer-
ences in the R1C1 representation. CUSTODES can also ex-
tract other four cell clusters for this example: {A3:A6},
{D2:D3}, {D6:D7} and {E3:E7}. We can observe that CUSTO-
DES’s concept of cell cluster is different from CACheck’s
concept of cell array.

Our investigation suggests that CACheck has several
advantages over CUSTODES: (1) CUSTODES is learning-
based and relies its threshold settings. Although its current
implementation used default settings for all experiments,
it did not guarantee for its best performance. It may cause
false positives or negatives, as we observed in experiments.
Nevertheless, CACheck does not have this issue. (2) CA-
Check can detect and repair smelly cells by suggesting in-
tended formula patterns and corresponding values,
whereas CUSTODES can only detect smelly cells without
repair suggestions. (3) CUSTODES detects a cell cluster
mainly by the equivalence of formulas contained by its
cells, while CACheck detects a cell array mainly by the
consecutive nature of its cells. Therefore, although CUS-
TODES can detect cell clusters that contain non-consecu-
tive cells, it may also cause CUSTODES to miss important
smelly cells. For example, in Fig. 1(a), cells D2 and D3 con-
tain equivalent formulas in the R1C1 representation, and
thus CUSTODES extracts them into a cell cluster. However,
this prevents CUSTODES from further considering D4, D5,

TABLE 8
True Smelly Cells Detected by Different Techniques in the

EUSES corpus

Category CACheck Excel*
UCheck/

Dimension*
CUSTODES*

cs101 22 0 0 5
database 3,650 57 1 1,317

filby 0 0 0 0
financial 1,491 36 4 627
forms3 8 0 0 3
grades 1,322 25 10 468

homework 285 29 0 96
inventory 981 22 1 434
jackson 0 0 0 0

modeling 380 6 4 90
personal 0 0 0 0

Total 8,139 175 20 3,040

* The numbers in the columns show how many of CACheck’s vali-
dated-as-true smelly cells could be detected by the corresponding
techniques.

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 19

D6 and D7 into this cell cluster under default threshold set-
tings, and as a result, CUSTODES fails to find that D2 and
D3 are actually smelly. Nevertheless, CACheck does not
have this problem for this example. (4) CACheck’s smelly
cell detection is based on a cell array’s inferred formula
pattern, while CUSTODES uses outlier detection to iden-
tify smelly cells. This might cause CUSTODES to misjudge
situations and incur false positives. For example, in Fig.
1(a), CUSTODES considers {D4, D5, D9} as a cell cluster,
but CUSTODES cannot figure out which of them are
smelly since all three cells have different formulas. As a re-
sult, CUSTODES cannot identify the cell D4 as smelly,
without taking more information under default threshold
settings.

To validate our analysis for CUSTODES, we ran CUS-
TODES’s implementation (obtained from its authors) on
the EUSES corpus, and checked how many of CACheck’s
validated-as-true smelly cells could be detected by CUS-
TODES. In Table 8, the CUSTODES column gives the com-
parison results. We observe that CUSTODES detected only
37.4% (3,040/8,139) true smelly cells, which were detected
by CACheck. Thus, CUSTODES missed a lot that were
achieved by CACheck, and this suggests that CACheck has
its unique advantages that CUSTODES cannot compare.
Still, we note that CUSTODES may also detect certain
smelly cells in its extracted cell clusters that may not nec-
essarily contain consecutive cells. Therefore, we consider
that our CACheck’s capability is orthogonal to that of CUS-
TODES.

6.5 CACheck’s Recall on Smelly Cell Array
Detection for the EUSES Corpus

We next measure CACheck’s recall rate on its smelly cell
array detection for the EUSES corpus. As this measure-
ment involves ground truths for all true smells in spread-
sheets, which requires substantial manual effort, we con-
ducted experiments only on a sampled subset of spread-
sheets from the EUSES corpus. We also compared the re-
call rate between CACheck and AmCheck.

6.5.1 Experimental Subjects

Manually building ground truths for all true smells in
EUSES spreadsheets is extremely difficult, as we are not
authors of these spreadsheets and we also cannot find their
corresponding authors. Therefore, we randomly sampled
50 spreadsheets from those with cell arrays for measuring
CACheck’s recall rate and comparing it with AmCheck
(both requiring cell arrays). We manually obtained all
well-formed and smelly cell arrays in these sampled
spreadsheets as our ground truths.

We asked two postgraduate students to help sample
spreadsheets and identify their contained cell arrays. For
each randomly sampled spreadsheet from the EUSES cor-
pus, we (authors and the two students) checked each of its
contained worksheets for cell arrays individually, and then
discussed our findings together. For a worksheet that does
not contain any cell array or cannot be understood by any
one of us, we removed it from consideration. If a spread-
sheet contains at least one worksheet remaining, we kept
this spreadsheet. Otherwise, it was also removed from con-
sideration. We repeated this sampling process until 50
spreadsheets were collected.

Table 9 gives the statistics of the 50 sampled spread-
sheets from the EUSES corpus. We observe that the 50 sam-
pled spreadsheets (SS) are distributed in eight different
categories, including 128 worksheets (Worksheet) and
18,036 formulas (Formula). Our manual inspection of these
spreadsheets identifies a total of 1,136 cell arrays (CA).
Among them, 252 cell arrays are smelly (SCA). We also
identified 834 smelly cells (Smelly cell) from them.

