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CACheck: Detecting and Repairing Cell 
Arrays in Spreadsheets 
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Abstract—Spreadsheets are widely used by end users for numerical computation in their business. Spreadsheet cells whose 

computation is subject to the same semantics are often clustered in a row or column as a cell array. When a spreadsheet 

evolves, the cells in a cell array can degenerate due to ad hoc modifications. Such degenerated cell arrays no longer keep cells 

prescribing the same computational semantics, and are said to exhibit ambiguous computation smells. We propose CACheck, a 

novel technique that automatically detects and repairs smelly cell arrays by recovering their intended computational semantics. 

Our empirical study on the EUSES and Enron corpora finds that such smelly cell arrays are common. Our study also suggests 

that CACheck is useful for detecting and repairing real spreadsheet problems caused by smelly cell arrays. Compared with our 

previous work AmCheck, CACheck detects smelly cell arrays with higher precision and recall rate. 

Index Terms—Spreadsheet, cell array, ambiguous computation smell 

——————————      —————————— 

1 INTRODUCTION

preadsheets are generally developed and maintained 
by end users who are not familiar with appropriate soft-

ware development practice. As a result, spreadsheets have 
been found to be error-prone [45]. Spreadsheet errors can 
induce great financial losses [43], [54]. Various techniques 
have been proposed to improve the quality of spreadsheets. 
Some examples include testing [1], [20], [37], error or smell 
detection [6], [7], [29], [31], debugging [3], [47], and audit-
ing [11], [12], [16]. 

A spreadsheet comprises clusters of cells arranged in 
rows and columns. We refer to a cell cluster that contains 
cells as a cell array when these cells are subject to the same 
computational semantics. For example, the cells [D2:D7] in 
Fig. 1(b) implement the semantics of “Total” and uni-
formly follow a formula pattern of Di = Bi + Ci, where 2 ≤ i 
≤ 7. Cells in a cell array are usually copy-equivalent [11], 
although there are inconsistent cases. In our empirical 
study, we found 591,413 non-equivalent cell arrays in the 
19,963 spreadsheets in the EUSES [19] and Enron [26] cor-
pora, which are the two mostly cited spreadsheet corpora 
so far. This indicates that cell arrays are common in real-
life spreadsheets. 

Spreadsheet smells can occur due to a distortion of, or 
an ambiguity in, the meaning of data or formulas [46]. 
Spreadsheet software like Excel provides two useful edit-
ing features, copy-and-paste and auto-fill, to reduce the 
chances of introducing smells during the creation of new 
cells in a cell array. Both features can help automatically 
deduce a formula pattern from selected sample cells [55], 
and apply it to the new cells in a cell array. 

Although these two features provide convenience in ed-
iting spreadsheets, their application is restrictive in the 
sense that end users have little control on the formula pat-
tern deduction process. They may not even be aware of the 
deduced formula patterns. There are rare records (e.g., 
copy-paste tracking in XanaSheet [32]) in the new cells doc-
umenting that they have been created using these two fea-
tures, and therefore have to be consistently modified in fu-
ture. Little provision is offered to warn end users from 
modifying these cells arbitrarily. 

In principle, all cells in a cell array should prescribe the 
same computational semantics. A cell array is said to suffer 
from an ambiguous computation smell when there is more 
than one computational semantics among the cells it con-
tains. Ad hoc modifications to these cells are one major 
cause of ambiguous computation smells. For example, the 
cell array [D2:D7] in Fig. 1(a) could be a consequence of ad 
hoc cell modifications that result in four different formula 
patterns, leading to an ambiguous computation smell. 
Note that no warning is issued by Excel to alert end users 
of such a smell. This smell can exist for a long time and 
even be replicated to other spreadsheets without being dis-
covered. Even though each cell in this cell array [D2:D7] is 
evaluated to a correct value, it can degenerate into errors 
upon future updates of entries in columns B and C. For ex-
ample, the value in D2 would be incorrect if the value of 
C2 is later updated to a non-zero value. As ambiguous 
computation smells are vulnerable to errors, their early de-
tection is important. It is particularly the case for those 
spreadsheets that have liability consequences such as com-
pany financial reports. 

Spreadsheet software like Excel provides a mechanism 
to detect cells with inappropriate formulas. However, the 
detection is applicable only to the situation where: (a) a 
cell’s formula is syntactically inconsistent with those of its 
two adjacent cells, and (b) the formulas of the two adjacent 
cells are syntactically consistent. As such, Excel is not able 
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to issue any warning for the cell array [D2:D7] in Fig. 1(a). 
Besides, UCheck [4] and dimension inference [8] exploit in-
formation about labels and headers in spreadsheets to 
check the type consistency of formulas. Since each cell in 
the cell array [D2:D7] in Fig. 1(a) does not have any type 
inconsistency, the smell cannot be detected by UCheck or 
dimension inference, either. Some commonly used com-
mercial spreadsheet tools (e.g., Spreadsheet Professional 
[56], OAK [57], EXChecker [58] and PerfectXL [59]) con-
sider cells D4 and D5 as errors with not quite relevant ex-
planations (e.g., due to the fact that the two cells reference 
empty cells like C4 and C5). Some tools (e.g., OAK, EX-
Checker, Spreadsheet Detective [60] and Spreadsheet Au-
ditor [61]) adopt Clermont et al. [11]’s idea to annotate 
copy-equivalent cells with colors, and assist end users to 
locate potential inconsistencies. However, they do not au-
tomatically detect the smell in the cell array [D2:D7] in Fig. 
1(a). 

Like semantic bugs in programming languages [39], [51], 
it is hard to identify which cells contain inappropriate for-
mulas, because this involves knowledge of intended se-
mantics, which often requires human judgments or speci-
fications. Automatic repairing of inappropriate cell formu-
las is another non-trivial challenge. 

In this article, we focus on numeric cells whose numeric 
value is either computed by a formula or given directly 
without computation. Examples of these are cells A5 and 
A6 in Fig. 1(a). We study the automated extraction of cell 
arrays from numeric cells as well as the automated detec-
tion and repairing of those cell arrays that suffer from am-
biguous computation smells. Cells that are subject to the 
same evaluation in a cell array are realized by the same for-
mula pattern. We found that 17.3% of consecutive numeric 
cells share the same formula pattern while 82.7% do not. 
The first key challenge is to identify which of these 82.7% 
are cells belonging to some cell arrays even they do not 
share the same formula pattern with their neighbors. Once 
a cell array is identified to suffer from ambiguous compu-
tation smells, the repair action is to infer an appropriate 
formula pattern so that its cells are subject to the same eval-
uation. The second key challenge is how to infer appropri-
ate formula patterns for repairing smelly cell arrays that 
suffer from ambiguous computation smells. Our approach 
automatically extracts computational semantics from cells 
in a cell array, recovers its formula pattern, and further de-
tects smells in its contained cells. Thus, our approach could 
detect smells without human judgments. Fig. 1(b) shows a 
possible repairing of the spreadsheet in Fig. 1(a). 

We evaluated our approach (CACheck) from three per-
spectives. First, we analyzed the EUSES [19] corpus to 
learn how often smelly cell arrays can occur, and measured 
the precision and recall rate of our approach for detecting 
such cell arrays.  Second, we compared CACheck with our 
earlier version AmCheck in precision and recall on the 
EUSES corpus. Third, we further analyzed a more recent 
and industrial corpus Enron [26] to see whether we can ob-
tain results similar to those obtained from the EUSES cor-
pus. Our evaluation reports that: (1) 1,586 cell arrays in the 
EUSES corpus suffer from ambiguous computation smells. 
They cover 7.8% identified cell arrays. (2) Smelly cell arrays 

reveal weakness and can cause errors in spreadsheets. 
8,139 cells in the 1,586 smelly cell arrays were decided as 
smelly. They contain either wrong values or formulas. This 
number (8,139) occupies 25.9% of all cells in 1,586 smelly 
cell arrays, or 3.3% of all cells in 20,320 cell arrays. (3) CA-
Check can detect 98.3% of the smelly cell arrays detected 
by AmCheck, and 401 (out of 1,586) additional smelly cell 
arrays that are missed by AmCheck. CACheck also has a 
higher precision (86.8% vs. 71.9%) and recall rate (71.0% vs. 
60.3%) than AmCheck. Other existing spreadsheet smell 
detection techniques (e.g., Excel, UCheck/Dimension [4], 
[8] and CUSTODES [10]) can detect at most 37.4% of CA-
Check’s detected smelly cells. (4) CACheck has compara-
ble precision (86.8% vs. 87.2%) and recall rate (71.0% vs. 
72.7%) of smelly cell array detection on the EUSES and En-
ron corpora. Our approach can help end users detect and 
repair such smells, thus improving the quality of their 
spreadsheets. 

We made the following main contributions in this arti-
cle: 
 We empirically study the characteristics of cell ar-

rays in two spreadsheet corpora (EUSES and En-
ron). This study identifies several key observations 
on cell arrays. 

 We propose a novel approach, CACheck, to detect 
and repair smelly cell arrays by identifying arrays 
of cells that are subject to the same computational 
semantics, inferring these cells’ formula patterns, 
spotting incompatible patterns, and synthesizing 
new patterns to repair the smells. 

 We implement CACheck as a tool and evaluate it 
experimentally on the EUSES and Enron corpora. 

 
(a) A spreadsheet with ambiguous computation smells. 

 

(b) The correct version of the spreadsheet in (a). 

Fig. 1. A motivating example: the four cell arrays in (a) are ambigu-
ous; for each cell array, its contained cells do not all follow the same 
formula pattern, e.g., the cells in CellArray2 do not uniformly follow 
the formula pattern of Di = Bi + Ci (2 ≤ i ≤ 7); the spreadsheet in (b) 
gives the correct version. 

CellArray4

CellArray2 CellArray3

Correct Value: 7

CellArray1

Correct Value: 20%
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Compared with our previous work AmCheck, CA-
Check detects smelly cell arrays with higher preci-
sion (86.8% vs. 71.9%) and recall rate (71.0% vs. 
60.3%). 

An earlier version of this work (AmCheck) appeared at 
ICSE 2014 [17]. In this article (CACheck), we extend the 
earlier version in five aspects. (1) We conduct an empirical 
study on well-formed cell arrays in the EUSES and Enron 
corpora (Section 4). The study finds two common struc-
tures by which spreadsheet cells with formulas are orga-
nized: homogeneous cell arrays and inhomogeneous cell arrays. 
In a row-/column-based homogeneous cell array, the formula 
of each cell consistently references cells from the same col-
umn/row as this cell, such as the column-based cell array 
[D2:D7] in Fig. 1(b). In a row-/column-based inhomogeneous 
cell array, the formula of each cell may reference cells from 
columns/rows different from this cell, such as the column-
based cell arrays [A2:A7] and [E3:E7] in Fig. 1(b). (2) Am-
Check can only detect homogeneous cell arrays. However, 
CACheck can detect both homogeneous and inhomogene-
ous cell arrays (Section 5.1), greatly improving its scope. (3) 
We make several observations on cell arrays in our study. 
CACheck leverages these observations to filter out 
wrongly identified cell arrays, improving the precision of 
cell array identification (Section 5.7). (4) AmCheck was 
only evaluated on the EUSES corpus, while in this work, 
we evaluate CACheck on both EUSES [19] and Enron [26] 
corpora (Section 6), for more comprehensive comparison. 
(5) Compared with AmCheck, CACheck provides higher 
precision (86.8% vs. 71.9%) and recall rate (71.0% vs. 60.3%). 

The remainder of this article is organized as follows. 
Section 2 gives a motivating example and explains the use 
of our technique. Section 3 defines and explains necessary 
concepts like cell array and ambiguous computation smell. 
Section 4 presents our empirical study on the EUSES and 
Enron corpora. Section 5 elaborates on our smell detection 
and repairing technique. Section 6 evaluates CACheck 
with the EUSES and Enron corpora. Section 7 discusses re-
lated work, and finally Section 8 concludes this article. 

2 MOTIVATION 

In this section, we illustrate smelly cell arrays using an ex-
ample spreadsheet stemming from the EUSES corpus [19]. 
We then explain how to detect and repair such smelly cell 
arrays. 

2.1 Example 

Fig. 1(a) shows a spreadsheet that computes monthly har-
vest of fruits. A cell array, which consists of numeric cells, 
can exhibit two kinds of ambiguous computation smells: 

Missing formula smell. This ambiguous computation 
smell occurs when some cells in a cell array do not pre-
scribe any formula. Such a smell can be introduced to a cell 
array when end users override the formula in a cell with a 
plain value. For example, CellArray1 [A2:A7] is subject to 
the computation of “Month” with an intended formula 
pattern of Ai = Ai-1 + 1, where 3 ≤ i ≤ 7 (we use subscript to 
represent row number). Unlike cells A3, A4 and A5, the 
values of cells A6 and A7 are not computed by formulas. 

Note that, the first cell A2 in CellArray1 gives a base value, 
which is not computed by a formula. 

Inconsistent formula smell. This ambiguous computa-
tion smell occurs when the cells in a cell array prescribe 
different formula patterns. Such a smell can be introduced 
to a cell array when end users specify the formula of a cell 
in the cell array inappropriately without preserving the 
cell array’s computational semantics. For example, CellAr-
ray2 [D2:D7] is subject to the computation of “Total” with 
an intended formula pattern of Di = Bi + Ci, where 2 ≤ i ≤ 7. 
End users may understand that there is no orange output 
in February, and thus leave C2 empty. They specify a for-
mula that ignores C2 at D2, and as a result CellArray2 pre-
scribes more than one formula pattern. Inconsistent for-
mula smells also occur at CellArray3 [E3:E7] and CellAr-
ray4 [B9:C9]. 

Although CellArray2 and CellArray4 in Fig. 1(a) suffer 
from ambiguous computation smells, the values given by 
their cells are appropriate. However, the smells can lead to 
errors in D2 and C9 if C2 is updated later with any non-
zero value. Besides, problems can arise when end users ap-
ply copy-and-paste or auto-fill operations to these cell ar-
rays later. A cell array suffering from ambiguous compu-
tation smell likely contains an error (e.g., A7 and E7) if no 
formula patterns can be found to compute the values in it. 

2.2 CACheck Overview 

Several technical challenges need to be addressed in the 
detection and repairing of cell arrays with ambiguous com-
putation smells in spreadsheets. We explain them using 
the example in Fig. 1(a). First, does a cell (e.g., A3) belong 
to a cell array? If yes, does this cell belong to a row-based 
cell array (e.g., [A3:B3]) or column-based cell array (e.g., 
[A2:A7])? What are other cells for this cell array? Second, 
do the cells in a cell array prescribe semantically different 
formula patterns? Note that we consider two formula pat-
terns (e.g., x + x and 2*x) to be the same if the formulas 
derived from these patterns offer the same computation. 
Third, how may one construct an appropriate formula pat-
tern for a cell array that prescribes more than one formula 
pattern? This is a challenging question because there are 
chances that none of cells in such a cell array is using an 
appropriate formula, e.g., cells B9 and C9 in CellArray4. 
Even worse, cells in such a cell array may prescribe con-
flicting formulas patterns, e.g., cells D4 and D5 in CellAr-
ray2. Fourth, some cells (e.g., A6) in a cell array may pre-
scribe no formula. The values of these cells (e.g., A7) may 
even conflict with their appropriate formula patterns. 

In our earlier work AmCheck [17], we addressed the 
challenge of cell array extraction by assuming that a cell 
array’s orientation (row-based or column-based) and its 
contained cells are determined by its referenced cells, i.e., 
homogeneous cell arrays (each cell in a row-/column-
based cell array references only the cells that share the 
same column/row as this cell). However, our empirical 
study reveals that a significant amount (21.0%) of cell ar-
rays are inhomogeneous, which AmCheck fails to extract. 
For example, AmCheck does not work for CellArray3 
[E3:E7] (column-based cell array), because cell E3 refer-
ences D2, which does not share the same row as E3. Even 
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worse, AmCheck would assume [A3:B3], [A4:B4] and 
[A5:B5] as candidate cell arrays, but we can see that they 
are not true cell arrays. The true cell array should be Cel-
lArray1 [A2:A7]. Note that the cell array [A2:A7] cannot be 
extracted by AmCheck because it is column-based and 
each of its cells references a cell in another row (different 
from this cell). Therefore, AmCheck could miss true cell ar-
rays, and introduce false cell arrays. 

Our CACheck adopts new heuristics to extract cell ar-
rays, and does not assume their orientations in advance. 
The basic idea is that if two adjacent cells share the same 
input dependence, they would belong to the same cell ar-
ray. This relaxed constraint helps detect more cell arrays, 
such as CellArray1 [A2:A7], [A3:B3], [A4:B4] and [A5:B5]. 
However, which cell arrays are true? We did an empirical 
study on real-life cell arrays to understand how cell arrays 
are used (e.g., how cell arrays are structured in spread-
sheets). Then, we leverage the observations (e.g., non-
equivalent cell arrays rarely overlap) from this empirical 
study to filter out wrongly identified cell arrays, such as 
[A3:B3], [A4:B4] and [A5:B5] (i.e., these cell arrays overlap 
with the true one [A2:A7]). 

