
Expandable Group Identification in Spreadsheets
Wensheng Dou

University of Chinese Academy of Sciences
State Key Lab of Computer Science,

Institute of Software, Chinese Academy of
Sciences, China

wsdou@otcaix.iscas.ac.cn

Shi Han
Microsoft Research, China

shihan@microsoft.com

Liang Xu
University of Chinese Academy of Sciences

State Key Lab of Computer Science,
Institute of Software, Chinese Academy of

Sciences, China
xuliang12@otcaix.iscas.ac.cn

 Dongmei Zhang

Microsoft Research, China
dongmeiz@microsoft.com

Jun Wei
University of Chinese Academy of Sciences

State Key Lab of Computer Science,
Institute of Software, Chinese Academy of

Sciences, China
wj@otcaix.iscas.ac.cn

ABSTRACT
Spreadsheets are widely used in various business tasks. Spread-
sheet users may put similar data and computations by repeating a
block of cells (a unit) in their spreadsheets. We name the unit and
all its expanding ones as an expandable group. All units in an ex-
pandable group share the same or similar formats and semantics.
As a data storage and management tool, expandable groups repre-
sent the fundamental structure in spreadsheets. However, existing
spreadsheet systems do not recognize any expandable groups.
Therefore, other spreadsheet analysis tools, e.g., data integration
and fault detection, cannot utilize this structure of expandable
groups to perform precise analysis.

In this paper, we propose ExpCheck to automatically extract ex-
pandable groups in spreadsheets. We observe that continuous
units that share the similar formats and semantics are likely to be
an expandable group. Inspired by this, we inspect the format of
each cell and its corresponding semantics, and further classify
them into expandable groups according to their similarity. We
evaluate ExpCheck on 120 spreadsheets randomly sampled from
the EUSES and VEnron corpora. The experimental results show
that ExpCheck is effective. ExpCheck successfully detect expanda-
ble groups with F1-measure of 73.1%, significantly outperforming
the state-of-the-art techniques (F1-measure of 13.3%).

CCS CONCEPTS
• Applied computing → Spreadsheets • Software and its engi-
neering → Software testing and debugging

KEYWORDS
Spreadsheet, expandable group

ACM Reference format:

Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. 2018.
Expandable Group Identification in Spreadsheets. In Proceedings of the 2018
33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE’18), September 3-7, 2018, Montpellier, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3238147.3238222

1 INTRODUCTION
Spreadsheets have been widely used for various business tasks, in-
cluding data management, decision support, financial reporting,
and so on. It was estimated that there were over 55 million users
in the United State working with spreadsheets in 2012 [28] and 50-
80% of businesses use spreadsheets [30].

In spreadsheet systems, data and computations are organized
into a two-dimensional structure. Spreadsheet systems usually
provide great flexibility in editing spreadsheets, and various
spreadsheet structures may be created by spreadsheet users. Fur-
thermore, many spreadsheets are designed to be interpreted by hu-
man, and have flexible structures. Thus, these spreadsheets often
cannot be consumed by other spreadsheet analysis tools, e.g., com-
plex data analysis, visualization, and fault detection [27]. For ex-
ample, Power BI [31] mainly works on data with clearly defined
schemas, such as database tables. However, spreadsheet data are
often in more flexible forms without a schema specified. Figure 1
shows a typical spreadsheet excerpt extracted from the VEnron
corpus [13]. This spreadsheet cannot be simply treated as relational
data. Thus, it cannot be directly consumed by relational-data-based
analysis tools, unless we identify its structure, such as the title hi-
erarchy (rows 1-3) and repeating structure (e.g., cells [A2:D31] and
[E2:H31], cells [A4:L4] and [A5:L5]), and then transform the data
into the canonical form of relational data. Therefore, it is important
to understand the structure of spreadsheets.

In spreadsheets, users usually put similar data and computa-
tions by repeating a block of cells (a unit). For example, in Figure 1,
each of rows 4-27 represents the data for an hour. So, each of these
rows forms a unit, while the units in rows 5-27 repeat the same
structure of the unit in row 4. On the other hand, cells [A2:D31]
form a unit and represent the data for New York. Similarly, cells
[E2:H31] form another unit and represent the data for Chicago.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ASE '18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09…$15.00
https://doi.org/10.1145/3238147.3238222

ASE’18, September 3-7, 2018, Montpellier, France Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei

These two units are repeated. We name a unit and all its repeating
units as an expandable group. Expandable groups are the key and
fundamental structure to organize and manage data and computa-
tions in spreadsheets. The structure of expandable groups can help
transform non-relational data in spreadsheets into relational data,
as well as detect spreadsheet faults in expandable groups (more de-
tails in Section 2). However, once a spreadsheet is created by users,
there is not any clue stored in the spreadsheet to indicate which
cells can form an expandable group.

In an expandable group, e.g., [A4:L4]-[A27:L27] in Figure 1, all
units, share the same / similar formats and semantics at their cor-
responding cells. For example, the corresponding cells in units
[A4:L4] and [A5:L5] share the similar formats and semantics, alt-
hough their contents look different. (1) Some corresponding cells
(e.g., A4 and A5) are both index numbers; some corresponding cells
(e.g., B4 and B5) are both input cells; and some corresponding cells
(e.g., L4 and L5) prescribe the same formula pattern (as shown in
Figure 2). (2) All corresponding cells have the same or similar head-
ers. For example, cell A4 has the first-level header “Hour” and the
second-level header “New York”, and cell E4 has the first-level
header “Hour” and the second-level header “Chicago”. Although
the second-level headers of cells A4 and E4 are different, they have
the similar semantics, since “New York” and “Chicago” are two cit-
ies in US and belong to the same category. (3) All corresponding
cells share the similar formats. For example, cells G4 and G5 have
the “$” symbol that represents US dollar.

In this paper, we focus on automatically identifying expandable
groups in spreadsheets. The key challenge is about how to deter-
mine which cells can form expandable groups. Our tool, ExpCheck,
works based on two observations: (1) The corresponding cells in
each unit of an expandable group usually share common features,
e.g., cell type, data format, and formula pattern. (2) For the corre-
sponding rows / columns in each unit of an expandable group, their
headers share the same or similar semantics. For the first observa-
tion, we extract various format features, and compare them. For
the second observation, we extract headers of a table, and compare
their semantic similarity based on Word2Vec [26].

We implement ExpCheck as a prototype tool and evaluate its
performance using the EUSES [16] and VEnron [13] corpora,

which are two of the most widely-used corpora for spreadsheet re-
search. The experimental results show that ExpCheck can detect
expandable groups effectively, with a precision of 69.3%, recall of
77.3%, and F1-measure of 73.1%. As a comparison, Abraham’s
spreadsheet template inference approach [2], which also infers ex-
pandable groups, can only detect expandable groups with a preci-
sion of 25.7%, recall of 8.9%, and F1-measure of 13.3%. This result
shows that ExpCheck significantly outperforms existing ap-
proaches by 59.8% in F1-measure. Such a big improvement is criti-
cal to effectively analyze spreadsheet structure.

