
JSTrace: Fast Reproducing Web Application Errors

Jie Wang†‡, Wensheng Dou†, Chushu Gao†*, Jun Wei†‡
†State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, China

‡University of Chinese Academy of Sciences, China

{wangjie12, wsdou, gaochushu, wj}@otcaix.iscas.ac.cn

Abstract—JavaScript has become the most popular language

for client-side web applications. Due to JavaScript’s highly-

dynamic and event-driven features, it is challenging to diagnose

web application errors. Record-replay techniques are used to

reproduce errors in web applications. After a long run, these

techniques will record a long event trace that triggers an error.

Although the error-related events are few, they are interleaved with

other massive error-irrelevant events. It is time-consuming to

diagnose errors with long event traces.

In this article, we present JSTrace, which effectively removes

error-irrelevant events from the long event trace, and further

facilitates error diagnosis. Based on fine-grained dependences of

JavaScript and DOM instructions, we develop a novel dynamic

slicing technique that can remove events irrelevant to the error.

We further present rules to remove irrelevant events, which

cannot be removed by dynamic slicing. In this process, many

events and related instructions are removed without losing the

error reproducing accuracy. Our evaluation on 13 real-world web

application errors shows that the reduced event traces can

faithfully reproduce errors with an average reduction rate of 97%.

We further performed case studies on 4 real-world errors, and the

result shows that JSTrace is useful to diagnose web application

errors.

Keywords—record-replay; dynamic slicing; event trace

reduction; dependence analysis

1. Introduction

JavaScript has been widely used in web applications.
JavaScript-based web applications, e.g., Gmail [1], Google Doc
[2] and FaceBook [3] can provide rich and highly interactive
user experience. However, due to JavaScript’s event-driven
features and complicated DOM manipulations, a variety of bugs
could be easily introduced into web applications [4][5][6]. These
bugs can cause serious errors, such as abnormal functionality,
missing UI elements, and so on [4][5].

JavaScript-based web applications are event-driven. Errors
in web applications are usually triggered by a specific sequence
of events (e.g., user interactions) [7]. In order to facilitate
diagnosis of web application errors, various record-replay
techniques are used to faithfully reproduce them [8][9][10].
There are two kinds of record-replay techniques. The event-
based record-replay techniques [8][9] record user interactions
(events) and use them to drive the execution during replay. The
memory-based record-replay techniques [10] record every value
loaded from memory during record and replace memory loads
with these values during replay. These techniques are useful for
error diagnosis when the event traces are short.

However, JavaScript-based web applications usually keep
running for a long time (e.g., writing a document in Google Doc

may take an hour). Thus, amounts of events are generated, and
the current record-replay techniques [8][9][10] will generate a
very long event trace. For example, Mugshot [8] can generate
75-795KB uncompressed event trace (nearly 3,000 events) per
minute. In order to diagnose an error, developers have to replay
and inspect all the events in the event trace. This would be time-
consuming and exhausting. Delta debugging can be adopted to
reduce event traces. However, without knowing the relationship
among events in the event trace, delta debugging blindly
generates subtraces and validates them. Due to large search
space, delta debugging cannot scale to long event traces [11].

In this article, we focus on how to speed up the web
application error reproducing by removing error-irrelevant
events in the event trace. Our key observation is that most of the
events in an event trace are irrelevant to an error. After removing
these irrelevant events, the error can still be faithfully reproduced.
Our basic idea is to build a Dynamic Dependence Graph (DDG)
to trace JavaScript instruction dependences by analyzing the
use-def relationship of these instructions, and an Event
Dependence Graph (EDG) to trace event dependences based on
DDG. Then, we backward traverse EDG from the event e where
the error occurs, and only keep the key events that are depended
by event e. The remaining events are considered irrelevant to the
error, and removed from the event trace. Finally, a short event
trace (error related events) with related dependences is provided
to developers, so that they can quickly reproduce an error and
save time for error diagnosis.