CACheck infers formula patterns by means of con-
straints in two steps. First, it uses values and formulas in a 
cell array to infer underlying constraints of formula pat-
terns prescribed by this cell array. Second, it uses the in-
ferred constraints to derive target formula patterns. CA-
Check uses component-based program synthesis [22], [36] 
to construct candidate formula patterns for repairing 
smelly cell arrays. To achieve this, CACheck needs to cope 
with the noises induced by conflicting formulas (e.g., D4 
and D5) and potential errors (e.g., A7). For example, CA-
Check can construct a candidate formula pattern (Bi + Ci, 
where 2 ≤ i ≤ 7) to repair the smelly cell array CellArray2 
in Fig. 1(a), and a candidate formula pattern (SUM(X2, X3, 
X4, X5) + X6 + X7, where X = {B, C}) to repair the smelly cell 
array CellArray4. It can also use its inferred formula pat-
terns to detect errors (e.g., A7 and E7) in smelly cell arrays. 

3 CELL ARRAYS AND AMBIGUOUS COMPUTATION 

SMELLS 

In this section, we introduce the spreadsheet programming 
model, and explain key concepts such as cell array and am-
biguous computation smell for subsequent discussions. To 
ease presentation, we refer data cells to those cells whose 

numeric values are given directly without computation 
and formula cells to those cells whose numeric values are 
computed by formulas, unless otherwise specified. 

3.1 Spreadsheet Programming Model 

A spreadsheet can be modeled as a set of cells with expres-
sions, which are indexed by two-dimensional cell addresses 
(a row index and a column index, e.g., B1 or C2) [5]. The 
expression of a data cell and a formula cell is given by its 
numeric value and formula, respectively. A formula refer-
ences another cell by means of a cell reference, which de-
notes the referenced cell’s address. Let R be the set of cell 
references, EXP be the set of expressions, and V be the set 
of plain values. A cell’s expression exp is either a plain 
value (𝑣 ∈ 𝑉), a cell reference (𝑟 ∈ 𝑅), or a function (𝜑) ap-
plied to one or more expressions. Functions used in 
spreadsheets include basic operators (e.g., “+”, “”, “*”, 
“/”) as well as other built-in functions from spreadsheet 
software (e.g., SUM, AVERAGE and MAX). Formally, a 
cell’s expression exp is: 

𝑒𝑥𝑝 = 𝑣 | 𝑟 | 𝜑(𝑒𝑥𝑝1, … , 𝑒𝑥𝑝𝑛). 
We define a reference-fetching function 𝜎(𝑒𝑥𝑝), which 

returns the set of cell references used in a cell’s expression 
exp. Formally, 𝜎(𝑒𝑥𝑝) is: 

𝜎(𝑒𝑥𝑝) = {

∅                                        𝑒𝑥𝑝 ∈ 𝑉;                          
{𝑒𝑥𝑝}                                 𝑒𝑥𝑝 ∈ 𝑅;                           

𝜎(𝑒𝑥𝑝1) ∪ … ∪ 𝜎(𝑒𝑥𝑝𝑛)  𝑒𝑥𝑝 = 𝜑(𝑒𝑥𝑝1, … , 𝑒𝑥𝑝𝑛).
 

Most spreadsheet systems have two built-in styles for 
representing a cell reference, namely, A1 and R1C1 repre-
sentations [52], and they can be either absolute or relative. An 
absolute reference points to a particular cell, and keeps point-
ing to this cell when it is copied to another cell. A relative 
reference presents the cell address offset between the cur-
rent cell and the referenced cell, and the offset keeps un-
changed when the reference is copied to another cell. In the 
A1 representation style, a cell at the X-th column and y-th 
row is notated as Xy in relative reference (e.g., B5), or $X$y 
in absolute reference (e.g., $B$5). For example, the spread-
sheet in Fig. 1(a) uses the A1 representation (all are relative 
references). On the other hand, in the R1C1 representation 
style, a cell at n rows below and m columns right to the 
current cell is notated as R[n]C[m] (in relative reference; [n] 
(or [m]) can be omitted when n = 0 or m = 0), and a cell at 
the n-th row and m-th column is notated as RnCm (in ab-
solute reference). For example, the spreadsheet in Fig. 2 
uses the R1C1 representation (all are relative references). 

 
Fig. 2. The earlier spreadsheet in Fig. 1(a) is now given in the R1C1 representation style, in which four cell arrays are ambiguous, e.g., cells in 

CellArray2 do not have semantically equivalent formulas in the R1C1 representation style. 
 

CellArray4

CellArray2 CellArray3CellArray1

(A) (E)(D)(C)(B)
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In subsequent discussions, we assume that expression exp 
and function 𝜎(𝑒𝑥𝑝) use the R1C1 representation, unless 
otherwise specified. 

An interesting observation is that cell formulas prescrib-
ing the same formula patterns typically have semantically 
equivalent R1C1 representations. For example, the formula 
“B5 + C5” in cell D5 in Fig. 1(a) is “RC[-2] + RC[-1]” in the 
R1C1 representation, as shown in Fig. 2. It means a sum-
mation of two values. The first value is given by a cell at 
the same row but two columns left. The second value is 
given by a cell at the same row but one column left. Fig. 2 
also gives corresponding R1C1 representations for all for-
mulas in the spreadsheet in Fig. 1(a). We can observe that 
some of them are semantically equivalent and some are 
similar with each other. We use such features to detect cell 
arrays and find their contained smells. 

3.2 Cell Array 

In a spreadsheet, cells with the same computational se-
mantics are usually grouped together in a row or column. 

Definition 1: A cell array is a consecutive range of cells 
(e.g., [A2:A7], [D2:D7], [E3:E7] and [B9:C9] in Fig. 1(b)) pre-
scribing certain computational semantics. 

Since cells in a cell array often use formulas to express 
such computational semantics, we name a cell array’s com-
putational semantics as its formula pattern (𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛). In sub-

sequent discussions, we assume that formula patterns al-
ways use the R1C1 representation for ease of presentation. 
Let CellArray be the set of cells in a cell array. We say that 
a cell array is well-formed if the following condition holds: 

∀𝑐1, 𝑐2 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, 𝜎(𝑐1. 𝑒𝑥𝑝) =  𝜎(𝑐2. 𝑒𝑥𝑝) 
⋀ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡(𝑐1. 𝑒𝑥𝑝, 𝑐2. 𝑒𝑥𝑝). 

The first condition states that any two cells’ expressions 
in this cell array share the same cell references. The second 
condition states that any two cells’ expressions should be 
evaluated to the same output value given the same input 
values to their cell references. For example, two expres-
sions “2 * (R[-2]C + R[-1]C)” and “2 * R[-2]C + 2 * R[-1]C” 
are semantically equivalent although they are syntactically 
different. Our CACheck checks well-formedness using 
constraint solver Z3 [42]. Since a well-formed cell array has 
all its expressions semantically equivalent, we can take any 
of them as the cell array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

Note that the concept of cell array proposed in this arti-
cle differs slightly from copy equivalence (i.e., two cells’ 
expressions are identical) proposed by Clermont et al. [11], 
[12], [41]. In order to detect computational semantic smells, 
we require that: (1) any two cells’ expressions in a cell array 
are evaluated to the same output value given the same in-
put values (i.e., their expressions may be syntactically dif-
ferent but should be semantically equivalent;  we adopt Z3 
[42] to check expressions’ equivalence), and (2) the cell ar-
ray’s contained cells are consecutive in layout. However, 
for cells that are copy equivalent [11], it is assumed that: (1) 
their expressions must be identical, and (2) they are not 
necessary to be topologically adjacent (e.g., they can be 
separated by some other cells with different expressions). 

We can classify cell arrays based on either their orienta-
tion or the way they reference other cells in their formulas. 

Based on their orientation, cell arrays can be classified into 
row-based and column-based: 

Row-based cell array. It comprises consecutive non-
empty cells in a row. For example, [B9:C9] in Fig. 1(b) is a 
row-based cell array. 

Column-based cell array. It comprises consecutive non-
empty cells in a column. For example, [D2:D7] in Fig. 1(b) 
is a column-based cell array. 

Based on how they reference other cells in formulas, cell 
arrays can be classified into homogeneous and inhomoge-
neous: 

Homogeneous cell array. A row-/column-based cell ar-
ray is homogeneous if the expression of each contained cell 
c reference only cells in the same column/row as that of c. 
For example, in the cell array [D2:D7] (column-based cell 
array) in Fig. 1(b), cell D2 references cells B2 and C2 (the 
same row as D2) as inputs, and cell D3 references cells B3 
and C3 (the same row as D3) as inputs. Therefore, the cell 
array [D2:D7] is homogeneous. The cell array [B9:C9] in 
Fig. 1(b) is homogeneous, too. 

Let row represent the row index of a cell c or a cell refer-
ence cr, and col represent the column index of a cell c or a 
cell reference cr. Formally, a cell array CellArray is homo-
geneous if the following condition holds: 

For row-based CellArray, 
∀𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∀𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑐𝑜𝑙 = 𝑐. 𝑐𝑜𝑙). 

For column-based CellArray, 
∀𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∀𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑟𝑜𝑤 = 𝑐. 𝑟𝑜𝑤). 

Inhomogeneous cell array. A row-/column-based cell 
array is inhomogeneous if it contains a cell c whose expres-
sion references some cells in a column/row different from 
that of c. For example, in the cell array [A2:A7] (column-
based cell array) of Fig. 1(b), cell A3 references cell A2 (dif-
ferent row from cell A3) as its input. Therefore, the cell ar-
ray [A2:A7] is inhomogeneous. In cell array [E3:E7] (col-
umn-based cell array), cell E3 references cells D2 (at a dif-
ferent row from cell E3) and D3 (at the same row as cell E3) 
as its inputs. Therefore, the cell array [E3:E7] is inhomoge-
neous, too. 

Formally, a cell array CellArray is inhomogeneous if the 
following condition holds: 

For row-based CellArray, 
∃𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∃𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑐𝑜𝑙 ≠ 𝑐. 𝑐𝑜𝑙). 

For column-based CellArray, 
∃𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, (∃𝑐𝑟 ∈ 𝜎(𝑐. 𝑒𝑥𝑝), 𝑐𝑟. 𝑟𝑜𝑤 ≠ 𝑐. 𝑟𝑜𝑤). 

3.3 Ambiguous Computation Smell 

If a cell array is not well-formed, we say that it suffers from 
an ambiguous computation smell or it is smelly. Smells can oc-
cur in a cell array when end users make ad hoc modifica-
tions to its cells. Such modifications can be made by inex-
perienced end users to accommodate last-minute modifi-
cations under tight deadlines. We find two common types 
of ambiguous computation smell: missing formula smell and 
inconsistent formula smell, as explained earlier. A missing for-
mula smell occurs in a not well-formed cell array when it 
contains a data cell. An inconsistent formula smell occurs in 
a not well-formed cell array when it has two formula cells 
with semantically different expressions. A cell array of 
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more than two cells can suffer from missing formula and 
inconsistent formula smells at the same time. 

Definition 2: A conformance error occurs when the value 
of a cell in a cell array does not conform to that computed 
by this cell array’s formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛: 

∃𝑐 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦, 𝑐. 𝑣𝑎𝑙𝑢𝑒 ≠ 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑐. 𝑖𝑛𝑝𝑢𝑡𝑠). 

A conformance error may be caused by improper mod-
ifications to a cell array such that it suffers from ambiguous 
computation smells. Conformance errors reflect true data 
discrepancies in spreadsheets, such as cells A7 and E7 in 
Fig. 1(a). 

4 EMPIRICAL STUDY ON WELL-FORMED CELL 

ARRAYS 

In this section, we report our findings from an empirical 
study on well-formed cell arrays in the EUSES [19] and En-
ron [26] corpora. We aim to understand the use of cell ar-
rays in real-life spreadsheets. We focus on the following 
three research questions: 

RQ1: How commonly are cell arrays used in spreadsheets? 
RQ2: How common are homogeneous and inhomogeneous cell 

arrays? Especially, are inhomogeneous cell arrays common? 
RQ3: How are cell arrays structured in spreadsheets? Espe-

cially, does a cell array often occupy a whole range of consec-
utive cells? Do cell arrays overlap? 

To answer questions RQ13, we conducted an empirical 
study on the EUSES and Enron corpora. We extracted all 
well-formed cell arrays from these spreadsheets, and ana-
lyzed them statistically for answering these questions. We 
have also made our tool and empirical results available 
online for future research [62]. 

4.1 Subject Selection and Well-Formed Cell Array 
Extraction 

Subject selection. The EUSES corpus consists of 4,037 
spreadsheets from 11 categories. These spreadsheets were 
mainly collected over the web by search engines. Since its 
creation in 2005, the EUSES corpus has been widely used 
for spreadsheet research although the corpus may not nec-
essarily represent spreadsheets used in companies. The 
EUSES corpus is the most cited one among all spreadsheet 
corpora so far. The Enron corpus is a recent collection that 
consists of 15,926 spreadsheets, which were extracted from 
the Enron Email Archive, within the Enron Corporation 
[38]. The Enron corpus is considered a collection that rep-
resents spreadsheets used in a typical enterprise. 

In Table 1, columns 2-4 list the statistics of the EUSES 
and Enron corpora. There are 19,963 spreadsheets (SS) in 
total. We found that 97.8% (19,527/19,963) of spreadsheets 
in these two corpora could be parsed by the Apache POI 
[63] that we used to parse spreadsheets (Processed SS). 

Some pre-1995 (BIFF5 format) spreadsheets cannot be pro-
cessed by the Apache POI. We did not attempt to recover 
these spreadsheets as the recovery process may not be con-
tent preserving. Moreover, these spreadsheets may no 
longer well represent those being used nowadays. Among 
the spreadsheets that can be parsed, 55.1% (10,754/19,527) 
of them contain formula cells. 

Extracting well-formed cell arrays. We examine consec-
utive formula cells clustered in a row or column, and con-
sider a cell cluster to be a well-formed cell array if: (1) the 
cluster is not a subset of any other cell array, (2) each cell 
in the cluster has a semantically equivalent expression in 
the R1C1 representation style. The first condition enforces 
that a cell array’s neighboring cells should not have the 
same formula pattern as this cell array. The second condi-
tion enforces that all the cells in a cell array should pre-
scribe the same formula pattern. 

Filtering well-formed cell arrays. Cell arrays in a com-
pact region may prescribe the same computational seman-
tics. For example, in Fig. 3(a), cells in the region [A2:D4] all 
have the same formula pattern. One can obtain a set of 
three row-based cell arrays [A2:D2], [A3:D3] and [A4:D4], 
and another set of four column-based cell arrays [A2:A4], 
[B2:B4], [C2:C4] and [D2:D4]. These two sets of cell arrays 
overlap. We consider the two sets are semantically equiv-
alent because either of them can represent the computa-
tional semantics of the whole region [A2:D4]. Keeping one 
of them in cell array extraction is enough. The other one 
can be filtered out. 

We use two criteria to filter out equivalent sets of cell 
arrays. First, the remaining sets contain all the cells of the 
ones that are filtered out. Second, the number of overlap-
ping cells among the remaining ones is minimized. If there 
are more than one solution satisfying both criteria, we 
choose the solution that contains the least number of cell 
arrays. Based on these criteria, the set of three row-based 
cell arrays [A2:D2], [A3:D3] and [A4:D4] is selected in the 
cell array extraction of the spreadsheet in Fig. 3(a). The 
other set of four column-based cell arrays are filtered out. 

TABLE 1 
Statistics of Our Study Subjects 

Corpus 

Subjects Cell arrays 

SS 
Processed 

SS 

SS with 

formulas 

SS with 

CA 

Initial 

CA 
CA 

SS with CA/ 

SS with formulas 

Average CA per 

SS with CA 

EUSES 4,037 3,737 1,617 1,118 26,393 21,427 69.1% 19  
Enron 15,926 15,790 9,137 6,298 1,177,967 569,986 68.9% 91  

Total 19,963 19,527 10,754 7,416 1,204,360 591,413 69.0% 80  

 

 
(a) 

 
(b) 

Fig. 3. Spreadsheets with overlapping cell arrays. 

(A) (C)(B) (D)

(A) (C)(B) (D)
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For the spreadsheet in Fig. 3(b), the cell array extraction se-
lects cell arrays [A2:A4] and [A4:D4]. 

Table 1 lists the numbers of cell arrays extracted from 
the two corpora. We in total extracted 1,204,360 cell arrays 
(Initial CA), and after filtering, we obtained 591,413 (CA) 
cell arrays, which occupy 49.1% (CA/Initial CA). In the fol-
lowing, we study these obtained remaining non-equiva-
lent well-formed cell arrays. 

4.2 RQ1: How Commonly are Cell Arrays Used in 
Spreadsheets? 

Table 1 also gives how commonly cell arrays are used in 
real-life spreadsheets. Among 10,754 spreadsheets with 
formulas (SS with formulas), 7,416 spreadsheets (SS with 
CA) have used cell arrays. Interestingly, the percentage of 
spreadsheets that use cell arrays (SS with CA/SS with for-
mulas) is almost the same in the EUSES and Enron corpora. 
On average, there are 80 (Average CA per SS with CA) cell 
arrays in a spreadsheet with cell arrays. The Enron corpus 
(91) uses cell arrays more often than the EUSES corpus (19), 
and the ratio is about 4.8 (91/19). This suggests that cell 
arrays are used more often in the Enron corpus. Therefore, 
we make the following observation: 

Observation 1: Cell arrays are commonly used in real-
life spreadsheets. The Enron corpus uses cell arrays more 
often than the EUSES corpus. 