ExpCheck substantially differs from expandable group analysis
in Abraham’s spreadsheet template inference approach [2]. Their
work considers two units as expandable only when their corre-
sponding cells share the same formula patterns and types. Thus, it
may miss some expandable groups when they do not have formu-
las or detect incomplete expandable groups when some formulas
are missing. For example, their work considers that units [A4:L4]-
[A24:L24] form an expandable group due to cells L4:L24 share the
same formula pattern in the R1C1 style (shown in Figure 2). Thus,
three units [A25:L25]-[A27:L27] are not considered as parts of an
expandable group. Instead, ExpCheck detects expandable groups
by inspecting the format and semantic similarity among units. As
such, ExpCheck can detect the expandable group [A4:L4]-
[A27:L27]. ExpCheck also differs from other spreadsheet structure
analysis tools [8][10][11][12] in the types of detected structures.
Unlike ExpCheck, AmCheck/CACheck [11][12] and CUSTODES [8]
aggregate cells into clusters based on their formula similarity in a
row or column. For example, AmCheck/CACheck aggregate cells
[L4:L27] into a cluster, and CUSTODES can further aggregates cells
B31, D31, F31, H31, J31, L31 into a cluster. TableCheck [10] lever-
ages the header information to detect table clones, in which corre-
sponding cells are labelled by the same headers. However, all these
approaches cannot present the repeating structure of expandable
groups. Thus, they cannot work on expandable group detection.

In summary, this paper makes the following contributions.
• We propose a novel approach, ExpCheck, to detect

expandable groups by inspecting the format and semantic
similarity among a block of cells.

• We implement and evaluate ExpCheck on 120 real-life
spreadsheets, randomly sampled from the EUSES and VEnron
corpora. The experimental results show that ExpCheck can
detect expandable groups effectively, and significantly out-
performs the state-of-the-art techniques.

2 MOTIVATION AND OVERVIEW
In this section, we explain the key concept of expandable groups,
and discuss the importance of expandable group identification. Fi-
nally, we briefly introduce how to detect expandable groups.

2.1 Expandable Groups
The concept of expandable groups was first introduced as the core
component in ViSTL [15], which is a formal language to model
spreadsheet tables. To ease presentation, we use the spreadsheet
excerpt in Figure 1 as an illustrative example, which is extracted
from the VEnron corpus [13] and performs the balancing analysis

Figure 1: A motivating spreadsheet excerpt extracted from
VEnron [13]. In this excerpt, three units [A2:D31], [E2:H31]
and [I2:L31] form an expandable group, and 24 units
[A4:L4]-[A27:L27] form an expandable group. Note that,
rows 9-22 are hidden due to space limitation.

Expandable Group Identification in Spreadsheets ASE’18, September 3-7, 2018, Montpellier, France

for three cities, i.e., New York, Chicago and Atlanta. Formally, we
describe expandable groups as follows.

Definition 1: An expandable group is a triple {orient, unit, end},
where, orient is the direction in which the group expands, unit is a
rectangular area of cells and represents the first block of the group,
and end is the boundary of the group. It means that, unit is ex-
panded along the orient to the end. In an expandable group, the
corresponding cells among all its units prescribe common formats
and semantics.

Consider the spreadsheet excerpt in Figure 1. Cells [A2:D31] as
the first unit, horizontally expand to column L, and form an ex-
pandable group {hex, [A2:D31], L}, in which hex represents that this
group is horizontally expandable, and the second element [A2:D31]
is the first unit of the expandable group, and L is the last column
of the expandable group. Note that, although unit [A2:D31] repre-
sents the data for New York and unit [E2:H31] represents the data
for Chicago, they only differ in the city names, and their corre-
sponding cells share the same / similar format and semantics: (1)
Formula cells in the corresponding cells among units often have
the same formula pattern in the R1C1 style1, e.g., cells B29:B31 and
F29:F31 in Figure 2. (2) The corresponding cells among units often
have the same format, e.g., cells C6:C8 and G6:G8 in Figure 1 use
the same data format, which starts with a symbol “$”.

Based on the expanding direction, expandable groups can be
further classified into two categories: vex group and hex group.

vex group (Vertically expandable group): A vex group ex-
pands its unit in the vertical direction. We represent it as {vex, unit,
end}. In Figure 1, cells [A4:L4], as the first unit, expand to row 27,
and form a vertically expandable group {vex, [A4:L4], 27}.

hex group (Horizontally expandable group): A hex group
expands its unit in the horizontal direction. We represent it as {hex,
unit, end}. In Figure 1, cells [A2:D31] as the first unit, expand to
column L, and form a horizontally expandable group {hex,
[A2:D31], L}.

Expandable groups represent the basic and common structure
of a spreadsheet table. To better understand the table structure, we

need to minimize it. Thus, for an expandable group, it should sat-
isfy the following conditions. (1) Its basic unit does not contain any
expandable groups. (2) All its units cannot be included by other
expandable groups. For example, {vex, [A4:L4], 26} satisfies Defini-
tion 1, but we do not consider it as an expandable group, since it
should contain row 27. {vex, [A4:L5], 27} satisfies Definition 1, but
we do not consider it as an expandable group, since its basic unit
[A4:L5] contains a vex group {vex, [A4:L4], 5}. We require that all
expandable groups satisfy the above conditions. Note that, a cell
can belong to a vex group and a hex group in the same time. E.g.,
cell A4 belongs to {vex, [A4:L4], 27} and {hex, [A2:D31], L}.

2.2 Potential Applications of Expandable Groups
The structure of expandable groups can be further applied on im-
portant spreadsheet analysis scenarios, e.g., fault detection, and
spreadsheet data transformation. This motivates us to effectively
detect expandable groups in spreadsheets. We explain these poten-
tial application scenarios in the following.

Faults related to expandable groups. In an expandable
group, the corresponding cells among units usually share the same
formats and semantics. The inconsistencies among the correspond-
ing cells usually indicate faults. The above example contains two
different types of faults. (1) Missing formulas. The missing for-
mula occurs when a cell is supposed to contain a formula, but it
does not. For the expandable group {vex, [A4:L4], 27}, cells [L4:L27]
should follow the same computational semantics, i.e., they have the
same formula pattern as shown in Figure 2. However, cells
[L25:L27] do not have formulas. In the preparation of this spread-
sheet, users may fill the data directly other than their formulas. We
can see that cells [L25:L27] should have formulas. According to the
expandable group {hex, [A2:D31], L}, we can see that cells [D4:D27]

Figure 2: The spreadsheet excerpt in Figure 1 is now given in the R1C1 style1. In the R1C1 style, the corresponding cells in
an expandable group usually share the same formula pattern, e.g., L4 vs. L5, and B31 vs. F31.

Figure 3: The ideal relational table for the spreadsheet ex-
cerpt shown in Figure 1. Note that, only the data in rows 4-6
of Figure 1 are shown due to space limitation.

1In spreadsheets, a cell reference can be represented in two built-in styles:
A1 and R1C1. In the A1 style, a cell at the r-th row and c-th column is de-
noted as cr in the relative reference (e.g., A4), and cr in the absolute ref-
erence (e.g., A4). In the R1C1 style, a cell at x rows below and y columns
right to the current cell is denoted as R[x]C[y] in the relative reference, and
a cell at the x-th row and y-th column is notated as RxCy in the absolute
reference.

A B C HFED G I J K L

ASE’18, September 3-7, 2018, Montpellier, France Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei

and [H4:H27] also suffer from missing formulas. (2) Wrong data
formats. The wrong data format occurs when a cell is supposed to
have certain format, but it does not. For example, according to the
expandable group {hex, [A2:D31], L} in Figure 1, we can see that
cells [C4:C5] should have the same format with cells [G4:G5] and
[K4:K5], which starts with a symbol “$”.

Data transformation between spreadsheets and relational
data. Spreadsheet data are usually not organized in a relational
way. The spreadsheet excerpt in Figure 1 shows a representative
non-relational spreadsheet. This kind of non-relational data cannot
be easily consumed by other data analysis tools, e.g., Power BI [31]
and Insights in Excel [32]. However, once we can understand these
expandable groups, we can easily transform the spreadsheet into
relational data, as shown in Figure 3. This new relational data has
the same semantics with the original data in Figure 1. However, it
can be easily consumed by other data analysis tools. This also high-
lights the importance of expandable group detection.