We note that our sampling process might bias those
spreadsheets that contain cell arrays. In our early experi-
ments on the whole EUSES corpus, we found that CA-
Check detected many false smelly cell arrays in only few
spreadsheets. For example, CACheck detected 569 (out of
the total of 1,857) false smelly cell arrays in only two
spreadsheets. AmCheck detected a similar number of false
smelly cell arrays in the two spreadsheets. Thus, we need
to filter out such spreadsheets clearly different from others

TABLE 9
Comparisons between CACheck and AmCheck on the Sampled EUSES Spreadsheets

Category

Statistics of sampled spreadsheets CACheck AmCheck

SS
Work-

sheet

For-

mula
CA SCA

Smelly

cell

CA/

TP

SCA/

TP

Smelly

cell/TP

CA/

TP

SCA/

TP

Smelly

cell/TP

cs101 1 1 40 8 5 10
9/
5

4/
4

6/
6

8/
4

4/
4

6/
6

database 7 32 3,345 555 104 378
528/
499

70/
65

215/
197

506/
447

99/
60

208/
143

financial 11 30 1,372 201 74 276
193/
184

61/
57

213/
190

183/
168

58/
48

187/
140

forms3 1 1 52 12 0 0
8/
8

0/
0

0/
0

40/
4

36/
0

72/
0

grades 8 21 1,665 119 24 69
118/
115

22/
20

70/
46

29/
29

8/
8

34/
34

homework 8 15 1,000 88 23 48
69/
57

18/
11

34/
16

68/
48

25/
10

25/
10

inventory 8 11 9,967 68 15 30
67/
67

15/
15

30/
30

163/
47

131/
15

146/
30

modeling 6 17 595 85 7 23
86/
85

8/
7

24/
23

67/
67

7/
7

23/
23

Total 50 128 18,036 1,136 252 834
1,078/
1,020

198/
179

592/
508

1,064/
814

368/
152

701/
386

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

in sampled spreadsheets. Our sampling process used
“having cell arrays” as a criterion, since the two spread-
sheets do not contain any cell array. Still, our sampling
process also filtered out other spreadsheets that contain no
cell array. According to our understanding, these spread-
sheets likely fall in the category of low coverage, since
“containing no cell array” and “detected false (smelly) cell
array” are related. Thus, our sampling process might cause
CACheck and AmCheck to detect less smelly cell arrays
from spreadsheets with coverage in range [0%, 70%), since
most of them should have been filtered out. Nevertheless,
for coverage in other ranges like 100%, [90%, 100%), [80%,
90%) and [70%, 80%), CACheck’s detected smelly cell ar-
rays are distributed as (133, 14, 18, 9) and (1,184, 152, 164,
97), and AmCheck’s detected smelly cell arrays are distrib-
uted as (139, 7, 36, 10) and (993, 133, 215, 119), respectively,
for the 50 sampled spreadsheets and all EUSES spread-
sheets. We observe that the two pairs of distribution data
are comparable in percentage. As suggested earlier, a cov-
erage of 70% can be a reliable threshold for effective smelly
cell array detection in practice. Thus, our sampling process
is still reasonable and can reflect CACheck’s and Am-
Check’s performance and comparison in practice.

6.5.2 Smelly Cell Arrays

Table 9 also compares the detection results for CACheck
and AmCheck on the sampled spreadsheets. For cell array
extraction, the precision for CACheck and AmCheck is 94.6%
(1,020/1,078) and 76.5% (814/1,064), respectively (CA/TP).
For smelly cell array detection, the precision for CACheck
and AmCheck is 90.4% (179/198) and 41.3% (152/368), re-
spectively (SCA/TP). For smelly cell detection, the preci-
sion for CACheck and AmCheck is 85.8% (508/592) and
55.1% (386/701), respectively (Smelly cell/TP). We ob-
serve that CACheck detected more cell arrays and smelly
cell arrays with a higher precision.

In this group of experiments, recall rate is our main fo-
cus. For cell array extraction, the recall rate for CACheck
and AmCheck is 89.8% (1,020/1,136) and 71.7%
(814/1,136), respectively. For smelly cell array detection,
the recall rate for CACheck and AmCheck is 71.0%
(179/252) and 60.3% (152/252), respectively. For smelly
cell detection, the recall rate for CACheck and AmCheck is
60.9% (508/834) and 46.3% (386/834), respectively (Smelly
cell). We observe that CACheck has largely improved the
recall rate as compared to AmCheck, i.e., greatly reducing
missed smelly cell arrays and smelly cells.

6.5.3 False Negatives

We then further analyze missed cell arrays (false negatives)
on the 50 sampled spreadsheets for CACheck and Am-
Check.

Table 10 lists missed cell arrays for CACheck and Am-
Check, according to our ground truths. CACheck missed
10.2% ((1,136 – 1,020) / 1,136) cell arrays, whereas Am-
Check missed 28.3% ((1,136 - 814) / 1,136) cell arrays. This
big difference has been caused by AmCheck being unable
to extract inhomogeneous cell arrays, as mentioned earlier.

Table 10 also lists four common reasons (Common
causes) explaining why false negatives occurred to both
CACheck and AmCheck: (1) 4.1% (47/1,136) cell arrays
(i.e., 18.7% (47/252) smelly cell arrays) contain plain values
only (Plain value). It is difficult to figure out whether the
concerned cells with only plain values contain the same
formula pattern or not, since there is no clue on how these
values are calculated. One example is the cell array [B5:E5]
in Fig. 8(a). (2) 4.2% (48/1,136) cell arrays contain empty
cells, string cells, or error cells (Wrong cell). Both CACheck
and AmCheck split such cell arrays into multiple smaller
ones, as separated by such cells. One example is the cell
array [B5:E5] in Fig. 8(b). (3) 0.5% (6/1,136) cell arrays con-
tain empty lines inside for layout purposes. Similarly, CA-
Check and AmCheck split them into multiple smaller ones.

(a) Cell array [B5:E5] with plain values only.

(b) Cell array [B5:E5] with an empty cell.

(c) Cell array [B5:H5] contains empty lines inside.

Fig. 8. Simplified spreadsheet examples with missed cell arrays, ex-
tracted from the EUSES corpus.

TABLE 10
Missed Cell Arrays on the Sampled EUSES Spreadsheets

Category CA

Common causes CACheck AmCheck

Plain
value

Wrong
cell

Empty
line

Func Detected
Wrong
range

Detected
Wrong
range

Inho (Com-
mon)

cs101 8 1 2 0 0 5 0 4 0 1(0)
database 555 17 31 6 0 499 2 447 25 33(4)
financial 201 14 3 0 0 184 0 168 0 16(0)
forms3 12 0 0 0 4 8 0 4 0 4(0)
grades 119 3 0 0 0 115 1 29 0 87(0)

homework 88 12 12 0 1 57 6 48 0 17(2)
inventory 68 0 0 0 1 67 0 47 0 21(1)
modeling 85 0 0 0 0 85 0 67 0 18(0)

Total 1,136 47 48 6 6 1,020 9 814 25 197(7)

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 21

One example is the cell array [B5:H5] in Fig. 8(c). (4) 0.5%
(6/1,136) cell arrays contain complex Excel functions
(Func), such as STDEV and SUMPRODUCT, which the
current CACheck and AmCheck implementations do not
support and need extension. Besides the four common rea-
sons, CACheck and AmCheck may extract larger or
smaller ranges of consecutive cells rather than expected,
leading to missed cell arrays. Table 10 also lists the number
of such missed cell arrays (Wrong range). CACheck and
AmCheck missed 0.8% (9/1,136) and 2.2% (25/1,136) such
cells arrays, respectively.