4.3 RQ2: How Common are Homogeneous and 
Inhomogeneous Cell Arrays? 

In our earlier work AmCheck [17], we assume that each cell 
in a row-/column-based cell array references only the cells 
that share the same column/row as this cell. Therefore, 
AmCheck can only detect homogeneous cell arrays. Thus, 
we care about how commonly homogeneous and inhomo-
geneous cell arrays are used in real-life spreadsheets. Table 
2 lists the statistics of all cell arrays (CA), homogeneous cell 
arrays (Homogeneous) and inhomogeneous cell arrays (In-
homogeneous). We observe that 79.0% cell arrays are ho-
mogeneous. This result suggests that AmCheck’s assump-
tion (i.e., most cell arrays are homogeneous) is reasonable, 
and AmCheck can detect most (79.0%) cell arrays. Still, we 
also observe that about 21.0% cell arrays are inhomogene-
ous. As a result, AmCheck would thus miss all these inho-
mogeneous cell arrays, whose percentage is not negligible. 
Therefore, we make the following observation: 

Observation 2: Inhomogeneous cell arrays are also com-
mon (21.0%) in real-life spreadsheets. One needs to ex-
tend AmCheck in order to detect such cell arrays. 

4.4 RQ3: How are Cell Arrays Structured in 
Spreadsheets? 

Given a well-formed cell array, if neither of its two neigh-
boring cells is a data cell or formula cell (i.e., they are 

empty or labels), we say that this cell array occupies a 
whole range of consecutive cells in a row or column. For 
example, in Fig. 1(b), cell arrays [D2:D7] and [E3:E7] both 
occupy a whole range of consecutive cells. However, cell 
array [B9:C9] does not occupy a whole range of consecu-
tive cells, due to the existence of cell D9 (formula cell). Ta-
ble 3 shows that only 60.4% well-formed cell arrays occupy 
a whole range of consecutive cells (Whole1). Interestingly, 
the EUSES and Enron corpora have almost the same ratio. 

We further investigated whether a whole range of con-
secutive cells in a row or column often form a well-formed 
cell array. To carry out the investigation, we consider those 
ranges of consecutive numeric cells that contain at least 
one formula cell and are bound by non-numeric cells at 
both ends. We extracted 3,056,367 ranges of consecutive 
cells from the EUSES and Enron corpora. Among them, we 
found that only 17.3% share the same formula patterns (i.e., 
they are well-formed cell arrays), while 82.7% do not 
(Whole2). This leads us to make the following observation: 

Observation 3: Consecutive cells in the same row or col-
umn do not necessarily form a cell array. 

 
The observation suggests that one cannot simply aggre-

gate consecutive cells in the same row or column to form a 
cell array. We need a more precise way to identify cell ar-
rays. 

We are also interested in finding whether cell arrays 
could possibly overlap with each other in spreadsheets. If 
two cell arrays have shared cells, we say that they overlap. 
For example, in Fig. 3 (a), two cell arrays [A2:A4] and 
[A2:D2] share cell A2; in Fig. 3 (b), two cell arrays [A2:A4] 
and [A4:D4] share cell A4. If two cell arrays overlap, they 
should have the same formula pattern. As a result, two 
row-/column-based cell arrays should not overlap. This is 
because if they overlap, they should be merged into a sin-
gle cell array. 

Cell arrays can overlap in two ways: redundant and 
non-redundant. As mentioned earlier in cell array extrac-
tion (Section 4.1), a cell array is redundant if all of its cells 
are contained by other cell arrays. Such overlapping is re-
dundant and can be removed. For example in Fig. 3(a), all 
cells in range [A2:D4] share the same formula pattern, and 
the three row-based cell arrays ([A2:D2], [A3:D3] and 
[A4:D4]) and four column-based cell arrays ([A2:A4], 
[B2:B4], [C2:C4] and [D2:D4]) overlap. Therefore, we need 
only to extract the three row-based cell arrays. By doing so, 
our extracted cell arrays do not overlap. 

Cell arrays can also overlap in a non-redundant way, 
which requires a different treatment. For example, in Fig. 
3(b), cell arrays [A2:A4] and [A4:D4] overlap on cell A4, 
but neither of them can represent the other. Therefore, we 

TABLE 2 
Statistics of Well-formed (Homogeneous and Inhomoge-

neous) Cell Arrays 

Corpus CA Homogeneous Inhomogeneous 

EUSES 21,427 16,383 (76.5%) 5,044 (23.5%) 
Enron 569,986 450,691 (79.1%) 119,295 (20.9%) 

Total 591,413 467,074 (79.0%) 124,339 (21.0%) 

 

TABLE 3 
Layout Statistics of Well-formed Cell Arrays 

Corpus CA Whole1 Whole2 Overlap 

EUSES 21,427 12,612 (58.9%) 13.2% 110 (0.5%) 
Enron 569,986 344,790 (60.5%) 17.4% 3,487 (0.6%) 

Total 591,413 357,402 (60.4%) 17.3% 3,597 (0.6%) 
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need to keep both overlapping cell arrays during extrac-
tion. Table 3 lists the statistics of overlapping cell arrays in 
the EUSES and Enron corpora (Overlap). We observe that 
cell arrays rarely (0.6%) overlap in real-life spreadsheets. 
Therefore, we make the following observation: 

Observation 4: Cell arrays rarely overlap in real-life 
spreadsheets. 

4.5 Summary 

The above observations enable us to effectively identify 
cell arrays in real-life spreadsheets, and support follow-up 
detection and repairing of smells in these cell arrays. 

For example, observation 2 motivates us to identify both 
homogeneous and inhomogeneous cell arrays in spread-
sheets. Observation 3 suggests the cell extraction technique 
should be capable to identify cell arrays that may not oc-
cupy whole rows or columns. Observation 4 can be lever-
aged to filter out wrongly identified cell arrays. The meth-
odology elaborated in the next section embodies these 
ideas. 

5 DETECTING AND REPAIRING SMELLY CELL 

ARRAYS 

After analyzing a given spreadsheet, CACheck reports all 
detected smelly cell arrays with repair suggestions. Fig. 4 
shows its architecture. CACheck heuristically extracts cell 
arrays from a spreadsheet (Section 5.1), and detects 
whether each of them is smelly via constraint solving (Sec-
tion 5.2). CACheck infers a cell array’s formula pattern 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 in two steps. First, CACheck uses values and for-
mulas in a cell array to derive constraints associated with 
its intended formula pattern (Section 5.3). Second, CA-
Check infers the formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  based on these 
constraints. In order to expedite the inference process, CA-
Check combines heuristics (Section 5.4) and program syn-
thesis techniques (Section 5.5). After the inference, CA-
Check identifies smelly cells in a cell array and their con-
tained conformance errors, if any, based on its inferred 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  (Section 5.6). Finally, CACheck identifies and re-
moves false positives based on the observations from Sec-
tion 4, as well as the inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Section 5.7).  

5.1 Extracting Cell Arrays 

The first challenge of smelly cell array detection is to iden-
tify cell arrays from a given spreadsheet, which has no rec-
ord about which cells were previously prepared by copy-
and-paste or auto-fill operations. We observe that a 
spreadsheet snippet usually provides useful hints about 
boundaries of cell arrays. Besides, the cells in a cell array 
often have similar formulas. Their formulas can be similar 
by means of referencing the same cells or referencing dif-
ferent cells with the same R1C1 representation. Such simi-
larity facilitates our cell array identification and extraction. 

We first identify spreadsheet snippets. Related data or 
formulas in a spreadsheet are often clustered together in a 
rectangle circumscribed by empty cells or labels [27]. We 
refer to such rectangles of cells as snippets. Examples of 
spreadsheet snippets in Fig. 1(a) include two rectangles 
comprising cells [A2:E7] and [B9:D9], respectively. 

To identify snippets, we adopt a cell classification strat-
egy, similar to what Abraham and Erwig [4] proposed. We 
define a fence as a row or column of cells that comprises 
only empty cells or labels in a spreadsheet. We use fences 
to identify boundaries for each spreadsheet snippet. Other 
cells inside the identified boundaries are considered as 
cells of this snippet. 

We describe our spreadsheet snippet identification al-
gorithm as follows. Initially, each spreadsheet is consid-
ered as one snippet. We then identify fences in this snippet, 
and divide this snippet into more by the identified fences. 
For each newly identified snippet, we repeat this refine-
ment until no further snippet can be identified. 

We next extract cell arrays from the identified snippets. 
As observed earlier, the cells in a cell array are often similar 
in how their formulas reference other cells. We capture this 
similarity by means of dependence similarity. 

Given a pair of cells, c1 and c2, from a consecutive range 
of numeric cells in a row or column (e.g., CellArray2 in Fig. 
1(a)), if c1 and c2 satisfy one of the following four conditions, 
they are said to have dependence similarity: 

Condition 1. Either c1 or c2 is a data cell. Since one has 
no idea on how the value in a data cell is computed, this 
data cell can potentially have any dependence on other 
cells. Therefore, we consider that a data cell has depend-
ence similarity with any other cell. For example, in Fig. 1(a), 
cells A6 and A7 are both data cells, and thus they have de-
pendence similarity. 

Condition 2. Both c1 and c2 are formula cells, and they 
reference some cells in common. For example, cells E3 and 
E4 in Fig. 1(a) commonly reference cell D3, and thus they 
have dependence similarity. 

Condition 3. Both c1 and c2 are formula cells and they 
do not reference any cell in common, but they reference 
some cells in the same way. For example, in Fig. 1(a), cells 
D3 and D4 reference cells B3 and B4, respectively (D4 also 
references C4, but it is not important here and so omitted). 
Although B3 and B4 are not the same cell, they are refer-
enced in the same way (same distance to D3 and D4), and 
therefore their references are the same in the R1C1 repre-
sentation, i.e., R[-2]C, as shown in Fig. 2. Thus, cells D3 and 
D4 also have dependence similarity. 

Condition 4. Both c1 and c2 are formula cells and they 
do not satisfy condition 2 or 3, but there exists another cell 
c3 from the same consecutive range, such that: (1) c1 and c3 
satisfy condition 2 or 3, and (2) so do c2 and c3. For example, 
in Fig. 1(a), cells D2 and D7 do not satisfy either condition 
2 or 3, but: (1) D2 and D4 satisfy condition 3, and (2) so do 
D7 and D4. Then cells D2 and D7 satisfy condition 4. As a 
result, they also have dependence similarity. 

Spreadsheet Cell Array  
Extraction 

Formula Pattern 
Recovery 

Annotated  

Cell Array Filtering 

Fig. 4. CACheck’s architecture. 

Spreadsheet 
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Overall, our cell array extraction algorithm works as fol-
lows. For each identified spreadsheet snippet, it examines 
consecutive cells clustered in a row or column, and consid-
ers a cluster as a cell array if: (1) the cluster is not a subset 
of another already identified cell array, (2) each pair of cells 
in the cluster has dependence similarity, and (3) at least 
one cell in the cluster is a formula cell. The algorithm may 
have three outcomes: 
 Cell array: A row- or column-based cell array is suc-

cessfully identified and extracted. Two examples are 
[D2:D7] and [B9:C9] in Fig. 1(a). 

 Plain value: A consecutive range of cells in a row or 
column are all data cells. One cannot tell whether they 
prescribe the same business concept and are subject to 
certain computational semantics. We do not consider it 
as a cell array. 

 Others: It does not belong to the above two cases. To 
play safe, we also do not consider it as a cell array. 
Note that the cell arrays we now extract can be either 

well-formed or smelly. Therefore, the above four condi-
tions relax the ones we use to extract well-formed cell ar-
rays earlier in Section 4.1. For example, the above condition 
1 can help detect cell arrays that suffer from missing for-
mula smells. Conditions 2, 3 and 4 can help detect cell ar-
rays that suffer from inconsistent formula smells. 

5.2 Detecting Smelly Cell Arrays 

Next, let us explain how to check whether an extracted cell 
array is smelly or not. 

According to our earlier Definition 1, a cell array is well-
formed if: (1) it contains only formula cells, (2) all its ex-
pressions share the same cell references, and (3) all its ex-
pressions are semantically equivalent. If a cell array does 
not satisfy any of the above conditions, it suffers from am-
biguous computation smells, and is thus smelly. 

As such, we partition the extracted cell arrays into two 
groups: well-formed and smelly. In the following, we ex-
amine smelly cell arrays to repair their contained smells by 
recovering their intended formula patterns. 

5.3 Extracting Formula Pattern Constraints 

To detect and repair a smelly cell array, CACheck needs to 
recover its formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. To do so, we first ex-
tract constraints behind the formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

Our idea was inspired by component-based program 
synthesis, which synthesizes a loop-free program from 
components, input-output pairs and specifications used by 
this program [22], [36]. The synthesis is based on three as-
sumptions: (1) Existing expressions in a cell array are good 
hints for inferring its formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛; (2) Most cell 

values should be correct for this cell array, and they can 
serve as 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ’s input-output pairs; (3) Components in 

expressions used by this cell array are often those used by 
this cell array’s formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 . Under these as-

sumptions, CACheck recovers a smelly cell array’s in-
tended formula pattern by extracting its constraints from 
the cells of this cell array, and combining them appropri-
ately. The extraction process consists of four parts, i.e., ex-
tracting input variables, functions, input-output pairs and 

components from a smelly cell array, as follows: 
1) All cell references used by expressions in a cell array 

are considered as input variables for this cell array’s 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. For example, in Fig. 1 (a), input variables for 

CellArray1 are R[-1]C, input variables for CellArray2 
are RC[-2] and RC[-1], input variables for CellArray3 
are R[-1]C[-1] and RC[-1], and input variables for Cel-
lArray4 are R[-7]C, R[-6]C, …, R[-2]C. The process may 
extract irrelevant input variables, which could be re-
moved later. Let IV be the set of a cell array’s input var-
iables, and xi be the i-th input variable in IV. After ex-
tracting n input variables for 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , we can model 

𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 as a conceptual function like 𝑓(𝑥1, 𝑥2, … 𝑥𝑛). For-

mally, IV is defined as: 
𝐼𝑉 = 𝜎(𝑐1. 𝑒𝑥𝑝) ∪ 𝜎(𝑐2. 𝑒𝑥𝑝) … ∪ 𝜎(𝑐𝑚. 𝑒𝑥𝑝), 

where 𝑐1, 𝑐2, … 𝑐𝑚 ∈ 𝐶𝑒𝑙𝑙𝐴𝑟𝑟𝑎𝑦. 
2) Existing expressions in the cell array are extracted as 

functions. For example, one can extract four functions 
from CellArray2, namely, f(x1, 0) = x1, f(x1, x2) = x1 + x2, 
f(x1, x2) = x1 – x2 and f(0, x2) = x2. These functions are 
considered as specifications in component-based pro-
gram synthesis [22], [36]. 

3) All data (including those calculated by expressions) in 
the cell array are considered as input-output pairs. For 
example, in Fig. 1 (a), input-output pairs in CellArray2 
include <(2, 0), 2>, <(4, 0), 4>, <(6, 0), 6>, <(0, 5), 5> and 
<(0, 6), 6>. 

4) All operators and constants used by expressions in the 
cell array are considered as components. Note that we 
also consider a constant as a component that returns 
this constant value. For example, in Fig. 1 (a), compo-
nents from CellArray1 include “+” and constant (1), 
components from CellArray2 include “+” and “–”, 
components from CellArray3 include “–” and “/”, and 
components from CellArray4 include “+” and SUM. 
Some components might be irrelevant, but could be re-
moved later. If CACheck fails to find any operator from 
a cell array, it would add basic operators (e.g., +, –, *, /) 
as components. 
All thus extracted input variables, functions, input-out-

put pairs and components are constraints used for recover-
ing or synthesizing a smelly cell array’s intended formula 
pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛, as explained in the following. 

5.4 Recovering 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏 

We observe that a cell array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can exist in functions 
extracted from the cell array’s formula cells. For example, 
function f(x) = x + 1 extracted from formula cells in CellAr-
ray1 in Fig. 1(a) is a good candidate for recovering CellAr-
ray1’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. This observation enables us to recover a cell 
array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  based on a candidate set of functions ex-
tracted from its formula cells. This can significantly reduce 
the cost of formula pattern inference since program syn-
thesis [22], [36] is typically expensive. We aim to select a 
function that contains all input variables and covers all 
cells in a cell array as its 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. We say that a function co-
vers a data cell when the cell’s value can be computed by 
this function. For example, the value (6) of cell A6 in Cel-
lArray1 in Fig. 1(a) can be computed by f(x) = x + 1, where 
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x represents the cell reference R[-1]C. We say that a func-
tion covers a formula cell if the function is compatible with 
the one extracted from this cell in the sense that both can 
return the same outputs values given the same input val-
ues. For example, function f(x1, x2) = x1 + x2 is compatible 
with function f(x1, 0) = x1 extracted from cell D2 in Fig. 1(a). 
Note that the second parameter needs to bind to zero for 
both functions to take the same values as inputs. However, 
function f(x1, x2) = x1 + x2 is not compatible with function 
f(x1, x2) = x1 – x2 extracted from cell D4 in CellArray2 in Fig. 
1(a). This is because their output values are different when 
x1 and x2 are set to 0 and 1, respectively. 