2.3 ExpCheck Overview
Detecting expandable groups needs to address three main chal-
lenges. The first challenge is how to judge the boundary of the first
unit of an expandable group, e.g., cells [A2:D31] in Figure 1. Second,
how can we determine the set of features for automated expanda-
ble group detection? Different users may have their own styles to
tabulate their spreadsheets. Third, in which situation can two con-
tinuous units be expanded? Some corresponding cells may have
different formats, e.g., cells C5 and C6 in Figure 1. Note that all
corresponding cells with the same formats do not necessarily sug-
gest that they are expandable. Even we assume that cells [C3:C27]
and [D3:D27] had the same format (i.e., if cells [C6:C8] do not start
with a symbol “$”), they do not form an expandable group, since
they have different semantics.

For the first challenge, we observe that in an expandable group,
its units usually occupy a whole row / column of a table. For ex-
ample, in Figure 1 we consider cells [A4:L4] as a potential unit. We
can further generate larger unit by considering multiple rows / col-
umns into a unit. For the second challenge, although different users
may use different styles, units in an expandable group usually
share the same formats. In this case, we define a set of features for
each cell, and then validate whether two units share the same fea-
tures. For the third challenge, we do not require that all corre-
sponding cells must share the same formats and semantics. Our
feature model in Section 3.3 can tolerate some differences. Further,
we need to check the semantics of cell headers, and check whether
corresponding headers share the similar semantics and belong to
the same category. For example, in Figure 1, the headers “New
York”, “Chicago” and “Atlanta” are all US cities and belong to the
same category. We adopt Word2Vec [26] to calculate the semantic
similarity among headers. High similarity of two headers indicates
that they should belong to the same category.

3 EXPANDABLE GROUP IDENTIFICATION
Given a spreadsheet, ExpCheck analyzes it and reports all detected
expandable groups. ExpCheck works in three steps First, it classi-
fies cells into four types, i.e., data, formula, label and empty. Based

on cell types, it further identifies tables in the spreadsheet, which
contain semantically related data and computations (Section 3.1).
Second, for each table, it extracts the first few rows / columns,
which can be used as headers to describe the data in the table (Sec-
tion 3.2). Third, it extracts expandable groups based on format and
semantic features (Section 3.3).

3.1 Table Identification
We observe that spreadsheet users may put some unrelated tables
into a worksheet (a spreadsheet may contain multiple worksheets).
An expandable group usually lies into one table, and tables can be
used as the boundary of expandable groups. Therefore, we need to
identify tables first. In spreadsheets, different tables are usually cir-
cumscribed by empty cells. Thus, we first determine each cell’s
type. Then, we identify tables based on cell types.

3.1.1 Cell Classification. We follow the approaches described by
Hermans et al. [19] and Abraham et al. [1] to classify cells into four
types: (1) data cells: numerical cells with plain values; (2) formula
cells: cells that contain formulas; (3) label cells: cells that contain
strings; and (4) empty cells.

Our cell classification algorithm works as follows. First, all nu-
merical cells with formulas are marked as formula cells. Second, all
numerical cells without formulas are marked as data cells. Third,
all non-formula cells referenced by formula cells are marked as
data cells, no matter whether they are empty or not. Fourth, for all
remaining cells, they are classified as label cells when not empty,
and empty cells, otherwise.

Take the spreadsheet excerpt in Figure 1 as an example. Our cell
classification marks cells [A4:K27] and [L25:L27] as data cells, cells
[L4:L24] and other cells with formulas as formula cells. Cells
[A28:L28], [C29:C31], [G29:G31] and [K29:K31] are marked as
empty cells. All cells with strings are marked as label cells, e.g., A3.

3.1.2 Extracting Tables. In spreadsheets, a table represent a cell
area, in which related information is put together. Tables are
usually connected cell areas divided by empty cells. A connected
cell area is defined as a rectangle containing data, label and formula
cells [1][19]. In a connected cell area, two cells are connected if
they can touch horizontally, vertically or diagonally. The basic
algorithm to find connected areas is as follows. (1) It finds the left-
most upper-most non-empty cell that is not contained by any cell
area yet. The cell is considered as the initial cell of a new cell area.
(2) This cell area is expanded by checking all cells that are
connected to it in all directions. If one of the cells are not empty,
the cell area is expanded to include this cell. (3) When all cells
connected to the cell area are empty, we get a new cell area. Simply,
existing work [1][19] consider these connected cell area as tables.

However, the above algorithm usually obtains only part of a
table, rather than a complete table. Take the spreadsheet excerpt in
Figure 1 as an example. This spreadsheet excerpt only includes one
table [A1:L31]. Due to empty cells in this table, e.g., empty cells
[A28:L28], the above algorithm divides it into 5 connected cell ar-
eas, i.e., [A1:L27], [A29:B31], [D29:F31], [H29:J31] and [L29:L31].
We can see that the table [A1:L31] is divided into 5 pieces. Thus,
the above table identification approach cannot obtain complete ta-
bles. In our investigation on the spreadsheets from the EUSES and
Enron corpora, such case is very common. It is because a table

Expandable Group Identification in Spreadsheets ASE’18, September 3-7, 2018, Montpellier, France

usually has several pieces, and spreadsheet users are used to put-
ting empty cells to separate them.

To tackle the issues caused by empty cells, we further design
two new strategies as follows to identify tables.

a) The borders of two cells are indicators about whether the two
cells are connected. Consider the spreadsheet excerpt in Figure 1.
The table [A1:L31] is surrounded by the bold border, which is dif-
ferent from the default border in the table. Thus, when we check
whether cells L27 and L28 are connected, we check whether these
two cells have the same bold border in the right. If they do, we
consider them as connected.

b) Although some tables are separated into pieces by empty
cells, they may share the same headers, and thus they should be
put into one table. For example, two pieces [A1:L27] and [A29:L31]
are separated by row 28. The second piece [A29:L31] shares the
same column headers as [A1:L27], i.e., rows 1-3. Thus, these two
pieces should be combined into one. If cells [A29:L31] have their
own column headers, we will not combine them into one.

We use the example in Figure 1 to show how to design the sec-
ond strategy. After we obtain the connected cell area [A1:L27]
based on the basic table identification algorithm, we skip row 28 in
which all cells are empty and obtain a new cell area initialized as
[A29:L29]. This initialized cell area has the same start and end col-
umns with [A1:A27]. We then use the basic table identification al-
gorithm to expand this cell area, and obtain a new cell area
[A29:L31]. We further check whether this cell area [A29:L31] has
column headers based on the header inference in Section 3.2. In
this example, cell area [A29:L31] does not have column headers
and has the same width as [A1:L27]. Therefore, we combine it into
the cell area [A1:A27]. Otherwise, we do not combine these two
cell areas. We can also check neighboring cells in the right, which
is similar to checking neighboring cells in the bottom.

3.2 Header Identification
Although spreadsheet systems allow users to put table headers in
any place, by investigating amounts of spreadsheets in the EUSES
and Enron corpora, we observe that, in most cases, spreadsheet us-
ers put the headers in the first few rows / columns of a table. Figure
4 shows a typical example in which the first two rows are used as
column headers of the table. Note that, although cells [A3:A8] are
label ones, they are not considered as row headers of the table.