Finally, we found that among those cell arrays missed
by AmCheck, 61.2% (197/322) of them are inhomogeneous
ones. This part contributes to a large portion of AmCheck’s
low recall rate, as compared to CACheck, which was de-
signed to be able to extract inhomogeneous cell arrays.

Therefore, we draw the following conclusion:

Compared with AmCheck, CACheck largely im-
proves the recall rate of cell array extraction (from
71.7% to 89.8%), and that of smelly cell array detec-
tion (from 60.3% to 71.0%).

6.6 Cell Array Detection for the Enron Corpus

The previous experiments and comparisons show that our
CACheck performs much better than AmCheck, no matter
on the precision or recall rate, with respect to the EUSES
corpus. In the following, we extend our evaluation on CA-
Check to another even huge Enron corpus. We also com-
pare CACheck’s evaluation results to those on the EUSES
corpus.

6.6.1 Cell Array Detection

Table 11 compares CACheck’s detected cell arrays on the
EUSES and Enron corpora. It studies detected cell arrays
(Cell array) and detected smelly cell arrays (Smelly cell ar-
ray). It lists the number of cell arrays (CA), number of
smelly cell arrays (SCA), and number of cell arrays suffer-
ing from missing formula smells (MISS), inconsistent for-
mula smells (INCO), and both smells (Both). Table 11 also
lists the numbers of homogeneous (Homo and SHomo)

and inhomogeneous (Inho and SInho) cell arrays. We ob-
serve that the percentage of inhomogeneous cell arrays
against all cell arrays is 23.7% and 24.6% (Inho/CA), re-
spectively, for the EUSES and Enron corpora. They are
close to each other. Besides, the percentage of smelly cell
arrays is 15.5% and 12.9% (SCA/CA), respectively, for the
two corpora. They are also close and comparable.

Therefore, we draw the following conclusion:

Smelly cell arrays are also commonly detected in
the Enron corpus. The EUSES and Enron corpora
have comparable percentages on inhomogeneous
cell arrays and smelly cell arrays.

6.6.2 Detection Precision

We then investigate CACheck’s precision on smelly cell ar-
ray detection for the Enron corpus.

Following our earlier experimental process for the pre-
cision study on the EUSES corpus (Section 6.2), we parti-
tion CACheck’s detected smelly cell arrays into seven cat-
egories according to their levels of coverage (i.e., how
many cells in percentage their inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can cover in

these arrays). Table 12 lists the number of smelly cell arrays
(SCA) for each category. Since the total number (58,514) is
huge and much more than that (3,443) for the EUSES cor-
pus, it is almost impossible to validate all of them. So we
adopted another soft way by sampling and estimation. We
randomly sampled 100 smelly cell arrays (Sample/SCA)
for each category and manually validated them. This ac-
counts for 700 smelly cell arrays, which occupy 1.2%
(700/58,514) of all detected cell arrays. For each category,
Table 12 lists the number of validated-as-true smelly cell
arrays (Sample/TP).

Fig. 9 compares CACheck’s precision on smelly cell ar-
ray detection for different levels of coverage on the Enron
and EUSES corpora. We observe that the two groups of

TABLE 11
Comparisons of CACheck’s Detected Cell Arrays on the EUSES and Enron Corpora

Corpus
Cell array Smelly cell array

CA Homo Inho Inho/CA SCA SHomo SInho SCA/CA MISS INCO Both

EUSES 22,177 16,928 5,249 23.7% 3,443 2,324 1,119 15.5% 1,849 1,699 105
Enron 455,159 342,992 112,167 24.6% 58,514 28,815 29,699 12.9% 43,343 16,993 1,822

Total 477,336 359,920 117,416 24.6% 61,957 31,139 30,818 13.0% 45,192 18,692 1,927

TABLE 12
Detected and Validated Smelly Cell Arrays on the Enron

Corpus

Coverage SCA
Sample

Estimated TP
SCA TP

100% 21,692 100 91 19,740
[90%, 100%) 3,771 100 88 3,318
[80%, 90%) 2,047 100 66 1,351
[70%, 80%) 1,521 100 60 913
[60%, 70%) 3,135 100 20 627
[50%, 60%) 16,107 100 3 483
[0%, 50%) 10,241 100 12 1,229

Total 58,514 700 340 27,661

Fig. 9. Precision comparison on smelly cell array detection for dif-
ferent levels of coverage on the EUSES and Enron corpora (hori-
zontal axis: coverage category, vertical axis: detection precision).

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 0 0 % [9 0 % ,

1 0 0 %)

[8 0 % ,

9 0 %)

[7 0 % ,

8 0 %)

[6 0 % ,

7 0 %)

[5 0 % ,

6 0 %)

[0 % ,

5 0 %)

EUSES Enron

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

precision values are close to each other. Based on valida-
tion results on sampled smelly cell arrays, we estimate that
there are a total of 27,661 smelly cell arrays (Estimated TP
in Table 12) in the Enron corpus. If one considers 70% as
the reliable threshold for coverage-based cell array extrac-
tion, CACheck’s precision on smelly cell array detection
for the Enron corpus is 87.2% (25,322/29,031), while the
precision for the EUSES corpus is 86.8%, as earlier meas-
ured. This indicates that CACheck has a comparable preci-
sion on smelly cell array detection for the Enron and
EUSES corpora.

6.6.3 Detection Recall

We next investigate CACheck’s recall rate on smelly cell
array detection for the Enron corpus.

Similarly, we followed our earlier experimental process
for the recall study on the EUSES corpus (Section 6.5), and
randomly sampled 50 spreadsheets from the Enron corpus.
However, we found many similar spreadsheets and work-
sheets in the Enron corpus. This was caused by the fact that
the Enron corpus contains many series of different ver-
sions of spreadsheets or worksheets, which were extracted
from email correspondences [18], [26]. Thus, we only se-
lected one spreadsheet or worksheet if multiple similar
ones were found. We believe that this treatment could
make our sampled spreadsheets more representative for
the Enron corpus.