The key challenge in the above process is how to precisely
capture dynamic dependence of JavaScript instructions and
determine whether an event is irrelevant to the error. Specially,
we need to address four challenges. First, JavaScript is a
dynamic and weak-typing language, which magnifies the
difficulty to perform dependence analysis. Second, the DOM
APIs (a special kind of JavaScript instructions) used for
manipulating the DOM tree (tree-structure representation of a
HTML page) are implemented by native code [12]. Treating
these DOM APIs as general JavaScript instructions without
knowing their semantics can miss key dependences. For
example, we cannot obtain the dependence between
div.getAttribute(“key”) and div.setAttribute(“key”, “value”)
without considering the semantics of getAttribute and
setAttribute. Third, simply treating the whole DOM tree as a
single global JavaScript object can introduce false dependences.
Fourth, although an event ei depends on another event ej in EDG,
event ej can be removed even if event ei is selected. We use a
simple 3-event example to illustrate this: e1: {a = 1}, e2: {a++;
b=2}, e3 {if (b > 0) throw new Error()}. In this example, e3

* Corresponding author

depends on e2 (e3 uses variable b that is modified by e2) and e2
depends on e1 (e2 uses variable a that is modified by e1).
However, e1 can still be removed, because the condition (b>0)
in e3 is true even if event e1 is removed.

To address the first three challenges, we abstract the
JavaScript instructions and DOM instructions (a special kind of
JavaScript instructions) to precisely capture dependences among
them and produce a dynamic dependence graph. First, we model
JavaScript instructions and provide the dependence propagation
rules among them. Second, we model all the DOM APIs and
map them to a fine-grained DOM dependence model. Then, we
perform dependence analysis on the fine-grained DOM
dependence model. For the last challenge, we introduce a rule-
based approach to further remove those irrelevant events that
cannot be removed by only analyzing event dependences.

Our approach is implemented into a tool JSTrace, which can
dramatically remove irrelevant events while keeping the reduced
trace reproducible. JSTrace is implemented in pure JavaScript,
and enables easy integration into the client-side web
applications and executed in any browser. We have evaluated it
on 13 real-world errors in 10 popular web applications from
different domains. The evaluation shows that we can efficiently
remove 97% irrelevant events, and still faithfully reproduce all
these errors.

In summary, the contributions of this article are as follows:

 We propose a novel approach to analyze dependences by
abstracting JavaScript and fine-grained DOM
instructions, and design dependence propagation rules
among these instructions.

 We propose an effective event slicing approach to filter
out irrelevant events based on event dependence graph.

 We propose a rule-based approach to further remove
irrelevant events that are still depended by others in the
event dependence graph (i.e., they cannot be removed by
event dependence analysis).

 We have implemented our approach in the tool JSTrace.
The evaluation on 13 real-world web applications errors
shows that JSTrace can remove 97% of irrelevant events,
and reproduce the errors faithfully.

 As the ultimate goal of JSTrace, we applied our
dependence analysis on several real-world web
application errors. The result shows that our dependence
analysis is helpful in diagnosing these errors.

An earlier version of this work appeared at ISSRE 2015 [13].
In this article, we extend the earlier version in three aspects. (1)
We further study irrelevant events that cannot be removed by
our ISSRE version, and come up a rule-based approach to
further remove irrelevant events (28% of all remaining
irrelevant events by our ISSRE version can be removed). (2) We
perform our experiments on more subjects (from 7 to 10
applications, and 10 to 13 errors), and further validated
JSTrace’s effectiveness. (3) We perform four case studies about
how JSTrace is used to help diagnose JavaScript-based web
application errors, and validated the usefulness of JSTrace.

The remaining of this article is organized as follows. Section
2 presents our motivation. Section 3 introduces our approach.
Section 4 describes JSTrace implementation. In Section 5 we
evaluate our tool on real-world errors in terms of reproducibility,
efficiency, performance and applicability. Section 6 describes
the study on how JSTrace is used to help diagnose web
application errors. Section 7 discusses threats to our evaluation.
Section 8 describes related work and Section 9 concludes this
article.

2. Motivation

In this section, we illustrate our motivation using a real-
world example, and explain how to remove irrelevant events for
this example.

2.1. Example

Fig. 1 shows the TodoList [14] web application that manages
a calendar for users. When a user clicks the add button on a day
view (Fig. 1c), a dialog pops up to create a to-do task (Fig. 1d).
After the user fills up all necessary information, he/she clicks the
save button. The application checks the title of the to-do task,
and an error will occur if the title can be trimmed to an empty
string (Fig. 1e). The simplified source code for TodoList is
shown in Listing 1. The event handler onAdd (Line 20) is
invoked when clicking the add button in Fig. 1c, and the event

Fig. 1. TodoList application. The buggy event trace is shown in Fig. 2.