Algorithm 1 gives our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 recovery algorithm. The 

algorithm returns NULL if it fails to recover any 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 

from functions extracted from a given cell array. If only 
one function can be extracted from a cell array, it is treated 

as the cell array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Lines 13). Otherwise, a function 

that can cover (by the Coverage method) all data and for-

mula cells in the cell array (Lines 410) is treated as 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

The Coverage method (Lines 1327) computes the ratio 
of cells a function can cover against all cells in the cell array. 
Lines 17-19 (or Lines 21-23) check whether a formula (or 
data) cell is covered by a function. 

5.5 Synthesizing 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏 

The 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 recovery algorithm returns NULL when it fails 
to identify an appropriate 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  for a smelly cell array 
from its extracted functions. When this happens, CACheck 
would try to synthesize 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  using component-based 
program synthesis [22], [36]. 

Let us first review how component-based program syn-
thesis works for constructing a program. Program synthe-
sis first derives constraints (constraintsps) for the target pro-
gram to be synthesized based on a set of components and 
input-output pairs, which can be generated by specifica-
tions [22] or provided by users [36]. It then solves con-
straintsps to synthesize the program. If the input-output 
pairs provided are not sufficiently restrictive, multiple can-
didate programs can be synthesized (all satisfying con-
straintsps). Then more input-output pairs are used to pro-
vide additional constraints to further strengthen con-
straintsps until a unique program is synthesized. 

Algorithm 2 gives the pseudo-code of our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 syn-

thesis algorithm. There are three challenges in synthesiz-
ing 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 : (1) Component-based program synthesis re-

quires users to explicitly provide components and input-
output pairs. The algorithm addresses this using con-
straints extracted from cells in a smelly cell array (Section 
5.3). (2) Functions extracted from a smelly cell array may 
not be compatible with one another. For example, two 
functions f(x1, x2) = x1 + x2 and f(x1, x2) = x1 – x2 extracted 
from CellArray2 in Fig. 1(a) are not compatible. This can 
cause our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 synthesis to fail. (3) Data cells may con-

tain incorrect values, which cannot be computed by the cell 
array’s 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  even if it is correct. Such incorrect values 

can also cause our 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 synthesis to fail. 

To tackle the second challenge, Algorithm 2 classifies 
extracted functions into compatible groups using the 
Classify method (Line 1) such that all functions in each 

group are compatible. The method classifies as many dis-
tinct compatible functions into each group as possible. The 
Classify method classifies functions by adding them it-
eratively into compatible groups. When it comes across a 
function f that cannot be added into any existing group, it 

creates a new compatible group (Lines 2425) and itera-
tively adds in other functions compatible with this new 

group (Lines 2630). Note that a function is allowed to be 
in multiple compatible groups. For example, we can obtain 
two compatible groups from CellArray2 in Fig. 1(a): (1) f(x1, 
0) = x1, f(x1, x2) = x1 + x2 and f(0, x2) = x2; (2) f(x1, 0) = x1 and 
f(x1, x2) = x1 – x2. 

To tackle the third challenge, Algorithm 2 synthesizes 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates in two steps. The two-step synthesis is 

motivated by two observations: (1) the inclusion of input-
output pairs derived from incorrect data cells can result in 
unsuccessful 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  synthesis, but one has no prior 

knowledge of which data cells are incorrect; (2) the addi-
tional constraints of input-output pairs are useful for prun-
ing inappropriate 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates. In the first step, the 

algorithm uses the constraints provided by functions in 
each compatible group to synthesize 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  candidates 

with the SynFPattern method (Line 5). The method is 
implemented to follow the component-based synthesis 
technique [22] by treating functions as specification inputs. 
It generates a 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  candidate set for each compatible 

group. If the functions in a group are not restrictive enough, 
the set can contain multiple candidates. In other words, all 
functions in the group collectively constitute only a partial 
specification for the 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 synthesis. The algorithm then 

takes the second step to enrich the specification with addi-
tional constraints given by input-output pairs using the 
Refine method (Line 6). For each 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  candidate set, 

the method iteratively prunes inappropriate candidates 
from the set using the input-output pairs from the given 
cell array while ignoring those that lead to no solution. 
This relieves us from the need for identifying incorrect 

______________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 1. 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏 recovery algorithm. 
______________________________________________________________________________________________________________________________________________________________________________________________________ 

Input: IV (input variables), FUNC (functions), IO (input–out-

put pairs), CA (cell array). 

Output: F (target formula pattern) or NULL. 
 1:  if (FUNC.length == 1) 

 2:    return FUNC.get(0); 

 3:  end if 

 4:  foreach fn in FUNC do 

 5:    if fn contains all input variables in IV then 

 6:      if (Coverage(fn, CA) == 100%) then 

 7:        return fn; 

 8:      end if 

 9:    end if 

10:  end for 

11:  return NULL; 

12: 

13:  method Coverage(fn, CA) 

14:    coveredCells = 0; 

15:    foreach cell in CA do 

16:      if (cell.type == FORMULA) then 

17:        if (!input. fn(input)cell.exp(input)) then 

18:          coveredCells ++; 

19:        end if 

20:      else  // Plain value case 

21:        if (fn(cell.input) == cell.value) then 

22:          coveredCells ++; 

23:        end if 

24:      end if 

25:    end for 

26:    return coveredCells / CA.length; 

27:  end method 
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data cells and excluding their associated input-output 
pairs. Details of this pruning process can be found in re-

lated work [36]. The Refine method would return a 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidate randomly if there are multiple remain-

ing ones for each set as its result. Finally, among all re-
turned 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates, Algorithm 2 selects the one that 

covers the most cells in the given cell array as its synthe-

sized 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Lines 710). 

We note that program synthesis relies heavily on its un-
derlying constraint solver. As in practice, we also set up a 
timeout limit for solving constraints. The limit, say 5 
minutes, is set with respective to each compatible group. 
Upon timeout, we conservatively select one function, 
which currently covers the most cells in the given cell array, 

as its 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Lines 1219). 

For the four smelly cell arrays in Fig. 1(a), their 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 

can be recovered by Algorithm 1 or synthesized in the first 
step of Algorithm 2. So we consider a more complicated 
example, cell array [C2:C6], as shown in Fig. 5. From this 
cell array, one can extract two functions (f(x1, 0) = x1 and 
f(x1, x2) = x1 + x2 + 1), four input-output pairs (IO = {<(2, 0), 
2>, <(3, 2), 9>, <(4, 3), 7>, <(5, 4), 10>}), and three compo-
nents (two “+” operators and one constant (1)). 

When Algorithm 2 starts, its Classify method (Line 1) 
partitions the above two functions into two different com-
patible groups: (1) f(x1, 0) = x1 and (2) f(x1, x2) = x1 + x2 + 1. 
We use the first compatible group to explain our two-step 
synthesis, and show this process in Table 4. During synthe-
sis, we need to prune inappropriate 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates by 

iteratively adding input-output pairs, which are generated 

from the first compatible group (SynFPattern) or se-

lected from IO (Refine). In the first iteration, SynFPat-
tern uses an input-output pair <(1, 0), 1> to generate its 

initial set of 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates. This input-output pair is 

generated from function f(x1, 0) = x1 in the compatible 
group. Then SynFPattern generates six 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  candi-

dates: f(x1, x2) = x1, f(x1, x2) = x1 + x2, f(x1, x2) = x2 + 1, f(x1, x2) 
= 1, f(x1, x2) = x1 + x2 + x2 and f(x1, x2) = x2 + x2 + 1. Note that 
if multiple 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  candidates are equivalent, only one 

would be generated, e.g., f(x1, x2) = x1 + x2 and f(x1, x2) = x2 
+ x1 are equivalent and thus only the former remains. Then 
in the second iteration, in order to prune some 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can-

didates, SynFPattern uses another input-output pair <(2, 
0), 2>, which is also generated from function f(x1, 0) = x1 
itself. This time SynFPattern generates only three 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates: f(x1, x2) = x1, f(x1, x2) = x1 + x2 and f(x1, x2) 

= x1 + x2 + x2 (the other three are pruned). Note that now 
SynFPattern can no longer further prune 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candi-

dates by only using input-output pairs generated from 
function f(x1, 0) = x1. Therefore, Algorithm 2 moves on to 
the Refine method (Line 6). Refine would use input-
output pairs from IO to further prune 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidates. 

Since the input-output pair <(2, 0), 2> from IO has been 

used, in the third iteration, Refine uses the second input-
output pair <(3, 2), 9> from IO. Unfortunately, none of the 
remaining three 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛  candidates can satisfy this pair, 

and thus this pair is ignored (in fact, this pair is a wrong 

input-output pair). In the fourth iteration, Refine uses the 

third input-output pair <(4, 3), 7> from IO. This time Re-
fine generates a unique 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 candidate: f(x1, x2) = x1 + 

x2 (the other two are pruned). Now we finish the synthesis 
process and return f(x1, x2) = x1 + x2 as the formula pattern 
for the first compatible group. 

5.6 Identifying Smelly Cells 

CACheck infers a smelly cell array’s formula pattern 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 successfully if it can recover or synthesize 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 
for this cell array. When successful, CACheck uses the in-
ferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 to check whether some cells contained in the 
cell array are smelly, and repair them if necessary. 

We consider a cell in a cell array smelly if it is a data cell 
(i.e., missing formula smell), or it is a formula cell but its 

_____________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 2. 𝒇𝒑𝒂𝒕𝒕𝒆𝒓𝒏 synthesis algorithm. 
______________________________________________________________________________________________________________________________________________________________________________________________________

Input: IV (input variables), FUNC (functions), IO (input–out-

put pairs), COMP (components), CA (cell array). 

Output: F (target formula pattern). 

 1:  groups = Classify(FUNC); // Get compatible groups 

 2:  pert = 0; F = NULL; 

 3:  while groups not EMPTY do 

 4:    group = groups.removeOne(); // Retrieve one group 

 5:    formulas = SynFPattern (IV, COMP, group); 

 6:    formula = Refine(IV, COMP, formulas, IO); 

 7:    if (formula  NULL && Coverage(formula, CA)>pert) then 

 8:      pert = Coverage(formula, CA); // Measure percentage 

 9:      F = formula; 

10:    end if 

11:  end while 

12:  if (F = NULL) then // Synthesis fails 

13:    foreach fn in FUNC do 

14:      if (Coverage(fn, CA) > pert) then 

15:        pert = Coverage(fn, CA); 

16:        F = fn; 

17:      end if 

18:    end for 

19:  end if 

20:  return F; 

21: 

22:  method Classify(FUNC) 

23:    groups = EMPTY; 

24:    while (initFuncFUNC. initFunc non-classified) do 

25:      newGroup = {initFunc}; 

26:      foreach func in FUNC\newGroup do 

27:        if (!fn  newGroup. in. fn(in)  func(in)) then 

28:          newGroup.add(func); 

29:        end if 

30:      end for 

31:      groups.add(newGroup); // All in newGroup classified 

32:    end while 

33:    return groups; 

34:  end method 

TABLE 4 
Two-step synthesis process 

Iteration IO pair Candidates 

1 <(1, 0), 1> 
f(x1, x2)=x1; f(x1, x2)=x1+x2; 
f(x1, x2)= x2+1; f(x1, x2)=1; 

f(x1, x2)=x1+x2+x2; f(x1, x2)=x2+x2+1 

2 <(2, 0), 2> 
f(x1, x2)=x1; f(x1, x2)=x1+x2; 

f(x1, x2)=x1+x2+x2 

3 <(3, 2), 9> none 

4 <(4, 3), 7> f(x1, x2)=x1+x2 

 

 

Fig. 5. A more complicated smelly cell array for synthesis, in which 
cells [C2:C6] should uniformly follow a formula pattern of Ci = Ai + 
Bi (2 ≤ i ≤ 6). 

(A) (C)(B)
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expression is not semantically equivalent to the inferred 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (i.e., inconsistent formula smell). Then, according 
to our earlier Definition 2, CACheck can further check 
whether a smelly cell suffers from a conformance error. 

In identifying smelly cells, we notice one subtle but im-
portant issue that should be handled specially. In some cell 
arrays, a cell’s value computation depends on another, 
which further depends on its next, forming a continual 
chain with all concerned cells in the same cell array. We 
call such cell arrays as chained cell arrays. For a chained cell 
array, its first several cells in the chain, whose computation 
does not depend on any other cells, contain initial (plain) 
values for the whole cell array. We should remove them 
from consideration of candidates for smelly cells. For ex-
ample, in Fig. 1(b), each cell (except A2) in cell array 
[A2:A7] references its immediately above cell in its value 
computation, and thus this cell array is a chained one. The 
first cell A2 offers the initial value (2) for the whole cell ar-
ray. Therefore, cell A2 should not be considered smelly. 

5.7 Filtering Cell Arrays 

As discussed earlier in Section 5.1, we use relaxed condi-
tions to extract cell arrays, which can be either well-formed 
or smelly. However, due to this relaxation, our cell array 
extraction might incur false positives, i.e., a consecutive 
range of cells is mistakenly extracted as a cell array but it 
is not actually. For example, in Fig. 1 (a), cells [A3:B3] form 
a consecutive range, and they coincidentally satisfy condi-
tion 1 in our extraction. As a result, cells [A3:B3] are ex-
tracted as a cell array. However, we consider this cell array 
a false positive. This is because the two cells do not pre-
scribe the same computational semantics (cell A3 is com-
puted from cell A2, meaning a previous month, while cell 
B3 represents the amount of apple harvest in March). Sim-
ilar cases also occur in cells [A4:B4] and [A5:B5]. As such, 
one needs to filter out such false positives in cell array ex-
traction. 

We note that our filtering is based on the earlier obser-
vations we made in the empirical study in Section 4, as well 
as the formula patterns, which are either recovered or syn-
thesized, as discussed in Section 5.4 or 5.5. Therefore, we 
discuss our cell array filtering after them. We will use four 
examples of extracted cell arrays for illustration in the fol-
lowing discussions. They are [A2:A7], [A3:B3], [A4:B4] and 
[A5:B5] from Fig. 1 (a), among which we aim to identify the 
latter three as false positives. 

Let 𝐶𝐴 be the set of extracted cell arrays. Our cell array 
filtering aims to select a subset of 𝐶𝐴 to satisfy certain con-
straints. Let 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 be the subset (𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 ⊆ 𝐶𝐴). We col-
lect constraints on 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 , and generate all possible 
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates to find one that satisfies these con-
straints. This process needs to consider the following two 
requirements: 

1) From observation 4 in Section 4, cell arrays rarely 
overlap (only 0.6% cases). This suggests that, given a pair 
of extracted cell arrays that overlap (i.e., some of their cells 
are shared), one of them is probably a false positive. There-
fore, we require that all cell arrays in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 should not 
overlap. In order not to mistakenly miss cell arrays, 
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 should also be maximized with respect to 𝐶𝐴. This 

means that any cell array in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  must overlap 
with at least one cell array in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡. Considering the four 
extracted cell arrays [A2:A7], [A3:B3], [A4:B4] and [A5:B5], 
we have two 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates: 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  = {[A2:A7]} or 
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A3:B3], [A4:B4], [A5:B5]}. 

2) The first requirement tries to isolate true positives 
from false positives, but one has no idea which 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 
candidate best suits the characteristics of true positives (i.e., 
real cell arrays). We observe that even if a true positive suf-
fers from ambiguous computation smells, its recovered or 
synthesized formula pattern can cover most of its con-
tained cells. This means that a majority of its cells have cor-
rect values, and its contained conformance errors, if any, 
would be few. For example, in cell array [A2:A7] (true pos-
itive), all its cells except one (A7) have correct values. How-
ever, cells in a wrongly extracted cell array (false positive) 
cannot easily be covered by its recovered or synthesized 
formula pattern since its contained cells are put together in 
an unreasonable way. Thus one can easily detect conform-
ance errors in a false positive. For example, in cell array 
[A3:B3] (false positive), its recovered formula pattern is R[-
1]C + 1. Then cell B3 contains a conformance error (its 
value is 2 rather than 3). Similarly, one can also detect one 
conformance error (at cell B4) for cell array [A4:B4] (false 
positive) and one conformance error (at cell B5) for cell ar-
ray [A5:B5] (false positive). As such, taking each 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 
candidate as a unit, one can detect one conformance error 
in the first candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  = {[A2:A7]}, but three con-
formance errors in the second candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 = {[A3:B3], 
[A4:B4], [A5:B5]}. Therefore, we should select a 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 
candidate, which has the minimal number of conformance 
errors, to win the best chance of isolating false positives 
from our consideration. 

The above filtering process works on observations and 
heuristics, but it is highly effective in isolating true posi-
tives from false positives. For example, our later experi-
ments reported that the overall removal precision is as 
high as 97.2%. In the following, we elaborate on the details 
of this filtering process. 

5.7.1 Generating 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 Candidates 

According to the first requirement, the cell arrays in each 
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidate must not overlap. Each 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candi-
date is also a maximal subset with respect to 𝐶𝐴  in the 
sense that any cell array in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  must overlap with 
at least one cell array in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡. We use the following two 
constraints to generate such 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates. 