Table 13 gives the statistics of the sampled spreadsheets
from the Enron corpus (columns 27 for row Enron). Our
sampled 50 Enron spreadsheets (SS) contained 102 work-
sheets (Worksheet) and 27,547 formulas (Formula). Fol-
lowing our earlier inspection process for the EUSES corpus,
our manual inspection of these Enron spreadsheets identi-
fied a total of 1,175 cell arrays (CA). Among them, 128 cell
arrays are smelly (SCA). We also identified 483 smelly cells
(Smelly cell) from smelly cell arrays.

Table 13 also compares CACheck’s recall rates on the
EUSES and Enron corpora (columns 810). We observe
that CACheck’s recall rates for cell array detection (89.8%
vs. 90.0%; CA), smelly cell array detection (71.0% vs. 72.7%;
SCA) and smelly cell detection (60.9% vs. 66.5%; Smelly
cell) are close to each other for the EUSES and Enron cor-
pora. This suggests that CACheck has a comparable recall
rate on smelly cell array detection for the EUSES and Enron
corpora.

Therefore, we draw the following conclusion:

CACheck has a comparable precision (86.8% vs.
87.2%) and recall rate (71.0% vs. 72.7%) on smelly
cell array detection for the EUSES and Enron cor-
pora.

6.7 Research Questions Revisited

Finally, we revisit our research questions RQ47:

RQ4 (Precision): Can CACheck detect and repair smelly cell
arrays precisely?

 One may use the coverage of 70% as a reliable threshold

for CACheck’s effective smelly cell array detection, and

this corresponds to a satisfactory precision of 86.8%.
 CACheck is able to repair 1,540 (97.1%) of its 1,586 de-

tected true smelly cell arrays.

RQ5 (Recall): Can CACheck detect smelly cell arrays with a
high recall rate?
 CACheck’s recall rate for cell array extraction and

smelly cell array detection is 89.8% and 71.0%, respec-
tively, which is both promising.

RQ6 (Comparison): How is CACheck compared with existing
techniques, e.g., AmCheck, Excel, UCheck/Dimension and CUS-
TODES?
 CACheck detects 401 (out of a total of 1,586) additional

true smelly cell arrays that are missed by AmCheck.
 If one uses the coverage of 70% as a reliable threshold

for smelly cell array detection, the precision for CA-
Check and AmCheck is 86.8% and 71.9%, respectively.

 The recall rate for CACheck and AmCheck on smelly
cell array detection is 71.0% vs. 60.3%, respectively.

 Excel, UCheck/Dimension and CUSTODES can detect
only 2.2%, 0.2% and 37.4% (out of 8,139) CACheck’s
validated-as-true smelly cells, respectively.

RQ7 (Consistency): Can CACheck obtain consistent results on
different spreadsheet corpora, such as the EUSES and Enron cor-
pora?
 The EUSES and Enron corpora have comparable per-

centages on inhomogeneous cell arrays and smelly cell
arrays against all detected cell arrays.

 The precision of smelly cell array detection on the
EUSES and Enron corpora is comparable (86.8% vs.
87.2%).

 The recall rate of smelly cell array detection on the
EUSES and Enron corpora is also comparable (71.0% vs.
72.7%).

6.8 Threats to Validity

While our experimental evaluation shows that CACheck is
promising for detecting and repairing ambiguous compu-
tation smells in real-life spreadsheets, we discuss some po-
tential threats in our evaluation.

Representativeness of studied spreadsheets. To general-
ize the conclusions made in our experimental evaluation,
the studied spreadsheets as experimental subjects should
be representative. We selected the EUSES and Enron cor-
pora, two well-known and large spreadsheet corpora,
which have been well recognized and widely used for
spreadsheet-related research studies [9], [25], [31], [53].

TABLE 13
Comparisons of CACheck’s Recall Rate on the Sampled EUSES and Enron Spreadsheets

Corpus
Statistics of sampled spreadsheets CACheck (recall rate)

SS Worksheet Formula CA SCA Smelly cell CA SCA Smelly cell

EUSES 50 128 18,036 1,136 252 834 1,020 (89.8%) 179 (71.0%) 508 (60.9%)
Enron 50 102 27,547 1,175 128 483 1,058 (90.0%) 93 (72.7%) 321 (66.5%)

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 23

Smelly cell array validation. Our experimental evalua-
tion on CACheck’s precision on smelly cell array detection,
as well as its comparisons to existing work, relies on the
validation of its detected smelly arrays. Due to the fact of
lack of responsible authors, we manually validated these
detected smelly arrays in their concerned spreadsheets. In
order to reduce possible mistakes we could introduce, we
adopted some helping strategies: (1) Some tables or work-
sheets are similar to each other, and they help us double
check our validation results. (2) We tried to understand the
semantics of cell arrays according to their related labels, ra-
ther than treating cell array extraction and smelly cell array
detection simply as a syntactic process. (3) Some cells in
smelly cell arrays, although containing unusual plain val-
ues (e.g., 12,498), could be successfully recovered by our
inferred formula pattern. Such discovered knowledge
(missing formula) helped us double check related cell ar-
rays and their intended formula patterns.

Spreadsheet selection for the recall study. The recall
study requires ground truths for all studied spreadsheets.
To reduce our efforts, we sampled 50 spreadsheets from
the EUSES corpus, and manually identified their contained
cell arrays and smelly ones. Our sampling was random,
but focusing on those spreadsheets that we can fully un-
derstand (i.e., those spreadsheets any one of us could not
understand or we do not agree on with each other were
discarded). Similar treatments were also applied to the re-
call study on the Enron corpus. Still, as mentioned earlier,
our sampled spreadsheets have comparable distributions
of smelly cell arrays with respect to the whole EUSES cor-
pus. We consider that this should alleviate possible threats
in our sampling process. If one, who has different domain
knowledge, samples spreadsheets from the EUSES corpus
in a different way, the corresponding recall rate might be
different (not large, we believe). We note that our experi-
mental process can still be similarly applied and thus reus-
able.