The headers of a table are usually used to describe the data in
the table. We have two observations that can help locate headers
for a table. (1) The headers of a table can usually be found on the
left or top of a table as illustrated in Figure 4. Especially, we assume
the headers are usually located in the first few (e.g., 4) rows / col-
umns in a table. (2) Spreadsheet users usually use different formats
for headers and data region. For example, the first row has grey
background, and the first two rows have bold fonts in Figure 4.
They are different from the data region, i.e., cells [A3:G8].

Based on the above observations, we design a novel approach
to detect headers in a table. We assume that, for a table, at most
max_header rows and columns can be used as headers. Based on
our inspection on the EUSES and Enron corpora, we set
max_header to 4. This can cover almost all cases. Our header infer-
ence approach works as follows.

a) Type-based header inference. To infer the column headers
of a table, we start from the first row of the table, and check
whether the checked row can be used as column headers, until we
have checked max_header rows, or the checked row is not consid-
ered as column headers. If the checked row contains at least one
label cell, and all other cells in it are empty, we consider it as col-
umn headers of the table. It is similar for row header inference.
Based on this rule, we obtain that the first 2 columns (A & B) in
Figure 4 are row headers. There is no column header, since the date
in the first row is consider as data, not a label.

b) Format-based header inference. As discussed earlier,
headers usually have different format from the data region, and the
data region usually have the same format. Based on this observa-
tion, we use the following rule to detect headers: For any given
three continuous rows or columns (x1, x2 and x3), if x1 has differ-
ent format from x2, and x2 has the same format with x3, we con-
sider x1 and rows / columns before x1 as headers, x2 and x3 as data
region. We check this rule from the first row / column of the table,
until we find three rows / columns that satisfy the above rule, or
max_header rows / columns are reached. For example, in Figure 4,
row 2 has different format from row 3, and row 3 & row 4 have the
same format. Thus, rows 1 and 2 are considered as column headers.
Here, we use the format features discussed in Section 3.3.2 to cal-
culate whether 2 rows / columns have the same format.

Note that, any of the above two strategies may fail in some cases.
For the first strategy, it does not work when there are data cells in
the headers, e.g., the date in row 1 in Figure 4. For the second strat-
egy, if the first two data rows (e.g., rows 3 and 4) have slightly dif-
ferent format, it may fail. Thus, we combine the results from above
strategies, and consider all detected headers from these two strat-
egies as headers. For the table in Figure 4, we get the first two rows
as column headers, and first two columns as row headers.

c) Mixed header inference. The above process may wrongly
judge situations. For example, in Figure 4, cells [A3:B8] are consid-
ered as row headers. In fact, they are data. In this case, we use the
third strategy to further refine headers. As discussed earlier,
header cells usually have different format from data cells. If we ob-
serve that the cells in headers have the same format as data cells,
it should be considered as data, rather than headers. For example,
in Figure 4, cells [B3:B8] have the same format with the data cells
[C3:C8]. Thus, we consider [B3:B8] as data, rather than headers.
Through this strategy, we finally obtain that, in Figure 4, the first
two rows are used as column headers, and there are no row headers.

Figure 4: A spreadsheet excerpt that computes the working
hours in April 2018. In this excerpt, row 2 is the first-level
column headers, and row 1 is the second-level column head-
ers. Cells [A3:A8] are data, and not considered as headers.

ASE’18, September 3-7, 2018, Montpellier, France Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei

After the above three strategies, we may obtain multiple rows
that are used as column headers. We consider the row nearest to
data area as the first-level column headers, and the row next to the
first-level column headers as the second-level column headers, and
so on. It is similar for row headers. Take the spreadsheet in Figure
4 as an example, row 2 is considered as the first-level column head-
ers, and row 1 is considered as the second-level column headers.

Note that our above header identification algorithm differs
from previous approaches [1][19]. First, previous approaches
mainly use the idea in the first strategy. Thus, they suffer from the
issues we discuss earlier. For example, they consider cell A3 as the
row header of cell C3. Worse, they consider cell B3 as the header
of cell C3, too. Second, they try to find the headers for each indi-
vidual cell, and do not consider all data cells as a whole. Thus, the
inferred headers may locate in different rows / columns. Our ap-
proach avoids these issues.

3.3 Expandable Group Detection Algorithm
Our expandable group detection algorithm is inspired by two key
observations: (1) For each unit in an expandable group, their cor-
responding cells share the same or similar formats. (2) For each
unit in an expandable group, their corresponding header cells
share the same or similar semantics. Thus, in the following, we first
explain how to compare two corresponding columns among two
units in a hex group, and then explain our expandable group de-
tection algorithm in detail. Note that, for hex and vex groups, they
have the similar detection algorithm. The only difference between
hex and vex group detection is their directions. Thus, for clarity,
we only use hex group detection to explain our algorithm.

3.3.1 Expandable Group Detection. ExpCheck’s expandable
group detection algorithm takes a table as input and returns all
expandable groups in the table. Algorithm 1 shows how to detect
hex groups in a table. The algorithm works as follows. (1) It first
detects hex groups in which its unit only have one column (Lines
2-3). (2) For the table, it starts to check possible unit from its first
column and generates a unit for the first column (Lines 4-6). (3) It
tries to horizontally expand the unit to the right. Each time, it
generates a candidate unit2 that has the same size as unit, and
checks whether two units (unit and unit2) have similar formats and
semantics. If yes, unit can be horizontally expanded to the right.
Otherwise, unit cannot be further expanded to the right (Lines 7-
16). (4) Once we find a unit can be horizontally expanded at least
once, we find a hex group, and add it into groups (Lines 17-23). (5)
The algorithm continues to find hex group with a unit of width
columns (Lines 5-24). (6) Once all potential units with width
columns have been checked, we check whether all detected hex
groups have covered most columns. If yes, we do not search for
hex groups with larger width. Otherwise, we increase width, and
try to find new hex groups (Lines 25-27).

Note that, when there are multiple-level column headers, we
generate the unit from the first-level column headers first, and then
try to include the higher-level column headers (Line 33). We take
the spreadsheet excerpt in Figure 1 as an example to further ex-
plain the above algorithm. For this example, the input table is
[A1:L31]. Since there are three levels of column headers (rows 1-
3), we first consider the first-level column headers (row 3) to be

included in unit. (1) When width is 1, it starts to check whether
units [A3:A31] and [B3:B31] are similar. For this case, they are not
similar (we will explain why in Section 3.3.2). Thus, we start to
check units [B3:B31] and [C3:C31], and so on. Finally, we cannot
detect any hex group when width is 1. Thus, we gradually increase
width to 2, 3, and 4. Finally, when width is 4, we find units [A3:D31],
[E3:H31] and [I3:L31] are similar. Thus, we get a hex group {hex,
[A3:D31], L}. For now, we find this hex group have covered all col-
umns in table [A1:A31], thus, we do not further increase width to
5. After this, we further check whether the second-level column
headers (row 2) can be included into hex groups. Since cells [A2:D2]
is a merged cell, we directly set width to 4, and check whether
[A2:D31] can be expandable. In this case, we obtain a new hex
group {hex, [A2:D31], L}. Since this new hex group covers {hex,
[A3:D31], L}, we only keep this new hex group. Next, we try to
include the third-level column headers (row 1). But we cannot find
any hex group in this case. Finally, our algorithm returns {hex,
[A2:D31], L}.

3.3.2 Similarity among Two Units. The key part of our
expandable group detection is how to inspect whether two units
share the similar formats and semantics. Algorithm 2 shows how
to judge whether two units have similar semantics and formats in
a hex group. The algorithm takes two units that potentially belong
to a hex group as input. For each pair of corresponding columns of

Algorithm 1. hex group detection algorithm.
__
Input: table (spreadsheet table), startRow (the first row that

can be included in a hex group)

Output: groups (all detected hex groups).