Constraint 1: Given any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate, for any two 
cell arrays in 𝐶𝐴 that overlap with each other, at most one 
of them can be in this 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate. For example, cell 
arrays [A2:A7] and [A3:B3] overlap. Then they must go to 
two different 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates. If two cell arrays 
𝑐𝑎𝑖  and 𝑐𝑎𝑗  overlap, we denote this overlapping relation-

ship as 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑐𝑎𝑖 , 𝑐𝑎𝑗). Then, this constraint can be spec-

ified formally as (𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 represents any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate): 

⋀ (𝑐𝑎𝑖 ≠ 𝑐𝑎𝑗⋀𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑐𝑎𝑖 , 𝑐𝑎𝑗)) ⇒ (𝑐𝑎𝑖

𝑐𝑎𝑖,𝑐𝑎𝑗∈𝐶𝐴

∉ 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 ∨ 𝑐𝑎𝑗 ∉ 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡). 
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Constraint 2: Given any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate, for any cell 
array ca in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 , there exists at least one cell array 
in this 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidate that overlaps with ca. This con-
straint makes sure that any cell array in 𝐶𝐴 − 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  can-
not be added into this 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate (i.e., already max-
imized). This constraint can be specified formally as 

(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 represents any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate): 

⋀ ∃𝑐𝑎′ ∈ 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑐𝑎, 𝑐𝑎′)

𝑐𝑎∈(𝐶𝐴−𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡)

. 

Any 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidate must satisfy both constraints 1 
and 2. Consider our earlier example: 𝐶𝐴  = {[A2:A7], 
[A3:B3], [A4:B4], [A5:B5]}. Its two 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates are 
thus: 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  = {[A2:A7]} or 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  = {[A3:B3], [A4:B4], 
[A5:B5]}. 

In order to obtain all 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates, a straightfor-
ward way is to generate them by enumerating all subsets 
of 𝐶𝐴, and check whether they satisfy both constraints 1 
and 2. However, it would be exponentially complex. We 
choose to speed up this process based on the overlapping 
relationship. The key idea is to remove those subsets that 
do not satisfy constraint 1 or 2 as early as possible. 

Our 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidate generation algorithm (Algo-
rithm 3) takes all extracted cell arrays (i.e., 𝐶𝐴) as input, 
and returns all 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates. Its kernel part is the 

Generate method (Lines 827), which first selects those 
cells arrays that do not overlap with any other cell array 

into a candidate subset (𝑐𝑢𝑟𝐶𝐴𝑠) (Lines 913). If this step 
already selects all available cell arrays, we successfully 
find one 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidate and add it into the result (Lines 
14-18). Otherwise, we still have some remaining cell arrays 
not selected (in 𝑟𝑒𝑠𝑡𝐶𝐴𝑠), and we know that they overlap 
with at least one cell array also not selected yet (in 𝑟𝑒𝑠𝑡𝐶𝐴𝑠), 
but never overlap with any other cell array in 𝑐𝑢𝑟𝐶𝐴𝑠 . 
Then we consider selecting these remaining cell arrays in 
an iterative and recursive way. We consider each remain-
ing cell array ca in turn as follows (Lines 20-26). (1) We add 
ca into 𝑐𝑢𝑟𝐶𝐴𝑠 and at the same time remove those cell ar-
rays overlapping with ca from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠  (Lines 22-23). By 
doing so, we again are able to possibly select more non-
overlapping cell arrays from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 into 𝑐𝑢𝑟𝐶𝐴𝑠 (Lines 9-
13). If this selects all remaining cell arrays, we find a new 
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidate (Lines 14-18). Otherwise, we consider 
the new 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 and 𝑐𝑢𝑟𝐶𝐴𝑠 at a finer granularity and re-
start the Generate method recursively (Line 24). (2) When 
we complete considering the current ca, we restore the 
original 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 and 𝑐𝑢𝑟𝐶𝐴𝑠 (Line 25), and then consider 
the next ca until we complete considering all remaining cell 
arrays in 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 . In the above steps, we make two in-
tended efforts. (1) We keep adding non-overlapping cell 
arrays into 𝑐𝑢𝑟𝐶𝐴𝑠. This is for avoiding generating those 
subsets that are not maximal. (2) Whenever we add a cell 
array into 𝑐𝑢𝑟𝐶𝐴𝑠, we also remove its overlapping cell ar-
rays from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠. This is for avoiding generating those 
subsets that contain overlapping cell arrays. 

Consider our earlier example: 𝐶𝐴 = {[A2:A7], [A3:B3], 
[A4:B4], [A5:B5]}. Since each cell array in 𝐶𝐴 overlaps with 
at least another cell array, we do not select any cell array 
into 𝑐𝑢𝑟𝐶𝐴𝑠 in the first step (Lines 9-13). Then in the first 

iteration (Lines 20-26), we select cell array [A2:A7] into 
𝑐𝑢𝑟𝐶𝐴𝑠, and at the same time remove cell arrays [A3:B3], 
[A4:B4] and [A5:B5] from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠, since they all overlap 
with [A2:A7]. Thus, we generate the first candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 
= {[A2:A7]} (this iteration completes quickly as 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 is 
empty). In the second iteration, we restart this process by 
first recovering original 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 (containing four cell ar-
rays) and 𝑐𝑢𝑟𝐶𝐴𝑠 (empty). This time, we select another cell 
array [A3:B3] into 𝑐𝑢𝑟𝐶𝐴𝑠, and at the same time remove 
cell array [A2:A7] from 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 , since it overlaps with 
[A3:B3]. Now, 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 becomes {[A4:B4], [A5:B5]}. During 

recursively invoking the Generate method, we select the 
two non-overlapping cell arrays ([A4:B4] and [A5:B5]) into 
𝑐𝑢𝑟𝐶𝐴𝑠 (Lines 9-13). Since now 𝑟𝑒𝑠𝑡𝐶𝐴𝑠 is empty, we gen-
erate the second candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  = {[A3:B3], [A4:B4], 
[A5:B5]}. 

We note that Algorithm 3 may generate duplicated 
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates. For example, when we go ahead with 
the third iteration, a duplicated candidate 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  = 
{[A4:B4], [A3:B3], [A5:B5]} is generated. Since the ordering 
does not matter for set elements, this candidate is the same 
as the second one. Algorithm 3 would keep only one copy 
for duplicated 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates (Lines 15-16). For this 
example, the algorithm would eventually generate two 
𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates. 

5.7.2 Selecting 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 Candidates 

With generated 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates, we use the following 
strategy for final selection. 

As mentioned earlier, we aim to minimize the number 
of conformance errors in 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidates, to win the 

_____________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 3. 𝑪𝑨𝒔𝒆𝒍𝒆𝒄𝒕 candidate generation algorithm. 
______________________________________________________________________________________________________________________________________________________________________________________________________

Input: CAs (inputted cell arrays). 

Output: candidates (all 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidates). 

 1:  candidates = EMPTY; 

 2:  curCAs = EMPTY; // The current candidate 

 3:  Generate(CAs, curCAs); 

 4:  return candidates; 

 5:   

 6:  // Any two cell arrays from restCAs and curCAs, 

 7:  // respectively, do not overlap 

 8:  method Generate(restCAs, curCAs) 

 9:    foreach ca in restCAs do 

10:      if (GetOverlap(ca, restCAs) = EMPTY) then 

11:        restCAs.remove(ca); curCAs.add(ca); 

12:      end if 

13:    end for 

14:    if (restCAs = EMPTY) then 

15:      // Duplicated candidates are ignored 

16:      candidates.add(curCAs); 

17:      return 

18:    end if 

19:    // All cell arrays in restCAs overlap with others 

20:    foreach ca in restCAs do 

21:      tmpRestCAs = restCAs; tmpCurCAs = curCAs; // Backup 

22:      restCAs.remove(ca); curCAs.add(ca); // Select ca 

23:      restCAs.remove(GetOverlap(ca, restCAs)); 

24:      Generate(restCAs, curCAs); 

25:      restCAs = tmpRestCAs; curCAs = tmpCurCAs; // Restore 

26:    end for 

27:  end method 

28: 

29:  // Get cell arrays in restCAs, which overlap with ca 

30:  method GetOverlap(ca, restCAs) 

31:    overlapCAs = EMPTY; 

32:    foreach tmp_ca in restCAs do 

33:      if (ca  tmp_ca && overlap(ca, tmp_ca)) then 

34:        overlapCAs.add(tmp_ca); // ca overlaps with tmp_ca 

35:      end if 

36:    end for 

37:    return overlapCAs; 

38:  end method 
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best chance of isolating false positives from our considera-
tion. Let ca.errors be the number of conformance errors in a 
cell array ca, and 𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡)  be the number of con-
formance errors in all cell arrays in a 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡  candidate. 
Formally, 𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡) is defined as: 

𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡) = ∑ 𝑐𝑎. 𝑒𝑟𝑟𝑜𝑟𝑠.

𝑐𝑎∈𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡

 

We select as the final result the 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 candidate that 
has the minimal 𝑒𝑟𝑟𝑜𝑟(𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡) value. If there are multiple 
choices, we select the one having the least number of cell 
arrays. Then the set of cell arrays in this final 𝐶𝐴𝑠𝑒𝑙𝑒𝑐𝑡 can-
didate is our filtering result. Smell detection results are ad-
justed accordingly with this set (e.g., dropped if the con-
cerned cell arrays are not in this set). 

6 EVALUATION 

We implemented our smelly cell array detection approach 
as a tool named CACheck. CACheck builds on the Apache 
POI library [63] to manipulate spreadsheets in Excel files. 
CACheck loads an Excel file, analyzes its cell arrays, and 
generates comments explaining whether they contain am-
biguous computation smells and what they are, as well as 
corresponding repairs suggested. 

We implemented CACheck in Java 7 and used Z3 [42] 
as its underlying constraint solver. To be user-friendly, 
CACheck transforms an inferred formula pattern 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 

back to its A1 representation, e.g., RC[-2] + RC[-1] is trans-
formed to B2 + C2 for cell D2 in Fig. 1(a). For visualization, 
CACheck marks its detection results by three annotations: 
(1) Cell arrays that suffer from ambiguous computation 
smells are colored in yellow; (2) Spreadsheet comments are 
added to smelly cells for suggesting their corresponding 
repairs; (3) Conformance errors are colored in red with 
comments explaining their reasons. These annotations can 
assist end users to quickly validate the reported problems. 
Fig. 6 gives a screenshot of CACheck’s detection reports 
regarding problems identified for our motivating example 
in Fig. 1(a). 

We then evaluate CACheck and study the following re-

search questions (RQ13 were studied earlier in Section 4): 
RQ4 (Precision): Can CACheck detect and repair smelly cell 

arrays precisely? 
RQ5 (Recall): Can CACheck detect smelly cell arrays with a 

high recall rate? 
RQ6 (Comparison): How is CACheck compared with exist-

ing techniques, e.g., AmCheck, Excel, UCheck/Dimension 
and CUSTODES? 

RQ7 (Consistency): Can CACheck obtain consistent results 
on different spreadsheet corpora, such as EUSES and Enron? 
To answer question RQ4, we ran CACheck on all 

spreadsheets in the EUSES corpus (Section 6.1), and man-
ually validated all detected smelly cell arrays (Section 6.2). 
To answer question RQ5, we randomly sampled 50 spread-
sheets from the EUSES corpus, and manually created the 
ground truths for them (i.e., manually identifying well-
formed and smelly cell arrays). The process of subject se-
lection is explained in Section 6.5.1. We then measured CA-
Check’s recall rate on these 50 spreadsheets (Section 6.5). 

To answer question RQ6, we ran both CACheck and Am-
Check on the EUSES corpus, and manually validated all 
detected smelly cell arrays to compare their performance, 
i.e., precision (Section 6.3) and recall rate (Section 6.5). We 
further compared CACheck with Excel, UCheck/Dimen-
sion and CUSTODES in Section 6.4. To answer question 
RQ7, we additionally ran CACheck on all spreadsheets in 
the Enron corpus, and manually validated 700 randomly 
sampled smelly cell arrays. We then compared statistical 
characteristics of the detected results on the EUSES and En-
ron corpora. We further sampled 50 spreadsheets from the 
Enron corpus and created their ground truths. Based on 
them, we measured CACheck’s recall rate, and compared 
it to that for EUSES spreadsheets (Section 6.6). We have 
also made our tool, experimental dataset and results avail-
able online for future research [62]. 

6.1 Cell Array Detection for the EUSES Corpus 

We ran CACheck on all spreadsheets in the EUSES corpus 
to detect smelly cell arrays. 

Table 5 gives the statistics of cell arrays detected for 
each category of spreadsheets in the EUSES corpus (Cate-
gory). It shows the statistics of cell arrays (Cell array) and 
smelly cell arrays (Smelly cell array). It also lists the num-
ber of cell arrays (CA), number of smelly cell arrays (SCA), 
and number of cell arrays suffering from missing formula 
smells (MISS), inconsistent formula smells (INCO) and 
both smells (Both). We observe that smelly cell arrays oc-
cur commonly in the EUSES corpus: 15.5% (3,443/22,177) 
of the detected cell arrays suffer from ambiguous compu-
tation smells. Among these smelly cell arrays, 53.7% 
(1,849/3,443) suffer from missing formula smells, 49.3% 
(1,699/3,443) suffer from inconsistent formula smells, and 
3.0% (105/3,443) suffer from both smells. 

Table 5 also gives the statistics of homogeneous and in-
homogeneous cell arrays detected in the EUSES corpus. It 
shows the number of homogeneous cell arrays (Homo), 
number of inhomogeneous cell arrays (Inho), number of 
smelly homogeneous cell arrays (SHomo), and number of 
smelly inhomogeneous cell arrays (SInho). 

We observe that 76.3% (16,928/22,177) of the detected 
cell arrays are homogeneous cell arrays. Out of them, 13.7% 
(2,324/16,928) suffer from ambiguous computation smells. 
We also observe that 23.7% (5,249/22,177) of the detected 
cell arrays are inhomogeneous cell arrays. Out of them, 
21.3% (1,119/5,249) suffer from ambiguous computation 
smells. It seems that inhomogeneous cell arrays are more 
error-prone. 

  

 

Fig. 6. CACheck’s screenshot for the spreadsheet in Fig. 1(a). 



DOU ET AL.:  CACHECK: DETECTING AND REPAIRING CELL ARRAYS IN SPREADSHEETS 15 

 

Therefore, we draw the following conclusion: 

Smelly cell arrays commonly exist in real-life 
spreadsheets, e.g., in the EUSES corpus. Ambiguous 
computation smells are also common for inhomo-
geneous cell arrays, which thus deserve detection. 

6.2 CACheck’s Precision on Smelly Cell Array 
Detection for the EUSES corpus 

We then investigate CACheck’s precision on its smelly cell 
array detection. 

6.2.1 Smelly Cell Arrays 

We first partition CACheck’s detected smelly cell arrays 
into seven categories according to how many cells their in-
ferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can cover in these arrays. The seven catego-
ries are: 100%, [90%, 100%), [80%, 90%), [70%, 80%), [60%, 
70%), [50%, 60%) and [0%, 50%), which represent different 
levels of coverage. We then measure CACheck’s precision 
on smell detection for the seven categories of cell arrays. 
For this purpose, we manually validated all smelly cell ar-
rays detected in the EUSES corpus. For each category, Ta-
ble 6 lists the number of smelly cell arrays (SCA), number 
of missing formula smells (M-SCA), and number of incon-
sistent formula smells (I-SCA). These numbers are also ac-
companied with corresponding numbers of validated-as-
true smelly cell arrays (TP). 

We observe that CACheck’s inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is able to 

cover all the cells in 1,184 smelly cell arrays (i.e., coverage 
of 100%), and 90% or more (but not 100%) cells in another 
152 smelly cell arrays (i.e., coverage in range [90%, 100%)). 
This suggests that values and formulas in these 1,336 cell 
arrays are highly compatible with the inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. In 

other words, each of these 1,336 cell arrays that suffer from 
missing formula or inconsistent formula smells very likely 
prescribes common computational semantics expressed by 
the inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. Then these detected ambiguous com-

putation smells in these cell arrays (1,336/3,443 = 38.8%) 
are probably true. This provides an alternative for as-
sessing the quality of CACheck’s smell detection results. 
We can use these seven categories to rank the likeliness of 
a smelly cell array being true (higher coverage, more prob-
ably true). 

True positives. Out of the 3,443 smelly cell arrays de-
tected, we manually validated them and found that 1,586 
(46.1%) of them are true. These 1,586 smelly cell arrays 

cover 7.8% (1,586/(22,177  (3,443  1,586))) of all identified 

well-formed and true smelly cell arrays. The precision for 
missing formula cell arrays (970/1,849 = 52.5%) is higher 
than that for inconsistent formula cell arrays (660/1,699 = 
38.8%). We also observe that homogeneous cell arrays 
(Homo-SCA; 1,235/2,324 = 53.1%) have a higher precision 
than inhomogeneous cell arrays (Inho-SCA; 351/1,119 = 
31.4%). Fig. 7 shows how the precision changes with dif-
ferent levels of coverage for the detected smelly cell arrays 
(CACheck), smelly homogeneous cell arrays (CACheck-
Homo) and smelly inhomogeneous cell arrays (CACheck-
Inho). We observe that the precision roughly decreases 
with the reduction in coverage. We also observe that there 
is a sharp decrease when the coverage is lower than 70%. 
Therefore, we recommend the level of coverage of 70% as 
a reliable threshold for smelly cell array detection, where 
the precision is 86.8% (1,386/1,597). 