7 RELATED WORK

In this section, we present and discuss related work in re-
cent years. We focus on those pieces of work that concern
spreadsheet quality (e.g., spreadsheet errors, auditing, er-
ror detection, debugging and testing), and techniques re-
lated to our CACheck approach (e.g., program synthesis
and semantic bug analysis).

Spreadsheet errors. Spreadsheet errors are common [44],
[45], [46]. They can cause serious financial loss [54]. The
ambiguous computation smells studied in this article may
not cause errors immediately, but would degrade spread-
sheets’ quality gradually and boost potential errors.
Spreadsheets suffering from ambiguous computation
smells contain unclear or even conflicting computational
semantics, which make them difficult to maintain in a cor-
rect way.

Spreadsheet auditing. Auditing is a way to maintain for
spreadsheets’ quality. To facilitate auditing, Clermont et al.
[11], [12], [41] proposed high-level structures (logical areas)
by aggregating cells to help end users understand large

spreadsheets, such as copy equivalence (i.e., two cells’ for-
mulas are identical), logical equivalence (i.e., two cells’ for-
mulas differ only in constant values and absolute refer-
ences), structural equivalence (i.e., two cells’ formulas differ
in constant values and absolute/ relative references, and
the same operators or functions are applied in the same or-
der). These logical areas assist end users to better under-
stand conceptual models behind spreadsheets, and to find
smelly cells in spreadsheets more easily. Thus, some com-
mercial spreadsheet tools (e.g., OAK [57], EXChecker [58],
Spreadsheet Detective [60] and Spreadsheet Auditor [61])
have adopted this idea. The concept of cell array proposed
in this article is similar to copy equivalence. However, sev-
eral differences exist: (1) The auditing technique visualizes
logical areas in spreadsheets, and asks end users to spot
dangerous parts in them, while CACheck spots smelly
cells automatically. (2) The auditing technique requires
that, for two cells in a certain kind of logical area, their for-
mulas should have the same operators and functions ap-
plied in the same order. This would exclude cell arrays,
like [D2:D7] and [B9:C9] in Fig. 1(a), from consideration. (3)
CACheck can aggregate smelly cells that do not satisfy re-
quirements of logical areas, such as cells with inconsistent
or even missing formulas, while the auditing technique
cannot. (4) CACheck can repair smelly cells by suggesting
their intended formula patterns, while the auditing tech-
nique does not support this. (5) CACheck can rank smelly
cell arrays according to their different levels of coverage,
while the auditing technique needs end users to audit cells
inside or adjacent to logical areas individually.

Spreadsheet error detection and debugging. Various
techniques have been proposed to detect and debug errors
in spreadsheets. A recent survey [35] provides in-depth re-
views of these techniques. It summarizes many main
spreadsheet error detection techniques. For example,
UCheck [4] and dimension inference [8] use a type system
to check unit and dimension errors, respectively. They fo-
cus on whether units can be combined correctly into one
cell. Smellsheet Detective [14], [15] detects statistical smells,
type smells, content smells and functional dependence
smells. Hermans et al. proposed visualizing spreadsheets
by dataflow graphs [28], and detected inter-worksheet
smells in these graphs [30]. They also proposed detecting
smells from data clones [31], spreadsheet formulas [29] and
lookup functions [25]. Commercial spreadsheet tools (e.g.,
Spreadsheet Professional [56], OAK [57], EXChecker [58]
and PerfectXL [59]) can detect various syntactic errors (e.g.,
referencing empty cells, division by zero, and so on). These
pieces of work focus more or less on syntactic errors, while
our CACheck focuses on missing formula and inconsistent
formula smells, which concern semantic errors. Our CA-
Check also detects conformance errors caused by ambigu-
ous computation smells. Its scope is thus orthogonal to ex-
isting work. Besides, according to the spreadsheet research
survey [35], due to the structure of spreadsheets (e.g., com-
putations are hidden behind the cells), locating spread-
sheet errors is typically a hard task. Thus, many debug-
ging techniques have been developed for spreadsheets,

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

e.g., slicing-based debugging [47], spectrum-based fault lo-
calization [33], [48], constraint-based fault localization [34],
repair-based debugging techniques [3], and so on. These
debugging techniques usually depend on users’ expecta-
tions or judgments about outputs of certain cells. Therefore,
our CACheck differs from these debugging techniques in
that it does not rely on such expectations or judgments to
work.

Spreadsheet modeling and testing. Constructing rigor-
ous models (explicit abstractions) for spreadsheets [2], [13],
[27] can help end users reduce chances of introducing am-
biguous computation smells. Yet, constructing such mod-
els from spreadsheets can be challenging. Its effectiveness
depends largely on the correctness of underlying spread-
sheets, and ambiguous computation smells can reduce its
precision and thus effectiveness. Instead of introducing an
explicit abstraction, XanaSheet [32] employs origin track-
ing techniques to maintain a live connection between the
source and destination of copy-paste actions. Whenever a
copied formula is edited, the modification can be trans-
formed and replayed on the original and all other copies.
Thus, inconsistent modifications of copy-pasted cells could
be avoided. Our CACheck also concerns this problem and
addresses it by using both heuristics and formula synthesis.
Spreadsheet testing (possibly based on models) [1], [5], [20],
[37] is a related topic, and its error detection capabilities
need to rely on test oracles provided by users (e.g., test for-
mulas extracted from reference [24] or manual confirma-
tion directly from users). Our CACheck extracts partial
computational semantics from cell contents and recovers
intended formula patterns. Thus, CACheck does not re-
quire explicit test oracles to work. Ambiguous computa-
tion smells may also affect spreadsheet testing, and CA-
Check assists spreadsheet testing by detecting and repair-
ing smelly cells.

Program synthesis. Our CACheck is based on compo-
nent-based program synthesis [22], [36]. Typically, the pro-
gram synthesis technique [22], [36] can automatically gen-
erate loop-free programs based on a user-provided input-
output oracle (e.g., input-output pairs [36] or specifications
[22]) and components. Regarding our problem (automati-
cally detecting smells in smelly cell arrays without user in-
tervention), the input-output oracle and components are
unavailable for synthesizing a smelly cell array’s formula
pattern. So the original program synthesis technique [22],
[36] cannot be directly used by CACheck. Thus, CACheck
needs to extract such components and input-output oracle
(i.e., input-output pairs and specifications) from smelly cell
arrays, and alleviates their noises when adapting the pro-
gram synthesis technique [22], [36] for spreadsheet smell
detection. Program synthesis has also been used for other
purposes in the spreadsheet research, e.g., string transfor-
mation from examples [21], table transformation [23], and
number transformation [50]. In this article, we use pro-
gram synthesis in a novel way to detect and repair ambig-
uous computation smells in spreadsheets, by recovering
computational semantics aligned to the actual computa-
tions in smelly cell arrays.