 1: groups = EMPTY;

 2: width = 1; // Number of columns in the unit

 3: while width < table.colNum / 2 do

 4: startCol = table.firstCol; // Start from first column

 5: while startCol < table.lastCol do

 6: unit = generateUnit(startCol, witdth, 0);

 7: repeat = 1; // Number of expanding units

 8: while TRUE do

 9: // Generate the potential expanding unit

10: unit2 = generateUnit(startCol, width, repeat);

11: if (unit2 == NULL || !isSimilar(unit, unit2)) then

12: break;

13: else

14: repeat++;

15: end if

16: end while

17: if (repeat > 1) then // Find a hex group

18: end = startCol + repeat * width - 1;

19: groups.add({hex, unit, end});

20: startCol += repeat * width;

21: else

22: startCol ++

23: end if

24: end while

25: if terminate(groups) then

26: break;

27 else

28: width++;

29: end if

30: end while

31: return groups;

32:

33: // Generate a potential expanding unit

34: method generateUnit(startCol, width, repeat)

35: unit.firstRow = startRow;

36: unit.lastRow = table.lastRow;

37: unit.firstCol = startCol + repeat * width;

38: unit.lastCol = startCol + (repeat + 1) * width;

39: if (unit.lastCol > table.lastCol) then

40: return NULL; // No unit generated

41: end if

42: return unit;

43: end method

Expandable Group Identification in Spreadsheets ASE’18, September 3-7, 2018, Montpellier, France

the two units, it compares each pair of cells in them (Lines 3-14). If
the cells belong to the column headers, we need to compare
whether they have the similar semantics (Lines 6-10). If their
semantics are different, they cannot be considered as similar (Lines
7-9). For all the cells, we compare whether they have the same
formats (Lines 11-13). To tolerance the possible difference in an
expandable group, we require that a fixed percent
(min_similar_cells) of cells have the same formats. In our
experiment, we set min_similar_cells as 60%, which indicates that
most cells have the same formats.

The features used in ExpCheck are collected from existing lit-
eratures [6][7][25]. If two cells do not have the same value for a
feature, we consider them as dissimilar. Note that, if a cell is empty,
we cannot obtain its features. In this case, we assume that the
empty cell can have any kind of features and is similar to other
non-empty cells. Thus, we can ignore the noise caused by empty
cells. We divide all features into 4 categories as follows.

a) Header: A header presents the semantic information of a
groups of cells. For example, in Figure 1, “New York” shows the
property of cells [A3:D31], and “Hour” in cell A3 shows cells
[A4:A27] are 24 hours. For any corresponding headers in an ex-
pandable group, they should have similar semantics and can be cat-
egorized into the same category. By calculating the semantic simi-
larity of two headers based on Word2Vec [26], we judge whether
two headers can belong to the same category.

Generally, a header is a word or a short string. We use h1 and
h2 to denote two headers, and function word_similarity to denote
the cosine similarity among two words in Word2Vec. Thus, the
similarity of two headers can be calculated as follows:

ℎ1 =< 𝑤1𝑖 , 𝑤12, … 𝑤1𝑚 >, ℎ2 =< 𝑤2𝑖 , 𝑤22, … 𝑤2𝑛 >

𝑠𝑖𝑚1 = ∑ max
1≤𝑗≤𝑛

(𝑤𝑜𝑟𝑑_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤1𝑖 , 𝑤2𝑗))

𝑖=𝑚

𝑖=1

𝑠𝑖𝑚2 = ∑ max
1≤𝑗≤𝑚

(𝑤𝑜𝑟𝑑_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤2𝑖 , 𝑤1𝑗)

𝑖=𝑛

𝑖=1

𝑠𝑖𝑚(ℎ1, ℎ2) =
𝑠𝑖𝑚1 + 𝑠𝑖𝑚2

𝑚 + 𝑛

When the similarity of two headers sim(h1, h2) exceeds a
threshold (min_header_similarity), we consider that they are simi-
lar. To guarantee high accuracy in our approach, the threshold is
set to strong similarity. In our experiment, we set min_header_sim-
ilarity as 0.3.

b) Cell type: As discussed earlier, cells can be divided into four
types: data, label, formula, and empty. For two cells, if one is label
cell, and another is data or formula cell, we consider them as dis-
similar. For other cases, we consider them as similar. Thus, we can
tolerate some inconsistent cases. For example, in Figure 1, we con-
sider cells D4 and L4 as similar, even though cell D4 does not have
a formula.

c) Cell formula: Formulas are a common feature to explain a
cell’s computational semantics. For two formula cells, if they have
the same formula pattern, i.e., they have the same formula in the
R1C1 style, they are considered as similar, otherwise not.

d) Format: The formats of a cell present how a cell is shown in
a table. Ideally, the corresponding cells in an expandable group

should have consistent formats. The format features we use are as
follows.

• Merge. We record if a cell is merged, and its merged region,
if any. For two cells, if they are both merged, and their merged
regions have the same size, they are considered as similar. If
they are not merged either, they are considered as similar, too.
Otherwise, they are considered as dissimilar.

• Fill color. We check whether two cells are filled by the same
color or not.

• Font. The font features describe whether two cells have the
same font name, size, color, weight of bold, etc. It also records
italic, underlines. If there is any difference among these fea-
tures, two cells are considered as dissimilar.

• Data format. Data format presents how a data is shown. E.g.,
cells C6 and D6 are shown in different format in Figure 1.

• Alignment. The type of horizontal and vertical alignment,
and the number of indentations.

4 IMPLEMENTATION
This section briefly explains some necessary implementation de-
tails. Our ExpCheck uses the Apache POI library [33] to read Excel
files. ExpCheck loads an Excel file, reads features in each cell, and
analyzes all expandable groups in it.

In order to calculate the similarity among words, we use pre-
trained Word2Vec model [34] published by Google [35]. This pre-
trained model contains 300-dimensional vectors for 3 million
words and phrases, trained on Google News dataset (about 100 bil-
lion words). Since the words in the model are case-sensitive, we
first retrieve a word from the model in a case-insensitive way, and
then use the word to get the word’s vector. For phases, each word
in a phase are connected by “_”. In this case, we first try to connect
words in a header using “_”, and check whether the combination
word exists in the pre-trained model. If yes, we consider the header
as a phase, otherwise, we consider it as a sentence. For example,
we first transform “New York” into “New_York”, and then check
whether the model contain “New_York”. Since we find this new
combined word, we consider it as a phase.

Algorithm 2. Similarity analysis among two units in hex groups.
__
Input: unit1 and unit2 (two units have the same size and poten-

tially belong to the same expandable group).

Output: TRUE or FALSE (whether two units are similar).

 1: for (col = 1; col <= unit1.colNum; col++) do

 2: simCell = 0; // Number of similar cells in column col

 3: for (row = 1; row <= unit1.rowNum; row++) do

 4: cell1 = unit1.getCell(row, col);

 5: cell2 = unit2.getCell(row, col);

 6: if (cell1 is a header) then

 7: if (!similarSemantic(cell1, cell2)) then

 8: return FALSE;

 9: end if

10: end if

11: if (sameFormat(cell1, cell2)) then

12: simCell++

13: end if

14: end for

15: pert = simCell / unit1.rowNum;

16: if (pert < threshold)

17: return FALSE;

18: end if

19: end for

20: return TRUE;

ASE’18, September 3-7, 2018, Montpellier, France Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei

To transform a sentence into words, we use the special charac-
ters (e.g., white space, -, comma, colon, semicolon, and so on) to
separate a sentence. Note that, all numbers in the sentence are con-
sidered as a unique word, and do not distinct their concrete values.
Since, headers are usually words and short phrases, there are very
few stop words (e.g., a, the) in them. Thus, we do not handle stop
words in our tool.