False positives. In Table 6, the values in the SCA/TP 
column also disclose false positives in smelly cell array de-

tection. We analyzed the causes for the 211 (= 1,597  1,386) 
false positives for the coverage in range [70%, 100%]. There 
are three main causes: (1) Some spreadsheets use numbers 
as labels. For example, in financial reports, end users often 
use years like 2013 and 2014 as labels, which are, however, 
represented in a number format. Our heuristics in cell ar-
ray extraction can misinterpret them as data cells. 6.2% 
(13/211) false positives belong to this case. It should be 
easy for end users to quickly validate such false positives. 
(2) Some cells in a row or column have the same computa-
tional semantics, but they are separated by empty cells. 
CACheck thus extracted multiple column- or row-based 
cell arrays, which should not be separated. 12.3% (26/211) 
false positives belong to this case. (3) For the remaining 
81.5% (172/211) false positives, the concerned cells in these 
ranges contain complex computational semantics, which 
CACheck could not effectively recognize or distinguish 
currently. End users should manually confirm or reject 
them for such cases. 

6.2.2 Smelly Cells 

As mentioned earlier, some cells in a smelly cell array are 
smelly. They suffer from either missing formula smells or 
inconsistent formula smells. Further, a smelly cell may 
contain a conformance error if its value does not conform 
to that computed by the concerned cell array’s inferred 
𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

TABLE 5 
Detected Cell Arrays in the EUSES corpus (n.a.: not applicable) 

Category 
Cell array Smelly cell array 

CA Homo Inho Inho/CA SCA SHomo SInho SCA/CA MISS INCO Both 

cs101 39 35 4 10.3% 12 12 0 30.8% 8 4 0 

database 3,271 2,302 969 29.6% 448 358 90 13.7% 345 114 11 

filby 0 0 0 n.a. 0 0 0 n.a. 0 0 0 

financial 7,008 5,573 1,435 20.5% 1,259 869 390 18.0% 502 796 39 

forms3 150 114 36 24.0% 16 5 11 10.7% 14 2 0 
grades 2,955 2,275 680 23.0% 666 528 138 22.5% 335 354 23 

homework 2,702 1,971 731 27.1% 343 137 206 12.7% 214 140 11 

inventory 3,903 3,133 770 19.7% 517 287 230 13.2% 322 213 18 

jackson 0 0 0 n.a. 0 0 0 n.a. 0 0 0 

modeling 2,018 1,394 624 30.9% 182 128 54 9.0% 109 76 3 

personal 131 131 0 0.0% 0 0 0 0.0% 0 0 0 

Total 22,177 16,928 5,249 23.7% 3,443 2,324 1,119 15.5% 1,849 1,699 105 
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Table 6 shows the number of detected missing formula 
cells (M-Cell) and number of detected inconsistent formula 
cells (I-Cell). These numbers are also accompanied with 
corresponding numbers of validated-as-true smelly cells 
(TP) for comparison. We confirmed that a total of 8,139 
(5,214 + 2,925) cells are truly smelly. Out of them, 5,214 
cells suffer from missing formula smells, and 2,925 cells 
suffer from inconsistent formula smells. The precision for 
smelly cell detection is 64.2% (8,139/(7,724 + 4,963)). These 
8,139 true smelly cells cover 25.9% of all (31,457) cells from 
1,586 true smelly cell arrays, and 3.3% of all (250,245) cells 
from all (20320 = 22,177  (3,443  1,586)) detected well-
formed and true smelly cell arrays. 

Besides, as shown in Table 6, CACheck detected a total 
of 5,553 conformance errors (CE) in the EUSES corpus. We 
manually validated them, and confirmed that 26.3% 
(1,458/5,553) detected conformance errors are true ones. 
We observe that conformance errors occurring in cell ar-
rays with higher levels of coverage also have a higher 
probability to be true. For example, 73.9% (655/886) de-
tected conformance errors are true in cell arrays with a 
level of coverage in range [70%, 100%]. 

6.2.3 Repairability 

Table 6 also lists the number of true smelly cell arrays that 
CACheck failed to repair (Fail to repair). Out of 1,586 true 
smelly cell arrays, CACheck was able to repair 1,540 (97.1%) 
of them. It shows that CACheck is effective for repairing 
smelly cell arrays automatically and correctly. The 46 
smelly cell arrays that CACheck failed to repair involve 
cases of incomplete input variables (26), complex table 
structures (9), incomplete components (10), and too many 
wrong cells (1). We roughly observe that such “failed to 
repair” cases seem to relate to cell arrays with a level of low 
coverage. For example, 45.7% (21/46) cases occur to cell ar-
rays with coverage below 50%, and this causes a failing 
rate of 42.0% (21/50). Besides, although 9 cases occur to cell 
arrays with coverage of 100%, the concerned failing rate is 
actually below as 0.8% (9/1,092). 

Therefore, we draw the following conclusion: 

CACheck can effectively detect smelly cell arrays. 
70% can be a reliable threshold for effective smelly 
cell array detection, where it corresponds to a de-
tection precision of 86.8%. Besides, CACheck can 
repair true smelly cell arrays with a 97.1% success-
ful rate. 

6.3 Comparison between CACheck and AmCheck 

We now compare our CACheck with its predecessor, Am-
Check, published earlier. As mentioned, AmCheck can 
only detect and repair homogeneous cell arrays, while CA-
Check can do so for both homogeneous and inhomogene-
ous ones. 

We compared CACheck and AmCheck on the EUSES 
corpus. We partitioned comparison results into seven cat-
egories as earlier, according to different levels of coverage 
with respect to AmCheck’s detected smelly cell arrays (i.e., 
how many cells their inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can cover in these ar-
rays). Table 7 lists the number of smelly cell arrays de-
tected by AmCheck (AmCheck/SCA), and number of val-
idated-as-true smelly cell arrays of AmCheck (Am-
Check/TP). As mentioned, all these detected smelly cell 
are homogeneous. Fig. 7 also compares how the precision 

TABLE 6 
Detected and Validated Smelly Cell Arrays with Different Levels of Coverage in the EUSES Corpus 

Coverage 

Smelly cell arrays Smelly cells 

SCA/ 

TP 

M-SCA/ 

TP 

I-SCA/ 

TP 

Homo-SCA/ 

TP 

Inho-SCA/ 

TP 

Fail to 

repair 

M-Cell/ 

TP 

I-Cell/ 

TP 

CE/ 

TP 

100% 
1,184/ 
1,092 

679/ 
661 

525/ 
449 

877/ 
831 

307/ 
261 

9 
2,477/ 
2,445 

2,478/ 
2,251 

0/ 
0 

[90%, 100%) 
152/ 
112 

118/ 
85 

40/ 
33 

101/ 
85 

51/ 
27 

0 
1,259/ 
1,186 

84/ 
77 

226/ 
131 

[80%, 90%) 
164/ 
117 

106/ 
78 

66/ 
45 

112/ 
86 

52/ 
31 

3 
804/ 
724 

218/ 
140 

398/ 
323 

[70%, 80%) 
97/ 
65 

59/ 
41 

49/ 
28 

64/ 
48 

33/ 
17 

5 
343/ 
315 

144/ 
88 

262/ 
201 

[60%, 70%) 
406/ 

74 
141/ 

31 
272/ 

47 
320/ 

65 
86/ 

9 
3 

396/ 
209 

470/ 
175 

749/ 
294 

[50%, 60%) 
1,042/ 

76 
440/ 

32 
607/ 

44 
619/ 

75 
423/ 

1 
5 

659/ 
133 

890/ 
128 

1,496/ 
218 

[0%, 50%) 
398/ 

50 
306/ 

42 
140/ 

14 
231/ 

45 
167/ 

5 
21 

1,786/ 
202 

679/ 
66 

2,422/ 
291 

Total 
3,443/ 
1,586 

1,849/ 
970 

1,699/ 
660 

2,324/ 
1,235 

1,119/ 
351 

46 
7,724/ 
5,214 

4,963/ 
2,925 

5,553/ 
1,458 

 

 
Fig. 7. Precision comparison on smelly cell array detection for dif-
ferent levels of coverage on the EUSES corpus (horizontal axis: 

coverage category, vertical axis: detection precision). 
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changes with different levels of coverage for smelly cell ar-
rays detected by CACheck and AmCheck. We observe that 
the overall precision for CACheck is 46.1% as earlier calcu-
lated, whereas that for AmCheck is only 29.7% 
(1,239/4,167). If we use 70% as the reliable threshold for 
coverage-based smelly cell array extraction, we observe 
that CACheck’s precision is 86.8% as earlier calculated, 
whereas AmCheck’s precision is only 71.9% (1,050/1,460). 

6.3.1 Inhomogeneous Cell Arrays 

As shown in Table 6, CACheck detected 351 true smelly 
inhomogeneous cell arrays (Inho-SCA/TP). As mentioned 
earlier, AmCheck was unable to detect any inhomogene-
ous cell array. As such, AmCheck missed at least 22.1% 
(351/1,586) true smelly cell arrays in the EUSES corpus. 

6.3.2 Homogeneous Cell Arrays 

Both CACheck and AmCheck can detect homogeneous cell 
arrays. Therefore, we are interested in their comparison at 
the aspect. 

Table 7 also lists the number of smelly homogeneous 
cell arrays detected by CACheck (CACheck-Homo/SCA) 
and number of validated-as-true smelly homogeneous cell 
arrays of CACheck (CACheck-Homo/TP). We observe 
that CACheck’s precision is 53.1% (1,235/2,324), whereas 
AmCheck’s precision is only 29.7% (1,239/4,167). Similarly, 
if we use 70% as the reliable threshold for coverage-based 
smelly homogeneous cell array extraction, we observe that 
CACheck’s precision is 91.0% (1,050/1,154), whereas Am-
Check’s precision is only 71.9% (1,050/1,460). This indi-
cates that CACheck is more precise than AmCheck even if 
we only compare the detection of smelly homogeneous cell 
arrays. The improvement is mainly attributed to CA-
Check’s filtering rules, which effectively prune invalid cell 
arrays. 

We also concern how different the smelly homogeneous 
cell arrays detected by CACheck and AmCheck are. Table 
7 shows the comparison results. We observe that 97.0% 
(2,254/2,324) smelly homogeneous cell arrays detected by 
CACheck could also be detected by AmCheck (Common 
SCA), but 45.9% (1,913/4,167) smelly cell arrays detected 
by AmCheck were missed by CACheck (Missed by CA-
Check/SCA). However, we note that this only compares 
detection results, but not validation results. Thus we man-
ually validated all these 1,913 missed smelly cell arrays, 
and found that only 2.8% (54/1,913) of them are true 
smelly cell arrays (Missed by CACheck/TP). Besides, in 21 
out of the 54 true smelly cell arrays (Equal smell), their cor-

responding smelly cells were already detected in other ex-
tracted cell arrays as reported by CACheck. As such, CA-
Check actually only missed 1.7% (33/1,913) true smelly ho-
mogeneous cell arrays. At the same, CACheck successfully 
filtered out 63.5% ((1,913  54) / (4,167  1,239)) false posi-
tives in AmCheck’s detection results with a precision of 
97.2% ((1,913  54)/1,913). For the 33 indeed missed (true 
smelly homogeneous) cell arrays, there are two cases: (1) 
Some cells do not have dependence similarity, and thus 
CACheck could not decide if they form any cell arrays. 17 
cell arrays belong to this case. (2) Some cell arrays overlap 
with other cell arrays. As including the latter into the set of 
cell array candidates can introduce less conformance errors 
than including the former, the former cell arrays were 
missed. 16 cell arrays belong to this case. 

From Table 7, we also observe that CACheck detected 
70 additional smelly homogeneous cell arrays (Added by 
CACheck/SCA) that AmCheck could not detect, and 50 of 
them were validated as true (Added by CACheck/TP). 
This is more than what CACheck missed (33). These 50 cell 
arrays were not decided as cell arrays by AmCheck, as they 
do not follow AmCheck’s cell array extraction heuristics. 
Nevertheless, CACheck’s dependence similarity checking 
works for them and can precisely capture them. This indi-
cates that CACheck’s improved cell array extraction heu-
ristics are effective and could take back AmCheck’s missed 
true homogeneous cell arrays with a precision of 71.4% (50 
/ 70). 

Therefore, we draw the following conclusion: 

CACheck detects 401 (351 inhomogeneous and 50 
homogeneous) additional true smelly cell arrays 
that are missed by AmCheck. If one sets 70% as the 
reliable threshold for coverage-based cell array ex-
traction, CACheck’s precision is 86.8%, higher than 
AmCheck’s precision, 71.9%, and CACheck’s preci-
sion on homogeneous cell array detection is even 
higher, 91.0%. 

6.4 Comparison with other Techniques 

We then compare our CACheck with Excel, UCheck/Di-
mension [4], [8] and CUSTODES [10]. These techniques 
mainly focus on syntactic smells (e.g., division by zero in 
Excel, type inconsistency in a formula [4], [8], and outliers 
in a cell cluster [10]), while CACheck focuses on semantic 
smells that violate computational semantics of concerned 
cell arrays, as mentioned earlier. These techniques adopt 
different mechanisms and may possibly detect smells that 
CACheck cannot (e.g., division by zero in Excel), and may 
also detect some smells that CACheck can as well (e.g., a 

TABLE 7 
Comparisons between CACheck and AmCheck on the EUSES Corpus 

Coverage 
AmCheck CACheck-Homo Common 

SCA 

Missed by CACheck Added by CACheck 

SCA TP SCA TP SCA TP Equal smell SCA TP 

100% 993 822 877 831 836 157 27 8 41 36 
[90%, 100%) 133 88 101 85 97 36 6 1 4 3 
[80%, 90%) 215 90 112 86 110 105 6 1 2 2 
[70%, 80%) 119 50 64 48 63 56 3 3 1 1 
[60%, 70%) 440 69 320 65 317 123 6 4 3 2 
[50%, 60%) 1,293 76 619 75 608 685 4 3 11 3 
[0%, 50%) 974 44 231 45 223 751 2 1 8 3 

Total 4,167 1,239 2,324 1,235 2,254 1,913 54 21 70 50 
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cell suffers from both semantic and syntactic smells). In or-
der to exhibit the differences in the scope of focused smells 
between these techniques and CACheck, our experimental 
comparisons rely on checking the applicability of other 
techniques to detecting those smells detected by CACheck. 
Specially, we investigate how many of CACheck’s 8,139 
validated-as-true smells can also be detected by these tech-
niques. 

6.4.1 Comparison with Excel 

Microsoft Excel has built-in support for detecting syntactic 
smells (inconsistencies) in spreadsheet cells.  However, its 
detection is subject to a few limitations. First, Excel consid-
ers only row-based or column-based ranges of three con-
secutive cells, and tries to detect smells in such ranges. Sec-
ond, it detects only those smells that the middle cell’s for-
mula expression is syntactically different from those of its 
two adjacent cells, while the two adjacent cells’ formula ex-
pressions are identical themselves. Besides, Excel also sup-
ports detecting some well-known calculation errors like di-
vision by zero. In Table 8, the Excel column shows that Ex-
cel can give warnings for only 2.2% (175/8,139) validated-
as-true smelly cells detected by CACheck. Therefore, we 
consider that CACheck’s capability is orthogonal to that of 
Excel’s built-in checking mechanisms. 

6.4.2 Comparison with UCheck/Dimension 

The general idea of UCheck [4] and Dimension[8] is to ex-
ploit information in spreadsheets about labels and headers 
to check the type inconsistency of formulas in spreadsheet 
cells. UCheck uses the concept of unit to represent the type 
of a cell, e.g., cell E4 represents the harvest of apples in June, 
and cell F5 represents the harvest of oranges in July. 
UCheck defines some rules to enforce that one should not 
sum E4 and F5 up. Dimension detects smells when it finds 
that units of measurement are used incorrectly in formulas. 
For example, one should not add two cells with time and 
distance types, respectively, together. 

CACheck has several advantages over UCheck/Dimen-
sion: (1) In the EUSES corpus, CACheck detected 8,139 true 
smelly cells, whereas UCheck/Dimension detected only 
695 true smelly cells as reported in their latest work [9]. (2) 
CACheck can detect and repair smelly cells by suggesting 
intended formula patterns and calculated values, whereas 
UCheck/Dimension can only detect smelly cells without 
repair suggestions. (3) CACheck can detect and repair 
missing formula cells, whereas UCheck/Dimension can-
not. (4) CACheck can detect and repair smelly cells that do 
not violate UCheck/Dimension’s checking rules, e.g., 
smelly cells in Fig. 1(a). (5) CACheck does not rely on un-
reliable header/label information, whereas UCheck/Di-
mension relies much on such information, which may in-
cur problems when the information is missing or incom-
plete. 

The tool we obtained for experiments has implemented 
both UCheck and Dimension. So we conducted experi-
ments by not splitting it into two parts, as their latest work 
[9] did. In Table 8, the UCheck/Dimension column shows 
that UCheck/Dimension detected only 0.2% (20/8,139) 

validated-as-true smelly cells by checking type incon-
sistency. Still, we note that if a type inconsistency does not 
relate to any cell array, CACheck may not be able to detect 
it. Therefore, CACheck’s capability is orthogonal to that of 
UCheck/Dimension, and they can detect different types of 
smells. 