Semantic bugs. Similar to smells in spreadsheets, se-
mantic bugs are also a dominant cause for software failures
[39], [51]. Most semantic bugs require domain knowledge
to understand, detect and repair [39]. MUVI [40] and De-
fUse [45] can detect semantic bugs related to inconsistent
updates to correlated multi-variables and dataflow inten-
tions, respectively, in software. They rely on invariant min-
ing and detection techniques. Our CACheck uses a differ-
ent approach by inferring intended computational seman-
tics by heuristics and program synthesis techniques.

8 CONCLUSION

In this article, we study the problem of extracting cell ar-
rays and detecting ambiguous computation smells from
spreadsheets. Such smells are caused by end users’ ad hoc
modifications to spreadsheet cells that should stick to cer-
tain computational semantics. We propose a novel ap-
proach, CACheck, to detect and repair ambiguous compu-
tation smells by inferring intended formula patterns for
smelly cell arrays in spreadsheets. This also helps detect
challenging conformance errors in spreadsheets, which
would otherwise be left unnoticed. Our experimental eval-
uation based on two large-scale spreadsheet corpora re-
veals that smelly cell arrays are common, and CACheck is
capable of detecting smelly cells effectively with a high
precision and recall rate.

In future, we plan to study more spreadsheets and iden-
tify other types of ambiguous computation smells. For ex-
ample, in our recall study (Section 6.5.3), we found that a
non-negligible proportion (about 18.7%) of true smelly cell
arrays have only plain values (i.e., no formula at all for all
concerned cells). Our current CACheck is still unable to de-
tect such smelly cell arrays and synthesize formula pat-
terns for them. We plan to further investigate them and
come up with an approach to detecting them and inferring
their intended formula patterns. Besides, CACheck ex-
tracts cell arrays that contain only consecutive cells, and
this may prevent it from detecting challenging smelly cell
arrays that contain non-consecutive cells. We are also in-
terested in extending CACheck for such cases.

ACKNOWLEDGMENT

The authors wish to thank TSE editors and anonymous re-
viewers for their valuable comments on improving this ar-
ticle. This work was supported in part by Beijing Natural
Science Foundation (4164104), National Key Research and
Development Plan (2016YFB1000803), Research Grants
Council (General Research Fund 611811) of Hong Kong,
National Natural Science Foundation (Grant Nos.
61472174, 91318301, 61321491) of China, and the Collabo-
rative Innovation Center of Novel Software Technology
and Industrialization of China.

REFERENCES

[1] R. Abraham and M. Erwig, “AutoTest: A Tool for

Automatic Test Case Generation in Spreadsheets,” in

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 25

IEEE Symposium on Visual Languages and Human-Cen-

tric Computing (VL/HCC), 2006, pp. 43–50.

[2] R. Abraham and M. Erwig, “Inferring Templates

from Spreadsheets,” in Proceedings of the 28th Interna-

tional Conference on Software Engineering (ICSE), 2006,

pp. 182–191.

[3] R. Abraham and M. Erwig, “GoalDebug: A Spread-

sheet Debugger for End Users,” in Proceedings of the

29th International Conference on Software Engineering

(ICSE), 2007, pp. 251–260.

[4] R. Abraham and M. Erwig, “UCheck: A Spreadsheet

Type Checker for End Users,” J. Vis. Lang. Comput.,

vol. 18, no. 1, pp. 71–95, 2007.

[5] R. Abraham and M. Erwig, “Mutation Operators for

Spreadsheets,” IEEE Trans. Softw. Eng., vol. 35, no. 1,

pp. 94–108, 2009.

[6] D. W. Barowy, D. Gochev, and E. D. Berger,

“CheckCell: Data Debugging for Spreadsheets,” in

Proceedings of the ACM International Conference on Ob-

ject Oriented Programming Systems Languages Applica-

tions (OOPSLA), 2014, pp. 507–523.

[7] M. Burnett and M. Erwig, “Visually customizing in-

ference rules about apples and oranges,” in IEEE

Symposia on Human Centric Computing Languages and

Environments (HCC), 2002, pp. 140–148.

[8] C. Chambers and M. Erwig, “Automatic Detection of

Dimension Errors in Spreadsheets,” J. Vis. Lang.

Comput., vol. 20, no. 4, pp. 269–283, 2009.

[9] C. Chambers and M. Erwig, “Reasoning About

Spreadsheets with Labels and Dimensions,” J. Vis.

Lang. Comput., vol. 21, no. 5, pp. 249–262, 2010.

[10] S.C. Cheung, W. Chen, Y. Liu, and C. Xu, “CUSTO-

DES: Automatic Spreadsheet Cell Clustering and

Smell Detection Using Strong and Weak Features,”

in Proceedings of the 38th International Conference on

Software Engineering (ICSE), 2016, pp. 464-475.

[11] M. Clermont, “A Scalable Approach to Spreadsheet

Visualization,” 2003.

[12] M. Clermont and R. Mittermeir, “Auditing Large

Spreadsheet Programs,” in Proceedings of the Interna-

tional Conference on Information Systems Implementa-

tion and Modeling, 2003, pp. 87–97.

[13] J. Cunha, M. Erwig, and J. Saraiva, “Automatically

Inferring ClassSheet Models from Spreadsheets,” in

IEEE Symposium on Visual Languages and Human-Cen-

tric Computing (VL/HCC), 2010, pp. 93–100.

[14] J. Cunha, J. P. Fernandes, P. Martins, J. Mendes, and

J. Saraiva, “SmellSheet Detective: A tool for Detect-

ing Bad Smells in Spreadsheets,” in IEEE Symposium

on Visual Languages and Human-Centric Computing

(VL/HCC), 2012, pp. 243–244.