5 EVALUATION
Our evaluation studies the following two research questions:

RQ1: Can ExpCheck detect expandable groups precisely? Spe-
cifically, what are the precision, recall and F1-measure?

RQ2: How is ExpCheck compared with existing techniques?
To answer RQ1, we ran ExpCheck on 120 spreadsheets ran-

domly sampled from the EUSES [16] and VEnron [13] corpora, and
checked their performance. To answer RQ2, we compared
ExpCheck with the expandable group analysis approach proposed
by Abraham et al. [2] in the detection of expandable groups.

5.1 Experimental Subjects and Methodology
We used spreadsheets from the EUSES and VEnron corpora to con-
duct our experiments. First, EUSES was created in 2005, and has
been widely used by spreadsheet research [8][12][22]. Second,
VEnron was created from Enron [17], and contains many versioned
spreadsheets used in the Enron company. We used VEnron other
than Enron as our subject, since Enron contains too many spread-
sheets with the same or similar structures. This may weaken the
effectiveness of our evaluation. These two spreadsheets corpora
have been the most widely used for spreadsheet research so far.

Manually building ground truth for all expandable groups in the
EUSES and VEnron spreadsheets is extremely difficult, as we are
not the authors of these spreadsheets and we cannot find their cor-
responding authors, either. Thus, we randomly sampled 70 spread-
sheets from EUSES and 50 spreadsheets from VEnron. To make our
experimental subjects accurate and representative for expandable
group analysis, we built our ground truth by the following steps.
(1) For each randomly sampled spreadsheet, we inspected each of
its contained worksheets for expandable groups. (2) A spreadsheet
may contain multiple worksheets that have the same or very simi-
lar structure. To guarantee the structure diversity of our experi-
mental subjects, for the worksheets with the same or very similar
structure, we only randomly kept one of them. (3) For each remain-
ing worksheet that does not contain any expandable group or can-
not be fully understood by any one of us (two authors in this paper),
we removed it from consideration. If no worksheet in a spreadsheet
was left after the previous steps, we removed it from consideration.
(4) We repeated the above sampling process until a fixed number
of spreadsheets were sampled.

Note that, sampling spreadsheets from VEnron is slightly dif-
ferent from that of EUSES. Since each evolution group in VEnron
contains multiple versions of a spreadsheet, we only kept the first
spreadsheet in each group before performing the above sampling
steps.

In our sampling process, we manually inspected the sampled
spreadsheets, and tried our best to understand the semantics of the

spreadsheets, and finally labelled all expandable groups in them.
The ground truth was built carefully by cross-validating all ex-
pandable groups by two authors of this paper. Finally, we obtained
313 expandable groups from 120 spreadsheets. Table 1 gives the
statistics of our experimental subjects. As shown in the table, the
experimental subjects are diverse: 70 EUSES spreadsheets cover 8
categories and 50 spreadsheets come from VEnron. Among these
313 expandable groups, 221 groups are vertically expandable ones
(i.e., vex groups), and 92 groups are horizontal expandable ones (i.e.,
hex groups). We have made our experimental subjects available
online for future research: http://www.tcse.cn/~wsdou/pro-
ject/ExpCheck.

5.2 Evaluation Metrics
We ran ExpCheck on these spreadsheets and checked its perfor-
mance. Expandable group detection can have three outcomes: (1)
A detected expandable group is the same as one of expandable
groups in the ground truth (TP). (2) A detected expandable group
is not found in the ground truth (FP). (3) An expandable group in
the ground truth is not detected (FN). To study the effectiveness of
our expandable group detection approach and compare it with ex-
isting approaches, we use the following three metrics:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

5.3 Expandable Group Detection Results
We ran ExpCheck on 120 spreadsheets sampled from the EUSES
and VEnron corpora. Table 2 lists our expandable group detection
results. It gives the numbers of detected expandable group in each
category in EUSES and VEnron. For each kind of expandable
groups, Table 2 lists the numbers of detected expandable groups
(Detected) and the numbers of true expandable groups (True).

In total, ExpCheck detects 349 expandable groups
(ExpCheck/Total/Detected) and 242 (69.3%) expandable groups are
true. We further evaluated the performance on vex groups
(ExpCheck/vex) and hex groups (ExpCheck/hex), respectively.
From Table 2, the precision for vex group detection is 80.1%,
whereas the precision for hex group detection is 49.6%. We can see

Table 1: Statistics of Our Experimental Subjects

Corpus Category Spreadsheet Worksheet
Expandable groups
vex hex Total

EUSES

cs101 1 1 2 1 3
database 11 12 19 8 27
financial 10 10 12 5 17
forms3 1 1 1 0 1
grades 5 5 7 3 10
homework 13 15 23 13 36
inventory 17 17 36 5 41
modeling 12 12 12 1 13

VEnron 50 66 109 56 165
Total 120 139 221 92 313

Expandable Group Identification in Spreadsheets ASE’18, September 3-7, 2018, Montpellier, France

the precision for vex group detection is much better than that of
hex group detection.

ExpCheck misses 71 (313-242) expandable groups, and thus the
recall for expandable group detection is 77.3%. We further analyzed
the recalls for vex group detection and hex group detection, and
they are 81.9% and 66.3%, respectively. Similarly, ExpCheck’s F1-
measure for expandable group detection, vex group detection and
hex group detection is 73.1%, 81.0%, and 56.7%, respectively. We
can see that vex group detection performs better than hex group
detection.

False positives of expandable group detection. ExpCheck
wrongly detected 107 (349 － 242) expandable groups. We further
investigated the causes for these 107 false positives. There are 3
main reasons. (1) We use Word2Vec to compute the semantic sim-
ilarity between two headers. Although some headers with the sim-
ilar semantics (e.g., buy and sell), they are not expandable. In some
other cases, spreadsheet users use some domain-specific words.
Word2Vec cannot work in this situation. 54 false positives belong
to the above case. (2) In an expandable group, some rows / columns
use different styles, e.g., a row in vex group use different colors
with others. In this case, ExpCheck divides it into multiple vex
groups. 20 false positives belong to this case. (3) Our header infer-
ence is rule-based, and it cannot be applied on some specific styles
of spreadsheets. Thus, we can obtain wrong headers. 26 false posi-
tives belong to this case. The remaining false positives are caused
by various cases, e.g., wrongly identified table range. This indicates
further study can improve expandable group detection from the
above aspects.

False negatives of expandable group detection. ExpCheck
misses 71 (out of 313) expandable groups. The reasons for missed
expandable group detection are the same with false positives of ex-
pandable group detection. 36 missed expandable groups belong to
the semantic similarity issues among headers. 13 missed expanda-
ble groups belong to different formats in an expandable group. 12
missed expandable groups belong to wrong header inference. The
remaining groups are caused by various cases.

Note that vex group detection performs much better than hex
group detection. This is because vex groups usually do not have
row headers (e.g., {vex, [A4:L4], 27} in Figure 1), whereas hex
groups usually have column headers (e.g., {hex, [A2:D31], L} in Fig-
ure 1). The issues in semantic similarity of headers are the key
cause to introduce false positives and false negatives.