6.4.3 Comparison with CUSTODES 

We also compare our CACheck to another more recent 
technique CUSTODES [10]. CUSTODES uses strong fea-
tures (e.g., the same or similar R1C1 expressions and cell 
references) and weak features (e.g., same labels and font 
colors) to classify cells into different clusters. It then uses 
outlier detection to identify smelly cells in each cluster. For 
example, in Fig. 1(a), CUSTODES can extract {D4, D5, D9} 
as a cell cluster since the three cells share their cell refer-
ences in the R1C1 representation. CUSTODES can also ex-
tract other four cell clusters for this example: {A3:A6}, 
{D2:D3}, {D6:D7} and {E3:E7}. We can observe that CUSTO-
DES’s concept of cell cluster is different from CACheck’s 
concept of cell array. 

Our investigation suggests that CACheck has several 
advantages over CUSTODES: (1) CUSTODES is learning-
based and relies its threshold settings. Although its current 
implementation used default settings for all experiments, 
it did not guarantee for its best performance. It may cause 
false positives or negatives, as we observed in experiments. 
Nevertheless, CACheck does not have this issue. (2) CA-
Check can detect and repair smelly cells by suggesting in-
tended formula patterns and corresponding values, 
whereas CUSTODES can only detect smelly cells without 
repair suggestions. (3) CUSTODES detects a cell cluster 
mainly by the equivalence of formulas contained by its 
cells, while CACheck detects a cell array mainly by the 
consecutive nature of its cells. Therefore, although CUS-
TODES can detect cell clusters that contain non-consecu-
tive cells, it may also cause CUSTODES to miss important 
smelly cells. For example, in Fig. 1(a), cells D2 and D3 con-
tain equivalent formulas in the R1C1 representation, and 
thus CUSTODES extracts them into a cell cluster. However, 
this prevents CUSTODES from further considering D4, D5, 

TABLE 8 
True Smelly Cells Detected by Different Techniques in the 

EUSES corpus 

Category CACheck Excel* 
UCheck/ 

Dimension* 
CUSTODES* 

cs101 22  0 0 5 
database 3,650  57 1 1,317 

filby 0  0 0 0 
financial 1,491  36 4 627 
forms3 8  0 0 3 
grades 1,322  25 10 468 

homework 285  29 0 96 
inventory 981  22 1 434 
jackson 0  0 0 0 

modeling 380  6 4 90 
personal 0  0 0 0 

Total 8,139  175  20  3,040  

* The numbers in the columns show how many of CACheck’s vali-
dated-as-true smelly cells could be detected by the corresponding 
techniques. 
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D6 and D7 into this cell cluster under default threshold set-
tings, and as a result, CUSTODES fails to find that D2 and 
D3 are actually smelly. Nevertheless, CACheck does not 
have this problem for this example. (4) CACheck’s smelly 
cell detection is based on a cell array’s inferred formula 
pattern, while CUSTODES uses outlier detection to iden-
tify smelly cells. This might cause CUSTODES to misjudge 
situations and incur false positives. For example, in Fig. 
1(a), CUSTODES considers {D4, D5, D9} as a cell cluster, 
but CUSTODES cannot figure out which of them are 
smelly since all three cells have different formulas. As a re-
sult, CUSTODES cannot identify the cell D4 as smelly, 
without taking more information under default threshold 
settings. 

To validate our analysis for CUSTODES, we ran CUS-
TODES’s implementation (obtained from its authors) on 
the EUSES corpus, and checked how many of CACheck’s 
validated-as-true smelly cells could be detected by CUS-
TODES. In Table 8, the CUSTODES column gives the com-
parison results. We observe that CUSTODES detected only 
37.4% (3,040/8,139) true smelly cells, which were detected 
by CACheck. Thus, CUSTODES missed a lot that were 
achieved by CACheck, and this suggests that CACheck has 
its unique advantages that CUSTODES cannot compare. 
Still, we note that CUSTODES may also detect certain 
smelly cells in its extracted cell clusters that may not nec-
essarily contain consecutive cells. Therefore, we consider 
that our CACheck’s capability is orthogonal to that of CUS-
TODES. 

6.5 CACheck’s Recall on Smelly Cell Array 
Detection for the EUSES Corpus 

We next measure CACheck’s recall rate on its smelly cell 
array detection for the EUSES corpus. As this measure-
ment involves ground truths for all true smells in spread-
sheets, which requires substantial manual effort, we con-
ducted experiments only on a sampled subset of spread-
sheets from the EUSES corpus. We also compared the re-
call rate between CACheck and AmCheck. 

6.5.1 Experimental Subjects 

Manually building ground truths for all true smells in 
EUSES spreadsheets is extremely difficult, as we are not 
authors of these spreadsheets and we also cannot find their 
corresponding authors. Therefore, we randomly sampled 
50 spreadsheets from those with cell arrays for measuring 
CACheck’s recall rate and comparing it with AmCheck 
(both requiring cell arrays). We manually obtained all 
well-formed and smelly cell arrays in these sampled 
spreadsheets as our ground truths. 

We asked two postgraduate students to help sample 
spreadsheets and identify their contained cell arrays. For 
each randomly sampled spreadsheet from the EUSES cor-
pus, we (authors and the two students) checked each of its 
contained worksheets for cell arrays individually, and then 
discussed our findings together. For a worksheet that does 
not contain any cell array or cannot be understood by any 
one of us, we removed it from consideration. If a spread-
sheet contains at least one worksheet remaining, we kept 
this spreadsheet. Otherwise, it was also removed from con-
sideration. We repeated this sampling process until 50 
spreadsheets were collected. 

Table 9 gives the statistics of the 50 sampled spread-
sheets from the EUSES corpus. We observe that the 50 sam-
pled spreadsheets (SS) are distributed in eight different 
categories, including 128 worksheets (Worksheet) and 
18,036 formulas (Formula). Our manual inspection of these 
spreadsheets identifies a total of 1,136 cell arrays (CA). 
Among them, 252 cell arrays are smelly (SCA). We also 
identified 834 smelly cells (Smelly cell) from them. 

We note that our sampling process might bias those 
spreadsheets that contain cell arrays. In our early experi-
ments on the whole EUSES corpus, we found that CA-
Check detected many false smelly cell arrays in only few 
spreadsheets. For example, CACheck detected 569 (out of 
the total of 1,857) false smelly cell arrays in only two 
spreadsheets. AmCheck detected a similar number of false 
smelly cell arrays in the two spreadsheets. Thus, we need 
to filter out such spreadsheets clearly different from others 

TABLE 9 
Comparisons between CACheck and AmCheck on the Sampled EUSES Spreadsheets 

Category 

Statistics of sampled spreadsheets CACheck AmCheck 

SS 
Work-

sheet 

For-

mula 
CA SCA 

Smelly 

cell 

CA/ 

TP 

SCA/ 

TP 

Smelly 

cell/TP 

CA/ 

TP 

SCA/ 

TP 

Smelly 

cell/TP 

cs101 1 1 40 8 5 10 
9/ 
5 

4/ 
4 

6/ 
6 

8/ 
4 

4/ 
4 

6/ 
6 

database 7 32 3,345 555 104 378 
528/ 
499 

70/ 
65 

215/ 
197 

506/ 
447 

99/ 
60 

208/ 
143 

financial 11 30 1,372 201 74 276 
193/ 
184 

61/ 
57 

213/ 
190 

183/ 
168 

58/ 
48 

187/ 
140 

forms3 1 1 52 12 0 0 
8/ 
8 

0/ 
0 

0/ 
0 

40/ 
4 

36/ 
0 

72/ 
0 

grades 8 21 1,665 119 24 69 
118/ 
115 

22/ 
20 

70/ 
46 

29/ 
29 

8/ 
8 

34/ 
34 

homework 8 15 1,000 88 23 48 
69/ 
57 

18/ 
11 

34/ 
16 

68/ 
48 

25/ 
10 

25/ 
10 

inventory 8 11 9,967 68 15 30 
67/ 
67 

15/ 
15 

30/ 
30 

163/ 
47 

131/ 
15 

146/ 
30 

modeling 6 17 595 85 7 23 
86/ 
85 

8/ 
7 

24/ 
23 

67/ 
67 

7/ 
7 

23/ 
23 

Total 50 128 18,036 1,136 252 834 
1,078/ 
1,020 

198/ 
179 

592/ 
508 

1,064/ 
814 

368/ 
152 

701/ 
386 
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in sampled spreadsheets. Our sampling process used 
“having cell arrays” as a criterion, since the two spread-
sheets do not contain any cell array. Still, our sampling 
process also filtered out other spreadsheets that contain no 
cell array. According to our understanding, these spread-
sheets likely fall in the category of low coverage, since 
“containing no cell array” and “detected false (smelly) cell 
array” are related. Thus, our sampling process might cause 
CACheck and AmCheck to detect less smelly cell arrays 
from spreadsheets with coverage in range [0%, 70%), since 
most of them should have been filtered out. Nevertheless, 
for coverage in other ranges like 100%, [90%, 100%), [80%, 
90%) and [70%, 80%), CACheck’s detected smelly cell ar-
rays are distributed as (133, 14, 18, 9) and (1,184, 152, 164, 
97), and AmCheck’s detected smelly cell arrays are distrib-
uted as (139, 7, 36, 10) and (993, 133, 215, 119), respectively, 
for the 50 sampled spreadsheets and all EUSES spread-
sheets. We observe that the two pairs of distribution data 
are comparable in percentage. As suggested earlier, a cov-
erage of 70% can be a reliable threshold for effective smelly 
cell array detection in practice. Thus, our sampling process 
is still reasonable and can reflect CACheck’s and Am-
Check’s performance and comparison in practice. 

6.5.2 Smelly Cell Arrays 

Table 9 also compares the detection results for CACheck 
and AmCheck on the sampled spreadsheets. For cell array 
extraction, the precision for CACheck and AmCheck is 94.6% 
(1,020/1,078) and 76.5% (814/1,064), respectively (CA/TP). 
For smelly cell array detection, the precision for CACheck 
and AmCheck is 90.4% (179/198) and 41.3% (152/368), re-
spectively (SCA/TP). For smelly cell detection, the preci-
sion for CACheck and AmCheck is 85.8% (508/592) and 
55.1% (386/701), respectively (Smelly cell/TP). We ob-
serve that CACheck detected more cell arrays and smelly 
cell arrays with a higher precision. 

In this group of experiments, recall rate is our main fo-
cus. For cell array extraction, the recall rate for CACheck 
and AmCheck is 89.8% (1,020/1,136) and 71.7% 
(814/1,136), respectively. For smelly cell array detection, 
the recall rate for CACheck and AmCheck is 71.0% 
(179/252) and 60.3% (152/252), respectively. For smelly 
cell detection, the recall rate for CACheck and AmCheck is 
60.9% (508/834) and 46.3% (386/834), respectively (Smelly 
cell). We observe that CACheck has largely improved the 
recall rate as compared to AmCheck, i.e., greatly reducing 
missed smelly cell arrays and smelly cells. 

6.5.3 False Negatives 

We then further analyze missed cell arrays (false negatives) 
on the 50 sampled spreadsheets for CACheck and Am-
Check. 

Table 10 lists missed cell arrays for CACheck and Am-
Check, according to our ground truths. CACheck missed 
10.2% ((1,136 – 1,020) / 1,136) cell arrays, whereas Am-
Check missed 28.3% ((1,136 - 814) / 1,136) cell arrays. This 
big difference has been caused by AmCheck being unable 
to extract inhomogeneous cell arrays, as mentioned earlier. 

Table 10 also lists four common reasons (Common 
causes) explaining why false negatives occurred to both 
CACheck and AmCheck: (1) 4.1% (47/1,136) cell arrays 
(i.e., 18.7% (47/252) smelly cell arrays) contain plain values 
only (Plain value). It is difficult to figure out whether the 
concerned cells with only plain values contain the same 
formula pattern or not, since there is no clue on how these 
values are calculated. One example is the cell array [B5:E5] 
in Fig. 8(a). (2) 4.2% (48/1,136) cell arrays contain empty 
cells, string cells, or error cells (Wrong cell). Both CACheck 
and AmCheck split such cell arrays into multiple smaller 
ones, as separated by such cells. One example is the cell 
array [B5:E5] in Fig. 8(b). (3) 0.5% (6/1,136) cell arrays con-
tain empty lines inside for layout purposes. Similarly, CA-
Check and AmCheck split them into multiple smaller ones. 

 
(a) Cell array [B5:E5] with plain values only. 

 

(b) Cell array [B5:E5] with an empty cell. 

 

(c) Cell array [B5:H5] contains empty lines inside. 

Fig. 8. Simplified spreadsheet examples with missed cell arrays, ex-
tracted from the EUSES corpus. 

TABLE 10 
Missed Cell Arrays on the Sampled EUSES Spreadsheets 

Category CA 

Common causes CACheck AmCheck 

Plain 
value 

Wrong 
cell 

Empty 
line 

Func Detected 
Wrong 
range 

Detected 
Wrong 
range 

Inho (Com-
mon) 

cs101 8 1 2 0 0 5 0 4 0 1(0) 
database 555 17 31 6 0 499 2 447 25 33(4) 
financial 201 14 3 0 0 184 0 168 0 16(0) 
forms3 12 0 0 0 4 8 0 4 0 4(0) 
grades 119 3 0 0 0 115 1 29 0 87(0) 

homework 88 12 12 0 1 57 6 48 0 17(2) 
inventory 68 0 0 0 1 67 0 47 0 21(1) 
modeling 85 0 0 0 0 85 0 67 0 18(0) 

Total 1,136 47 48 6 6 1,020 9 814 25 197(7) 
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One example is the cell array [B5:H5] in Fig. 8(c). (4) 0.5% 
(6/1,136) cell arrays contain complex Excel functions 
(Func), such as STDEV and SUMPRODUCT, which the 
current CACheck and AmCheck implementations do not 
support and need extension. Besides the four common rea-
sons, CACheck and AmCheck may extract larger or 
smaller ranges of consecutive cells rather than expected, 
leading to missed cell arrays. Table 10 also lists the number 
of such missed cell arrays (Wrong range). CACheck and 
AmCheck missed 0.8% (9/1,136) and 2.2% (25/1,136) such 
cells arrays, respectively. 

Finally, we found that among those cell arrays missed 
by AmCheck, 61.2% (197/322) of them are inhomogeneous 
ones. This part contributes to a large portion of AmCheck’s 
low recall rate, as compared to CACheck, which was de-
signed to be able to extract inhomogeneous cell arrays. 

Therefore, we draw the following conclusion: 

Compared with AmCheck, CACheck largely im-
proves the recall rate of cell array extraction (from 
71.7% to 89.8%), and that of smelly cell array detec-
tion (from 60.3% to 71.0%). 

6.6 Cell Array Detection for the Enron Corpus 

The previous experiments and comparisons show that our 
CACheck performs much better than AmCheck, no matter 
on the precision or recall rate, with respect to the EUSES 
corpus. In the following, we extend our evaluation on CA-
Check to another even huge Enron corpus. We also com-
pare CACheck’s evaluation results to those on the EUSES 
corpus. 

6.6.1 Cell Array Detection 

Table 11 compares CACheck’s detected cell arrays on the 
EUSES and Enron corpora. It studies detected cell arrays 
(Cell array) and detected smelly cell arrays (Smelly cell ar-
ray). It lists the number of cell arrays (CA), number of 
smelly cell arrays (SCA), and number of cell arrays suffer-
ing from missing formula smells (MISS), inconsistent for-
mula smells (INCO), and both smells (Both). Table 11 also 
lists the numbers of homogeneous (Homo and SHomo) 

and inhomogeneous (Inho and SInho) cell arrays. We ob-
serve that the percentage of inhomogeneous cell arrays 
against all cell arrays is 23.7% and 24.6% (Inho/CA), re-
spectively, for the EUSES and Enron corpora. They are 
close to each other. Besides, the percentage of smelly cell 
arrays is 15.5% and 12.9% (SCA/CA), respectively, for the 
two corpora. They are also close and comparable. 

Therefore, we draw the following conclusion: 

Smelly cell arrays are also commonly detected in 
the Enron corpus. The EUSES and Enron corpora 
have comparable percentages on inhomogeneous 
cell arrays and smelly cell arrays. 

6.6.2 Detection Precision 

We then investigate CACheck’s precision on smelly cell ar-
ray detection for the Enron corpus. 

Following our earlier experimental process for the pre-
cision study on the EUSES corpus (Section 6.2), we parti-
tion CACheck’s detected smelly cell arrays into seven cat-
egories according to their levels of coverage (i.e., how 
many cells in percentage their inferred 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 can cover in 

these arrays). Table 12 lists the number of smelly cell arrays 
(SCA) for each category. Since the total number (58,514) is 
huge and much more than that (3,443) for the EUSES cor-
pus, it is almost impossible to validate all of them. So we 
adopted another soft way by sampling and estimation. We 
randomly sampled 100 smelly cell arrays (Sample/SCA) 
for each category and manually validated them. This ac-
counts for 700 smelly cell arrays, which occupy 1.2% 
(700/58,514) of all detected cell arrays. For each category, 
Table 12 lists the number of validated-as-true smelly cell 
arrays (Sample/TP). 