[15] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva,

“Towards a Catalog of Spreadsheet Smells,” in Com-

putational Science and Its Applications, 2012, pp. 202–

216.

[16] J. S. Davis, “Tools for Spreadsheet Auditing,” Int. J.

Hum.-Comput. Stud., vol. 45, no. 4, pp. 429–442, 1996.

[17] W. Dou, S.C. Cheung, and J. Wei, “Is Spreadsheet

Ambiguity Harmful? Detecting and Repairing

Spreadsheet Smells Due to Ambiguous Computa-

tion,” in Proceedings of the 36th International Confer-

ence on Software Engineering (ICSE), 2014, pp. 848–858.

[18] W. Dou, L. Xu, S.C. Cheung, C. Gao, J. Wei, and T.

Huang, “VEnron: A Versioned Spreadsheet Corpus

and Related Evolution Analysis,” in Proceedings of the

38th International Conference on Software Engineering

(ICSE SEIP), 2016, pp. 162-171.

[19] M. Fisher and G. Rothermel, “The EUSES Spread-

sheet Corpus: A Shared Resource for Supporting Ex-

perimentation with Spreadsheet Dependability

Mechanisms,” ACM SIGSOFT Softw. Eng. Notes, vol.

30, no. 4, pp. 1–5, 2005.

[20] G. Rothermel, L. Li, C. Dupuis, and M. Burnett,

“What You See Is What You Test: A Methodology for

Testing Form-based Visual Programs,” in Proceed-

ings of the International Conference on Software Engi-

neering (ICSE), 1998, pp. 198–207.

[21] S. Gulwani, “Automating String Processing in

Spreadsheets Using Input-output Examples,” in Pro-

ceedings of the 38th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages

(POPL), 2011, pp. 317–330.

[22] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan,

“Synthesis of Loop-free Programs,” in Proceedings of

the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2011, pp.

62–73.

[23] W. R. Harris and S. Gulwani, “Spreadsheet Table

Transformations from Examples,” in Proceedings of

the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2011, pp.

317–328.

[24] F. Hermans, “Improving Spreadsheet Test Practices,”

in Proceedings of the Conference of the Center for Ad-

vanced Studies on Collaborative Research (CASCON),

2013, pp. 56–69.

[25] F. Hermans, E. Aivaloglou, and Bas Jansen, “Detect-

ing Problematic Lookup Functions in Spreadsheets,”

in IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), 2015, pp. 153–157.

[26] F. Hermans and E. Murphy-Hill, “Enron’s Spread-

sheets and Related Emails: A Dataset and Analysis,”

in Proceedings of the International Conference on Soft-

ware Engineering (ICSE), 2015, pp. 7–16.

[27] F. Hermans, M. Pinzger, and A. van Deursen, “Au-

tomatically Extracting Class Diagrams from Spread-

sheets,” in Proceedings of the 24th European Conference

on Object-Oriented Programming (ECOOP), 2010, pp.

52–75.

[28] F. Hermans, M. Pinzger, and A. van Deursen, “Sup-

porting Professional Spreadsheet Users by Generat-

ing Leveled Dataflow Diagrams,” in Proceedings of

International Conference on Software Engineering

(ICSE), 2011, pp. 451–460.

[29] F. Hermans, M. Pinzger, and A. van Deursen, “De-

tecting Code Smells in Spreadsheet Formulas,” in

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Proceedings of International Conference on Software

Maintenance (ICSM), 2012, pp. 409–418.

[30] F. Hermans, M. Pinzger, and A. van Deursen, “De-

tecting and Visualizing Inter-worksheet Smells in

Spreadsheets,” in Proceedings of the International Con-

ference on Software Engineering (ICSE), 2012, pp. 441–

451.

[31] F. Hermans, B. Sedee, M. Pinzger, and A. van

Deursen, “Data Clone Detection and Visualization in

Spreadsheets,” in Proceedings of the International Con-

ference on Software Engineering (ICSE), 2013, pp. 292–

301.

[32] F. Hermans and T. van der Storm, “Copy-Paste

Tracking: Fixing Spreadsheets Without Breaking

Them,” in Proceedings of the 1st International Confer-

ence on Live Coding (ICLC), 2015.

[33] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E.

Getzner, “On the Empirical Evaluation of Fault Lo-

calization Techniques for Spreadsheets,” in Proceed-

ings of the 16th International Conference on Fundamental

Approaches to Software Engineering (FASE), 2013, pp.

68–82.

[34] D. Jannach and T. Schmitz, “Model-based Diagnosis

of Spreadsheet Programs: A Constraint-based De-

bugging Approach,” Autom. Softw. Eng., vol. 23, no.

1, pp. 105–144, 2014.

[35] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa,

“Avoiding, Finding and Fixing Spreadsheet errors –

A Survey of Automated Approaches for Spreadsheet

QA,” J. Syst. Softw., vol. 94, pp. 129–150, 2014.

[36] S. Jha, S. Gulwani, S. A. Seshia, and Ashish Tiwari,

“Oracle-guided Component-based Program Synthe-

sis,” in Proceedings of the 32Nd ACM/IEEE Interna-

tional Conference on Software Engineering (ICSE), 2010,

pp. 215–224.

[37] K.J. Rothermel, C. R. Cook, M. M. Burnett, J. Schon-

feld, T. R. G. Green, and G. Rothermel, “WYSIWYT

Testing in the Spreadsheet Paradigm: An Empirical

Evaluation,” in Proceedings of the International Confer-

ence on Software Engineering (ICSE), 2000, pp. 230–239.

[38] B. Klimt and Y. Yang, “Introducing the Enron Cor-

pus,” in First Conference on Email and Anti-Spam

(CEAS) in Cooperation with AAAI and The International

Association for Cryptologic Research and The IEEE Tech-

nical Committee on Security and Privacy, 2004.

[39] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,

and S. Lu, “A Study of Linux File System Evolution,”

in Proceedings of the 11th USENIX Conference on File

and Storage Technologies (FAST), 2013, pp. 31–44.

[40] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A.

Popa, and Y. Zhou, “MUVI: Automatically Inferring

Multi-variable Access Correlations and Detecting

Related Semantic and Concurrency Bugs,” in Pro-

ceedings of twenty-first ACM SIGOPS symposium on

Operating systems principles (SOSP), 2007, pp. 103–116.