ID Event Event handler Description

1 Load page Load page

…
Click add button and

directly close it (Fig. 1a

and Fig. 1b).

5 Click add button on Dec 11 onAdd (Line 20)

…

11 Click close button

… Change settings

(Omitted events

between Fig. 1b and

Fig. 1c)

73 Click setting button

…

294 Click add button on Dec 13 onAdd (Line 20)

Click add task button

and fill in the form in

the popup dialog. The

bug is triggered when

click the save button

(Fig. 1c and Fig. 1d).

…

301 Input task name

…

305 Select task time

…

309 Select task priority

…

313 Select task color

…

317 Click save button onSave (Line 28)

∗The 4 events in bold font are minimal events to reproduce the error.
Fig. 2. An event trace that triggers the error in Fig. 1e. The first column

shows the event ID, and we show some of them in Fig. 1 as red numbers.

...(a) (b)

(c)

(e)

(d)

5
11

294

317

313

301

309305

handler onSave (Line 28) is invoked when clicking the save
button in Fig. 1d.

Fig. 2 lists a real event trace that triggers the above error. In
this trace, the user clicks add button on the view of Dec 11(event
5, Fig. 1a), and then clicks close button to cancel this operation
(event 11, Fig. 1b). He/she then performs a series of actions such
as changing calendar settings (events 73~293). Afterwards,
he/she clicks add button on the view of Dec 13 (event 294, Fig.
1c), and types an empty string with a blank space in the title field
(event 301), fills in other fields in the form, and clicks save
button (event 317), which finally triggers the error (Fig. 1e).
Replaying the entire event trace can reproduce the error
successfully. However, it is not efficient for debugging and error
diagnosis. We observe that most of the events are irrelevant to
the error, such as, clicking the add button and then clicking close
button to close the popup window (events 5~11, Fig. 1a and Fig.
1b), changing settings (events 73~293) and filling in some form

fields (events 302~316). Removing these events will not affect
the occurrence of the error. The key events {1,294,301,317} can
faithfully reproduce this error.

2.2. Challenges

In order to remove the irrelevant events, we need to identify
the precise dependences between events. In doing so, there are
several challenges we should overcome.

1) The DOM APIs are defined by the W3C and implemented
as native code in modern browsers. We cannot obtain the
dependences among these DOM APIs and DOM elements. For
example, the DOM API getElementById (Line 30) suggests the
dependence between the DOM element title with JavaScript
object todo.title. Without understanding the semantics of
getElementById, we will miss this key dependence. Even worse,
JavaScript has some inconsistent DOM APIs. Listing 2 shows a
classical example. In Listing 2, after changing the className for
the element div by setting the field className, we can access the
className field by the operation div.className. But, we can
also access the className field by calling the native function
getAttribute with the attribute name class. These inconsistent
DOM APIs makes dependence analysis in JavaScript
challenging.

2) DOM is a tree object. One modification on a node may
affect its parent node or its subtree. Therefore, only analyzing
general JavaScript code is insufficient—the dependence
analysis must subtly model how a DOM instruction depends on
another to avoid missing dependences. For example in Listing 1,
the value attribute of DOM element title (Line 30) depends on
the operation that updates this field. Actually, it also depends on
the operation that appends the DOM element title to the DOM
element popup by assigning a HTML code segment to the
attribute innerHTML of DOM element popup (Line 23). The
operation (Line 23) ensures that a node with id title exists. To
precisely capture these dependences, dependence analysis on the
DOM model should be field-sensitive. In this way, we assume
that modifying the attribute style (Line 23) of the DOM element
title (Line 23) will not affect the reading of its attribute value.

3) Due to the dynamic and event-driven features in
JavaScript-based web applications, it is hard to build the
dependences of events statically. For example, in Listing 1, the
variable todo.tiltle (Line 37) is defined at line 30 in the event
handler function onSave. The event handler onSave is registered
at line 26, which can only be triggered when the add button is
clicked. In this example, the error occurs only when onAdd is
called before onSave.