Fig. 9 compares CACheck’s precision on smelly cell ar-
ray detection for different levels of coverage on the Enron 
and EUSES corpora. We observe that the two groups of 

TABLE 11 
Comparisons of CACheck’s Detected Cell Arrays on the EUSES and Enron Corpora 

Corpus 
Cell array Smelly cell array 

CA Homo Inho Inho/CA SCA SHomo SInho SCA/CA MISS INCO Both 

EUSES 22,177 16,928 5,249 23.7% 3,443 2,324 1,119 15.5% 1,849 1,699 105 
Enron 455,159 342,992 112,167 24.6% 58,514 28,815 29,699 12.9% 43,343 16,993 1,822 

Total 477,336 359,920 117,416 24.6% 61,957 31,139 30,818 13.0% 45,192 18,692 1,927 

 

TABLE 12 
Detected and Validated Smelly Cell Arrays on the Enron 

Corpus 

Coverage SCA 
Sample 

Estimated TP 
SCA TP 

100% 21,692 100 91 19,740 
[90%, 100%) 3,771 100 88 3,318 
[80%, 90%) 2,047 100 66 1,351 
[70%, 80%) 1,521 100 60 913 
[60%, 70%) 3,135 100 20 627 
[50%, 60%) 16,107 100 3 483 
[0%, 50%) 10,241 100 12 1,229 

Total 58,514 700 340 27,661 

 

 
Fig. 9. Precision comparison on smelly cell array detection for dif-
ferent levels of coverage on the EUSES and Enron corpora (hori-
zontal axis: coverage category, vertical axis: detection precision). 
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precision values are close to each other. Based on valida-
tion results on sampled smelly cell arrays, we estimate that 
there are a total of 27,661 smelly cell arrays (Estimated TP 
in Table 12) in the Enron corpus. If one considers 70% as 
the reliable threshold for coverage-based cell array extrac-
tion, CACheck’s precision on smelly cell array detection 
for the Enron corpus is 87.2% (25,322/29,031), while the 
precision for the EUSES corpus is 86.8%, as earlier meas-
ured. This indicates that CACheck has a comparable preci-
sion on smelly cell array detection for the Enron and 
EUSES corpora. 

6.6.3 Detection Recall 

We next investigate CACheck’s recall rate on smelly cell 
array detection for the Enron corpus. 

Similarly, we followed our earlier experimental process 
for the recall study on the EUSES corpus (Section 6.5), and 
randomly sampled 50 spreadsheets from the Enron corpus. 
However, we found many similar spreadsheets and work-
sheets in the Enron corpus. This was caused by the fact that 
the Enron corpus contains many series of different ver-
sions of spreadsheets or worksheets, which were extracted 
from email correspondences [18], [26]. Thus, we only se-
lected one spreadsheet or worksheet if multiple similar 
ones were found. We believe that this treatment could 
make our sampled spreadsheets more representative for 
the Enron corpus. 

Table 13 gives the statistics of the sampled spreadsheets 
from the Enron corpus (columns 27 for row Enron). Our 
sampled 50 Enron spreadsheets (SS) contained 102 work-
sheets (Worksheet) and 27,547 formulas (Formula). Fol-
lowing our earlier inspection process for the EUSES corpus, 
our manual inspection of these Enron spreadsheets identi-
fied a total of 1,175 cell arrays (CA). Among them, 128 cell 
arrays are smelly (SCA). We also identified 483 smelly cells 
(Smelly cell) from smelly cell arrays. 

Table 13 also compares CACheck’s recall rates on the 
EUSES and Enron corpora (columns 810). We observe 
that CACheck’s recall rates for cell array detection (89.8% 
vs. 90.0%; CA), smelly cell array detection (71.0% vs. 72.7%; 
SCA) and smelly cell detection (60.9% vs. 66.5%; Smelly 
cell) are close to each other for the EUSES and Enron cor-
pora. This suggests that CACheck has a comparable recall 
rate on smelly cell array detection for the EUSES and Enron 
corpora. 

Therefore, we draw the following conclusion: 

CACheck has a comparable precision (86.8% vs. 
87.2%) and recall rate (71.0% vs. 72.7%) on smelly 
cell array detection for the EUSES and Enron cor-
pora. 

6.7 Research Questions Revisited 

Finally, we revisit our research questions RQ47: 

RQ4 (Precision): Can CACheck detect and repair smelly cell 
arrays precisely? 

 One may use the coverage of 70% as a reliable threshold 

for CACheck’s effective smelly cell array detection, and 

this corresponds to a satisfactory precision of 86.8%. 
 CACheck is able to repair 1,540 (97.1%) of its 1,586 de-

tected true smelly cell arrays. 

RQ5 (Recall): Can CACheck detect smelly cell arrays with a 
high recall rate? 
 CACheck’s recall rate for cell array extraction and 

smelly cell array detection is 89.8% and 71.0%, respec-
tively, which is both promising. 

RQ6 (Comparison): How is CACheck compared with existing 
techniques, e.g., AmCheck, Excel, UCheck/Dimension and CUS-
TODES? 
 CACheck detects 401 (out of a total of 1,586) additional 

true smelly cell arrays that are missed by AmCheck. 
 If one uses the coverage of 70% as a reliable threshold 

for smelly cell array detection, the precision for CA-
Check and AmCheck is 86.8% and 71.9%, respectively. 

 The recall rate for CACheck and AmCheck on smelly 
cell array detection is 71.0% vs. 60.3%, respectively. 

 Excel, UCheck/Dimension and CUSTODES can detect 
only 2.2%, 0.2% and 37.4% (out of 8,139) CACheck’s 
validated-as-true smelly cells, respectively. 

RQ7 (Consistency): Can CACheck obtain consistent results on 
different spreadsheet corpora, such as the EUSES and Enron cor-
pora? 
 The EUSES and Enron corpora have comparable per-

centages on inhomogeneous cell arrays and smelly cell 
arrays against all detected cell arrays. 

 The precision of smelly cell array detection on the 
EUSES and Enron corpora is comparable (86.8% vs. 
87.2%). 

 The recall rate of smelly cell array detection on the 
EUSES and Enron corpora is also comparable (71.0% vs. 
72.7%). 

6.8 Threats to Validity 

While our experimental evaluation shows that CACheck is 
promising for detecting and repairing ambiguous compu-
tation smells in real-life spreadsheets, we discuss some po-
tential threats in our evaluation. 

Representativeness of studied spreadsheets. To general-
ize the conclusions made in our experimental evaluation, 
the studied spreadsheets as experimental subjects should 
be representative. We selected the EUSES and Enron cor-
pora, two well-known and large spreadsheet corpora, 
which have been well recognized and widely used for 
spreadsheet-related research studies [9], [25], [31], [53]. 

TABLE 13 
Comparisons of CACheck’s Recall Rate on the Sampled EUSES and Enron Spreadsheets 

Corpus 
Statistics of sampled spreadsheets CACheck (recall rate) 

SS Worksheet Formula CA SCA Smelly cell CA SCA Smelly cell 

EUSES 50 128 18,036 1,136 252 834 1,020 (89.8%) 179 (71.0%) 508 (60.9%) 
Enron 50 102 27,547 1,175 128 483 1,058 (90.0%) 93 (72.7%) 321 (66.5%) 
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Smelly cell array validation. Our experimental evalua-
tion on CACheck’s precision on smelly cell array detection, 
as well as its comparisons to existing work, relies on the 
validation of its detected smelly arrays. Due to the fact of 
lack of responsible authors, we manually validated these 
detected smelly arrays in their concerned spreadsheets. In 
order to reduce possible mistakes we could introduce, we 
adopted some helping strategies: (1) Some tables or work-
sheets are similar to each other, and they help us double 
check our validation results. (2) We tried to understand the 
semantics of cell arrays according to their related labels, ra-
ther than treating cell array extraction and smelly cell array 
detection simply as a syntactic process. (3) Some cells in 
smelly cell arrays, although containing unusual plain val-
ues (e.g., 12,498), could be successfully recovered by our 
inferred formula pattern. Such discovered knowledge 
(missing formula) helped us double check related cell ar-
rays and their intended formula patterns. 

Spreadsheet selection for the recall study. The recall 
study requires ground truths for all studied spreadsheets. 
To reduce our efforts, we sampled 50 spreadsheets from 
the EUSES corpus, and manually identified their contained 
cell arrays and smelly ones. Our sampling was random, 
but focusing on those spreadsheets that we can fully un-
derstand (i.e., those spreadsheets any one of us could not 
understand or we do not agree on with each other were 
discarded). Similar treatments were also applied to the re-
call study on the Enron corpus. Still, as mentioned earlier, 
our sampled spreadsheets have comparable distributions 
of smelly cell arrays with respect to the whole EUSES cor-
pus. We consider that this should alleviate possible threats 
in our sampling process. If one, who has different domain 
knowledge, samples spreadsheets from the EUSES corpus 
in a different way, the corresponding recall rate might be 
different (not large, we believe). We note that our experi-
mental process can still be similarly applied and thus reus-
able. 

7 RELATED WORK 

In this section, we present and discuss related work in re-
cent years. We focus on those pieces of work that concern 
spreadsheet quality (e.g., spreadsheet errors, auditing, er-
ror detection, debugging and testing), and techniques re-
lated to our CACheck approach (e.g., program synthesis 
and semantic bug analysis). 

Spreadsheet errors. Spreadsheet errors are common [44], 
[45], [46]. They can cause serious financial loss [54]. The 
ambiguous computation smells studied in this article may 
not cause errors immediately, but would degrade spread-
sheets’ quality gradually and boost potential errors. 
Spreadsheets suffering from ambiguous computation 
smells contain unclear or even conflicting computational 
semantics, which make them difficult to maintain in a cor-
rect way. 

Spreadsheet auditing. Auditing is a way to maintain for 
spreadsheets’ quality. To facilitate auditing, Clermont et al. 
[11], [12], [41] proposed high-level structures (logical areas) 
by aggregating cells to help end users understand large 

spreadsheets, such as copy equivalence (i.e., two cells’ for-
mulas are identical), logical equivalence (i.e., two cells’ for-
mulas differ only in constant values and absolute refer-
ences), structural equivalence (i.e., two cells’ formulas differ 
in constant values and absolute/ relative references, and 
the same operators or functions are applied in the same or-
der). These logical areas assist end users to better under-
stand conceptual models behind spreadsheets, and to find 
smelly cells in spreadsheets more easily. Thus, some com-
mercial spreadsheet tools (e.g., OAK [57], EXChecker [58], 
Spreadsheet Detective [60] and Spreadsheet Auditor [61]) 
have adopted this idea. The concept of cell array proposed 
in this article is similar to copy equivalence. However, sev-
eral differences exist: (1) The auditing technique visualizes 
logical areas in spreadsheets, and asks end users to spot 
dangerous parts in them, while CACheck spots smelly 
cells automatically. (2) The auditing technique requires 
that, for two cells in a certain kind of logical area, their for-
mulas should have the same operators and functions ap-
plied in the same order. This would exclude cell arrays, 
like [D2:D7] and [B9:C9] in Fig. 1(a), from consideration. (3) 
CACheck can aggregate smelly cells that do not satisfy re-
quirements of logical areas, such as cells with inconsistent 
or even missing formulas, while the auditing technique 
cannot. (4) CACheck can repair smelly cells by suggesting 
their intended formula patterns, while the auditing tech-
nique does not support this. (5) CACheck can rank smelly 
cell arrays according to their different levels of coverage, 
while the auditing technique needs end users to audit cells 
inside or adjacent to logical areas individually. 

Spreadsheet error detection and debugging. Various 
techniques have been proposed to detect and debug errors 
in spreadsheets. A recent survey [35] provides in-depth  re-
views of these techniques. It summarizes many main 
spreadsheet error detection techniques. For example, 
UCheck [4] and dimension inference [8] use a type system 
to check unit and dimension errors, respectively. They fo-
cus on whether units can be combined correctly into one 
cell. Smellsheet Detective [14], [15] detects statistical smells, 
type smells, content smells and functional dependence 
smells. Hermans et al. proposed visualizing spreadsheets 
by dataflow graphs [28], and detected inter-worksheet 
smells in these graphs [30]. They also proposed detecting 
smells from data clones [31], spreadsheet formulas [29] and 
lookup functions [25]. Commercial spreadsheet tools (e.g., 
Spreadsheet Professional [56], OAK [57], EXChecker [58] 
and PerfectXL [59]) can detect various syntactic errors (e.g., 
referencing empty cells, division by zero, and so on). These 
pieces of work focus more or less on syntactic errors, while 
our CACheck focuses on missing formula and inconsistent 
formula smells, which concern semantic errors. Our CA-
Check also detects conformance errors caused by ambigu-
ous computation smells. Its scope is thus orthogonal to ex-
isting work. Besides, according to the spreadsheet research 
survey [35], due to the structure of spreadsheets (e.g., com-
putations are hidden behind the cells), locating spread-
sheet errors is typically a hard task. Thus,  many debug-
ging techniques have been developed for spreadsheets, 
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e.g., slicing-based debugging [47], spectrum-based fault lo-
calization [33], [48], constraint-based fault localization [34], 
repair-based debugging techniques [3], and so on. These 
debugging techniques usually depend on users’ expecta-
tions or judgments about outputs of certain cells. Therefore, 
our CACheck differs from these debugging techniques in 
that it does not rely on such expectations or judgments to 
work. 

Spreadsheet modeling and testing. Constructing rigor-
ous models (explicit abstractions) for spreadsheets [2], [13], 
[27] can help end users reduce chances of introducing am-
biguous computation smells. Yet, constructing such mod-
els from spreadsheets can be challenging. Its effectiveness 
depends largely on the correctness of underlying spread-
sheets, and ambiguous computation smells can reduce its 
precision and thus effectiveness. Instead of introducing an 
explicit abstraction, XanaSheet [32] employs origin track-
ing techniques to maintain a live connection between the 
source and destination of copy-paste actions. Whenever a 
copied formula is edited, the modification can be trans-
formed and replayed on the original and all other copies. 
Thus, inconsistent modifications of copy-pasted cells could 
be avoided. Our CACheck also concerns this problem and 
addresses it by using both heuristics and formula synthesis. 
Spreadsheet testing (possibly based on models) [1], [5], [20], 
[37] is a related topic, and its error detection capabilities 
need to rely on test oracles provided by users (e.g., test for-
mulas extracted from reference [24] or manual confirma-
tion directly from users). Our CACheck extracts partial 
computational semantics from cell contents and recovers 
intended formula patterns. Thus, CACheck does not re-
quire explicit test oracles to work. Ambiguous computa-
tion smells may also affect spreadsheet testing, and CA-
Check assists spreadsheet testing by detecting and repair-
ing smelly cells. 

Program synthesis. Our CACheck is based on compo-
nent-based program synthesis [22], [36]. Typically, the pro-
gram synthesis technique [22], [36] can automatically gen-
erate loop-free programs based on a user-provided input-
output oracle (e.g., input-output pairs [36] or specifications 
[22]) and components. Regarding our problem (automati-
cally detecting smells in smelly cell arrays without user in-
tervention), the input-output oracle and components are 
unavailable for synthesizing a smelly cell array’s formula 
pattern. So the original program synthesis technique [22], 
[36] cannot be directly used by CACheck. Thus, CACheck 
needs to extract such components and input-output oracle 
(i.e., input-output pairs and specifications) from smelly cell 
arrays, and alleviates their noises when adapting the pro-
gram synthesis technique [22], [36] for spreadsheet smell 
detection. Program synthesis has also been used for other 
purposes in the spreadsheet research, e.g., string transfor-
mation from examples [21], table transformation [23], and 
number transformation [50]. In this article, we use pro-
gram synthesis in a novel way to detect and repair ambig-
uous computation smells in spreadsheets, by recovering 
computational semantics aligned to the actual computa-
tions in smelly cell arrays. 

Semantic bugs. Similar to smells in spreadsheets, se-
mantic bugs are also a dominant cause for software failures 
[39], [51]. Most semantic bugs require domain knowledge 
to understand, detect and repair [39]. MUVI [40] and De-
fUse [45] can detect semantic bugs related to inconsistent 
updates to correlated multi-variables and dataflow inten-
tions, respectively, in software. They rely on invariant min-
ing and detection techniques. Our CACheck uses a differ-
ent approach by inferring intended computational seman-
tics by heuristics and program synthesis techniques. 

8 CONCLUSION 

In this article, we study the problem of extracting cell ar-
rays and detecting ambiguous computation smells from 
spreadsheets. Such smells are caused by end users’ ad hoc 
modifications to spreadsheet cells that should stick to cer-
tain computational semantics. We propose a novel ap-
proach, CACheck, to detect and repair ambiguous compu-
tation smells by inferring intended formula patterns for 
smelly cell arrays in spreadsheets. This also helps detect 
challenging conformance errors in spreadsheets, which 
would otherwise be left unnoticed. Our experimental eval-
uation based on two large-scale spreadsheet corpora re-
veals that smelly cell arrays are common, and CACheck is 
capable of detecting smelly cells effectively with a high 
precision and recall rate. 

In future, we plan to study more spreadsheets and iden-
tify other types of ambiguous computation smells. For ex-
ample, in our recall study (Section 6.5.3), we found that a 
non-negligible proportion (about 18.7%) of true smelly cell 
arrays have only plain values (i.e., no formula at all for all 
concerned cells). Our current CACheck is still unable to de-
tect such smelly cell arrays and synthesize formula pat-
terns for them. We plan to further investigate them and 
come up with an approach to detecting them and inferring 
their intended formula patterns. Besides, CACheck ex-
tracts cell arrays that contain only consecutive cells, and 
this may prevent it from detecting challenging smelly cell 
arrays that contain non-consecutive cells. We are also in-
terested in extending CACheck for such cases. 
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