Based on the above results and analysis, we draw the following
conclusion to RQ1: Our expandable group detection approach is ef-
fective. It can detect expandable group in a high precision and recall.

5.4 Comparison with Existing Techniques
To better evaluate the effectiveness of our ExpCheck in expandable
group detection, we compared ExpCheck with the template infer-
ence approach for ViSTL (ViSTL for short) [2].

ViSTL mainly focuses on formula cells and cells’ types. First,
ViSTL finds the repeating patterns of formula cells based on
whether they have the same formula in the R1C1 style. Then,
ViSTL checks if other corresponding cells follow the same types.
However, ViSTL has a few drawbacks. (1) There must be formulas
for expandable groups. However, this is not true. In our ground
truth, many expandable groups do not have any formula. (2) All
related cells should have formulas. Once some formulas are miss-
ing, the obtained expandable group will be incomplete. As dis-
cussed earlier, ViSTL will get a vex group {vex, [A4:L4], 24}. This
group is incomplete. (3) ViSTL does not try to understand the real
semantics, and thus can extract groups with unrelated semantics.
(4) ViSTL does not check formats at all. Therefore, it may miss
some expandable groups, and detects wrong expandable groups.

We ran ViSTL on 120 spreadsheets and evaluated its perfor-
mance. The last columns in Table 2 shows the detected result for
ViSTL. ViSTL detected 108 expandable groups, and only 28 are true.
Thus, ViSTL achieved a precision of 25.7%, recall of 8.9%, and F1-
measure of 13.3%. Figure 5 shows the performance comparison be-
tween ExpCheck and ViSTL. We can see that ExpCheck performs

Table 2: Expandable Detection Results of ExpCheck and ViSTL

Corpus Category Ground truth
ExpCheck

ViSTL
vex hex Total

Detected True Detected True Detected True Detected True

EUSES

cs101 3 2 2 2 1 4 3 3 2
database 27 21 17 8 6 29 23 6 1
financial 17 10 3 8 3 18 6 6 1
forms3 1 1 1 0 0 1 1 0 0
grades 10 8 7 2 2 10 9 10 2
homework 36 23 23 15 6 38 29 12 5
inventory 41 37 33 7 2 44 35 4 2
modeling 13 13 6 5 0 18 6 0 0

VEnron 165 111 89 76 41 187 130 68 15

Total 313 226 181
(80.1%) 123 61

(49.6%) 349 242
(69.3%) 109 28

(25.7%)

Figure 5: Performance comparison of ExpCheck and ViSTL.

0.0%

20.0%

40.0%

60.0%

80.0%

Precision Recall F1-measure
ExpCheck ViSTL

ASE’18, September 3-7, 2018, Montpellier, France Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei

much better than ViSTL. We improve precision of 43.7%, recall of
68.4% and F1-measure of 59.8%.

Based on these results, we draw the following conclusion for
RQ2: ExpCheck significantly outperforms existing expandable group
detection approaches.

6 DISCUSSION
While our evaluation shows that ExpCheck is promising for de-
tecting expandable groups, we discuss potential threats and limita-
tions in our approach.

6.1 Threats to Validity
Representativeness of experimental subjects. In our experi-
ments, we selected the EUSES and VEnron corpora as our study
objects. First, the spreadsheets in these two corpora have been
widely used for spreadsheet research [8][10][22]. Second, the
spreadsheets in VEnron came from the Enron company. Thus, we
believe our studied subjects represent real-world spreadsheets.

Expandable group validation. There is not any clue about
expandable groups in the EUSES and VEnron corpora. It is also im-
possible to inspect expandable groups with the help of their origi-
nal users. Thus, we manually inspected our studied subjects, and
built ground truth for expandable groups. To alleviate possible mis-
takes, two authors of this paper cross-validated all ground truth.

Parameter setting in our approach. In our approach, several
parameters are preset according to our experience, e.g., the thresh-
old for semantic similarity of headers, the percentage of cells that
should have consistent formats. This may affect our evaluation re-
sults. We do not know whether the current parameter setting can
obtain optimal results. We will study how to obtain better param-
eter setting in the future, e.g., conducting empirical studies on
large-scale spreadsheets to choose better parameters.

6.2 Limitations
Domain-specific vocabularies in spreadsheets. During our in-
spection of the spreadsheets in VEnron, we find that there are some
domain-specific vocabularies in the Enron company, which cannot
be handled properly by Word2Vec. For now, we cannot handle
these domain-specific vocabularies yet, and thus introduce false
positives and false negatives. A new approach that can analyze the
semantic similarity among these domain-specific vocabularies is
required.

Different language support. For different languages, we
need different word segmentation models and different Word2Vec
models. For now, ExpCheck only supports English. Other lan-
guages can be integrated into ExpCheck.

7 RELATED WORK
In the section, we discuss related work on spreadsheet research,
e.g., modeling, structure analysis and fault detection.

Spreadsheet modeling. Spreadsheet systems provide high
flexibility for users in building spreadsheets. However, this flexi-
bility can easily induce faults into spreadsheets. Spreadsheet re-
searchers proposed several rigorous models for spreadsheets, e.g.,
ViSTL [4][5] and ClassSheet [14], to help users reduce the chance

of introducing faults. However, it is challenging to construct such
models. Thus, some approaches [2][9][18] try to build models from
existing spreadsheets. They mainly depend on the formulas in the
existing spreadsheets, and do not try to understand the spreadsheet
structure, e.g., expandable groups. Our expandable group detection
can be used to improve spreadsheet model reversing engineering.

Spreadsheet structure analysis. Unlike relational data,
spreadsheets have very flexible structures. Understanding spread-
sheet structures is the key to other spreadsheet analysis ap-
proaches, e.g., spreadsheet data integration. For example, Chen et.
al. adopted conditional random fields (CRF) to infer hierarchical
relationship among spreadsheet cells [6]. They further proposed an
active learning framework to detect the structure property in a
spreadsheet. Koci et al. [25] proposed a classification approach to
discover the layout of tables in spreadsheets on the cell level. How-
ever, these approaches cannot detect expandable groups.

Spreadsheet fault detection. Since spreadsheets are created
and maintained by non-expert end users, faults can be easily in-
duced into spreadsheets [23][24][27]. Many techniques have been
proposed to detect faults in spreadsheets. UCheck [3] uses type
system to check type inconsistency in formulas. Hermans et al.
proposed to detect inter-worksheet smells [20], data clone and re-
lated inconsistencies [22], and formula smells [21]. TableCheck [10]
detects inconsistency among table clones. Some fault detection
tools utilize certain structure information to detect errors, e.g., Am-
Check/CACheck/EmptyCheck [11][12][29] and CUSTODES [8]
detect errors in a group of similar cells (i.e., cell array). However,
they do not try to understand expandable groups in a table. While,
ExpCheck focuses on understanding the key structure in a table.

8 CONCLUSIONS
In this paper, we study expandable groups in spreadsheets, in
which their units share the similar formats and semantics. We have
proposed an automated approach, ExpCheck, to extract expanda-
ble groups by inspecting related cells’ format and semantic infor-
mation. Our experimental study on the spreadsheets from the
EUSES and VEnron corpora shows that our proposed approach is
effective and precise, and significantly outperforms existing ap-
proaches.

We plan to pursue our future work in four ways. First,
ExpCheck can be improved by more precise spreadsheet header
analysis and header semantic analysis. Second, ExpCheck can also
be extended to extract other spreadsheet structures and build the
whole structure for a spreadsheet. Third, we plan to use the ex-
tracted expandable groups to detect issues in spreadsheets, e.g.,
formula errors and format errors. Fourth, we plan to use ExpCheck
to understand spreadsheet structures, and transform spreadsheets
data into relational data for easy data integration.