[41] R. Mittermeir and M. Clermont, “Finding High-level

Structures in Spreadsheet Programs,” in Proceedings

of the Ninth Working Conference on Reverse Engineering

(WCRE), 2002, pp. 221–232.

[42] L. de Moura and N. Bjørner, “Z3: An Efficient SMT

Solver,” in Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems

(TACAS/ETAPS), 2008, pp. 337–340.

[43] R. Panko, “Facing the Problem of Spreadsheet Er-

rors,” Decis. Line, vol. 37, no. 5, pp. 8–10, 2006.

[44] R. R. Panko and S. Aurigemma, “Revising the

Panko–Halverson Taxonomy of Spreadsheet Errors,”

Decis. Support Syst., vol. 49, no. 2, pp. 235–244, 2010.

[45] S. G. Powell, K. R. Baker, and B. Lawson, “A Critical

Review of the Literature on Spreadsheet Errors,”

Decis. Support Syst., vol. 46, no. 1, pp. 128–138, 2008.

[46] K. Rajalingham, D. R. Chadwick, and B. Knight,

“Classification of Spreadsheet Errors,”

ArXiv08054224 Cs, 2008.

[47] J. Reichwein, G. Rothermel, and M. Burnett, “Slicing

Spreadsheets: An Integrated Methodology for

Spreadsheet Testing and Debugging,” ACM SIG-

PLAN Not., vol. 35, no. 1, pp. 25–38, 1999.

[48] J. R. Ruthruff, M. Burnett, and G. Rothermel, “Inter-

active Fault Localization Techniques in a Spread-

sheet Environment,” IEEE Trans. Softw. Eng., vol. 32,

no. 4, pp. 213–239, 2006.

[49] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and

W. Zheng, “Do I Use the Wrong Definition?: DefUse:

Definition-Use Invariants for Detecting Concurrency

and Sequential Bugs,” in Proceedings of the ACM in-

ternational conference on Object oriented programming

systems languages and applications (OOPSLA), 2010, pp.

160–174.

[50] R. Singh and S. Gulwani, “Synthesizing Number

Transformations from Input-Output Examples,” in

Proceedings of the 24th International Conference on Com-

puter Aided Verification (CAV), 2012, pp. 634–651.

[51] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai,

“Bug Characteristics in Open Source Software,” Em-

pir. Softw. Eng., vol. 19, no. 6, pp. 1665–1705, 2014.

[52] J. Walkenbach, Excel 2013 Power Programming with

VBA, vol. 13. Wiley.com, 2013.

[53] R. Zhang, C. Xu, S. C. Cheung, P. Yu, X. Ma, and J.

Lu, “How Effective can Spreadsheet Anomalies be

Detected: An Empirical Study,” J. Syst. Softw., 2016.

[54] “European Spreadsheet Risks Interest Group.”

[Online]. Available: http://www.eusprig.org/hor-

ror-stories.htm. [Accessed: 01-Mar-2015].

[55] “How to use the Auto Fill Options button in Excel.”

[Online]. Available: http://support.mi-

crosoft.com/kb/291359. [Accessed: 10-Mar-2015].

[56] “Spreadsheet Professional.” [Online]. Available:

http://www.spreadsheetinnovations.com/. [Ac-

cessed: 09-Apr-2016].

[57] “OAK Operis Analysis Kit.” [Online]. Available:

http://www.operisanalysiskit.com/. [Accessed: 09-

Apr-2016].

[58] “EXChecker.” [Online]. Available:

http://www.finsburysolutions.com/exchecker/.

DOU ET AL.: CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 27

[Accessed: 09-Apr-2016].

[59] “PerfectXL.” [Online]. Available: http://info-

tron.nl/en/home-2/. [Accessed: 09-Apr-2016].

[60] “Spreadsheet Detective.” [Online]. Available:

http://www.spreadsheetdetective.com/. [Accessed:

09-Apr-2016].

[61] “Spreadsheet Auditor.” [Online]. Available:

https://www.spreadsheetauditor.com/. [Accessed:

09-Apr-2016].

[62] “CACheck project.” [Online]. Available:

http://www.tcse.cn/~wsdou/project/cellarray.

[Accessed: 14-Apr-2016].

[63] “Apache POI - the Java API for Microsoft Docu-

ments.” [Online]. Available: http://poi.apache.org/.

[Accessed: 13-Feb-2016].

Wensheng Dou received the doctoral degree in
computer science and technology from the Uni-
versity of Chinese Academy of Sciences in 2015.
He is an assistant professor in the Institute of
Software, Chinese Academy of Sciences (IS-
CAS). His research interests include end-user
software engineering, program analysis, testing
and debugging, cloud computing, and big data
software engineering.

Chang Xu received the doctoral degree in com-
puter science and engineering from The Hong
Kong University of Science and Technology. In
2010, he joined Nanjing University, where he is
an associate professor with the State Key Labor-
atory for Novel Software Technology and the De-
partment of Computer Science and Technology.
He participates actively in program and organiz-
ing committees of major international software
engineering conferences. He co-chaired the
FSE 2014 SEES Symposium and MIDDLE-

WARE 2013 Doctoral Symposium. His research interests include big
data software engineering, software testing and analysis, and adap-
tive and embedded system.

S.C. Cheung received his doctoral degree in
Computing from the Imperial College London. In
1994, he joined The Hong Kong University of
Science and Technology, where he is a full pro-
fessor of Computer Science and Engineering.
He participates actively in program and organiz-
ing committees of major international software
engineering conferences. He was the General
Chair of the 22nd ACM SIGSOFT International
Symposium on the Foundations of Software En-
gineering (FSE 2014). He was a director of the

Hong Kong R & D Center for Logistics & Supply Chain Management
Enabling Technologies. His research interests include program analy-
sis, testing and debugging, big data software, cloud computing, inter-
net of things, and mining software repository.

Jun Wei received the PhD degree in computer
science in 1997 from the Wuhan University,
China. He was a visiting researcher in the CSE
Department, Hong Kong University of Science
and Technology, in 2000. He is a professor in the
Institute of Software, Chinese Academy of Sci-
ences (ISCAS). His area of research is software
engineering and distributed computing, with em-
phasis on middleware-based distributed soft-
ware engineering.