ACKNOWLEDGMENTS
This work was partially supported by National Natural Science
Foundation of China (61702490), Microsoft Research Asia Star-
Track Program, National Key Research and Development Program
of China (2017YFA0700603), Frontier Science Project of Chinese
Academy of Sciences (QYZDJ-SSW-JSC036), and Youth Innovation
Promotion Association at Chinese Academy of Sciences.

Expandable Group Identification in Spreadsheets ASE’18, September 3-7, 2018, Montpellier, France

REFERENCES
[1] Robin Abraham and Martin Erwig. 2004. Header and Unit Inference for Spread-

sheets through Spatial Analyses. In IEEE Symposium on Visual Languages and
Human Centric Computing (VL/HCC), 165–172.

[2] Robin Abraham and Martin Erwig. 2006. Inferring Templates from Spreadsheets.
In International Conference on Software Engineering (ICSE), 182–191.

[3] Robin Abraham and Martin Erwig. 2007. UCheck: A Spreadsheet Type Checker
for End Users. Journal of Visual Languages & Computing 18, 1 (2007), 71–95.

[4] Robin Abraham, Martin Erwig, Steve Kollmansberger, and Ethan Seifert. 2005.
Visual Specifications of Correct Spreadsheets. In IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), 189–196.

[5] Chris Chambers and Martin Erwig. 2009. Automatic Detection of Dimension Er-
rors in Spreadsheets. Journal of Visual Languages & Computing 20, 4 (2009), 269–
283.

[6] Zhe Chen and Michael Cafarella. 2014. Integrating Spreadsheet Data via Accurate
and Low-effort Extraction. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 1126–1135.

[7] Zhe Chen, Sasha Dadiomov, Richard Wesley, Gang Xiao, Daniel Cory, Michael
Cafarella, and Jock Mackinlay. 2017. Spreadsheet Property Detection With Rule-
assisted Active Learning. In ACM on Conference on Information and Knowledge
Management (CIKM), 999–1008.

[8] Shing-Chi Cheung, Wanjun Chen, Yepang Liu, and Chang Xu. 2016. CUSTODES:
Automatic Spreadsheet Cell Clustering and Smell Detection Using Strong and
Weak Features. In International Conference on Software Engineering (ICSE), 464–
475.

[9] Jacome Cunha, Martin Erwig, and Joao Saraiva. 2010. Automatically Inferring
ClassSheet Models from Spreadsheets. In IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), 93–100.

[10] Wensheng Dou, Shing-Chi Cheung, Chushu Gao, Chang Xu, Liang Xu, and Jun
Wei. 2016. Detecting Table Clones and Smells in Spreadsheets. In ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE), 787–
798.

[11] Wensheng Dou, Shing-Chi Cheung, and Jun Wei. 2014. Is Spreadsheet Ambiguity
Harmful? Detecting and Repairing Spreadsheet Smells Due to Ambiguous Com-
putation. In International Conference on Software Engineering (ICSE), 848–858.

[12] Wensheng Dou, Chang Xu, Shing-Chi Cheung, and Jun Wei. 2017. CACheck:
Detecting and Repairing Cell Arrays in Spreadsheets. IEEE Transactions on Soft-
ware Engineering (TSE) 43, 3 (2017), 226–251.

[13] Wensheng Dou, Liang Xu, Shing-Chi Cheung, Chushu Gao, Jun Wei, and Tao
Huang. 2016. VEnron: A Versioned Spreadsheet Corpus and Related Evolution
Analysis. In International Conference on Software Engineering (ICSE SEIP), 162–
171.

[14] Gregor Engels and Martin Erwig. 2005. ClassSheets: Automatic Generation of
Spreadsheet Applications from Object-oriented Specifications. In IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), 124–133.

[15] Martin Erwig, Robin Abraham, Steve Kollmansberger, and Irene Cooperstein.
2006. Gencel: A Program Generator for Correct Spreadsheets. Journal of Func-
tional Programming (JFP) 16, 3 (2006), 293–325.

[16] Marc Fisher and Gregg Rothermel. 2005. The EUSES Spreadsheet Corpus: A
Shared Resource for Supporting Experimentation with Spreadsheet Dependabil-
ity Mechanisms. ACM SIGSOFT Software Engineering Notes 30, 4 (2005), 1–5.

[17] Felienne Hermans and Emerson Murphy-Hill. 2015. Enron’s Spreadsheets and
Related Emails: A Dataset and Analysis. In International Conference on Software
Engineering (ICSE SEIP), 7–16.

[18] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2010. Automatically
Extracting Class Diagrams from Spreadsheets. In European Conference on Object-
Oriented Programming (ECOOP), 52–75.

[19] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2011. Supporting Pro-
fessional Spreadsheet Users by Generating Leveled Dataflow Diagrams. In Inter-
national Conference on Software Engineering (ICSE), 451–460.

[20] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2012. Detecting and
Visualizing Inter-worksheet Smells in Spreadsheets. In International Conference
on Software Engineering (ICSE), 441–451.

[21] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2012. Detecting Code
Smells in Spreadsheet Formulas. In International Conference on Software Mainte-
nance (ICSM), 409–418.

[22] Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van Deursen. 2013. Data
Clone Detection and Visualization in Spreadsheets. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), 292–301.

[23] Dietmar Jannach, Thomas Schmitz, Birgit Hofer, and Franz Wotawa. 2014. Avoid-
ing, Finding and Fixing Spreadsheet Errors – A Survey of Automated Approaches
for Spreadsheet QA. Journal of Systems and Software (JSS) 94, (2014), 129–150.

[24] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Bur-
nett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad My-
ers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck.
2011. The State of the Art in End-user Software Engineering. ACM Computing
Surveys 43, 3 (2011), 21:1–21:44.

[25] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2016. A Machine
Learning Approach for Layout Inference in Spreadsheets. In nternational Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement, 77–88.

[26] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-
mation of Word Representations in Vector Space. In Workshop at International
Conference on Learning Representations (ICLR).

[27] Stephen G. Powell, Kenneth R. Baker, and Barry Lawson. 2008. A Critical Review
of the Literature on Spreadsheet Errors. Decision Support Systems 46, 1 (2008),
128–138.

[28] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the Numbers
of End Users and End User Programmers. In IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), 207–214.

[29] Liang Xu, Shuo Wang, Wensheng Dou, Bo Yang, Chushu Gao, Jun Wei, and Tao
Huang. 2018. Detecting Faulty Empty Cells in Spreadsheets. In IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), 423–433.

[30] Rethinking Spreadsheets and Performance Management.
https://www.cutimes.com/2013/07/31/rethinking-spreadsheets-and-perfor-
mance-management/. Accessed: 2018-04-23.

[31] Power BI | Interactive Data Visualization BI Tools. https://powerbi.microsoft.com.
Accessed: 2018-04-27.

[32] Insights in Excel. https://support.office.com/en-ie/article/insights-in-excel-
3223aab8-f543-4fda-85ed-76bb0295ffc4. Accessed: 2018-04-27.

[33] Apache POI - the Java API for Microsoft Documents. http://poi.apache.org/. Ac-
cessed: 2016-02-13.

[34] GoogleNews-vectors-negative300.bin.gz.
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUT-
TlSS21pQmM/edit?usp=embed_facebook. Accessed: 2018-04-27.

[35] word2vec project on google code. https://code.google.com/archive/p/word2vec/.
Accessed: 2018-04-27.