2.3. JSTrace Overview

In this article, we abstract JavaScript instructions and DOM
instructions to precisely capture dependences among them. We
further build the dependence between JavaScript instructions
and DOM elements. Based on dynamic dependence analysis, we
build an event dependence graph that describes the dependent
relationship of events. Our slicing algorithm operates on the
event dependence graph.

1 document.onload(function(){
2 new TodoList().init();
3 });

4 function TodoList(){ // Initialize TODO application
5 this.container = {
6 root: document.getElementById('#todolist'),
7 dayView: ...
8 popupView: ...
9 settingView:...
10 }
11 ...
12 }

13 TodoList.prototype.init = function(){ // Initialize day view
14 //Add onAdd handler for every day in the day view
15 day.getElementByClassName('add')[0].addEventListner('click',

onAdd);
16 this.container.dayView.appendChild(day);
17 ...
18 defaultView.show();
19 }

20 function onAdd(){ // Event handler for add button in Fig. 1a
21 ...
22 popup = document.createElement('div');
23 popup.innerHTML = '<div id="title" style=“tt”></div>...<div

id="save"></div>';
24 this.container.popupView.appendChild(popup);
25 ...
26 popup.getElementById('save').addEventListener('click',onSave);
27 }

28 function onSave(){ // Event handler for save button in Fig. 1d
29 var todo = new TODO(); // Create a TODO object
30 todo.title = this.popup.getElementbyId('title').value;
31 tasklist = storage.getTaskList();
32 if(check(todo)){
33 tasklist.push(todo); // storage is an object for persistent
34 }
35 }
36 function check(todo){
37 if(util.trimToEmpty(todo.title).length==0){
38 throw new Error("title of todo can’t be empty");
39 }
40 return true;
41 }

Listing 1. Simplified source code for TodoList.

1 div.className=‘left’;
2 class=div.getAttribute(‘class’); //or class=div.className;

Listing 2. Example of inconsistent DOM interfaces.

We have two key insights to perform the event trace
reduction. 1) If a recorded event never triggers any listeners
registered by the user, we can safely remove it (Section 3.1). We
present this idea using Fig. 3. Fig. 3 shows the partial DOM tree
for the TodoList example in Fig. 1. Dispatching the click event
on the DOM element addBtn will trigger the event handler
onAdd in Listing 1. However, dispatching a click event on DOM
element dayView will not trigger any handler and this event can
be safely removed. 2) If an event e does not affect the variables
that will be used by the erroneous event’s handler directly or
indirectly, the event e can be removed. We trace backward from
the error behavior and identify the operations that affect the
occurrence of the error. As shown in Listing 1, the error behavior
is an exception thrown at line 38, and depends on the value of
variable todo.title. The function onSave (Line 28) is triggered by
event 317 with the value that is set by event 301. Therefore,
event 317 depends on event 301. Since the event handler onSave
is registered in function onAdd (Line 26), which is triggered by
event 294. Thus, event 317 depends on event 294 as well.
Similarly, event 294 depends on the event 1 because event 1
defines the variable todolist.container and the DOM element
variable day (Line 15), and registers event handler onAdd (Line
15). Finally, we obtain the event dependences {317⟶[301,294],
294⟶1}. Therefore, we get the key events {1,294,301,317} and
all the other irrelevant events can be removed. 3) Some events
can still be removed even if they are depended by the erroneous
event. We come up a rule-based approach to remove such
irrelevant events. Suppose that the user firstly removes a task
(this would update the variable tasklist), and then triggers the
above error (this would read the variable tasklist at line 31) when
creating a new task. Thus, this removing-task event is depended
by the error event. However, we consider this removing-task
event irrelevant, because the modification to the variable tasklist
is not used in all the subsequent path conditions (e.g., the path
condition at line 37) and will not affect the occurrence of the
error.

3. Approach

Our overall approach consists of three steps:

Step 1: Unhandled event analysis. If an event never
triggers any user-defined event handler, we can safely remove it
(Section 3.1).

Step 2: Event dependence analysis. We abstract the
JavaScript operations into intermediate instructions and design

a dependence propagation model in JavaScript-based web
applications (Section 3.2). As mentioned earlier, simply treating
DOM manipulations as black box is insufficient, and can miss
dependences. Thus, we perform fine-grained JavaScript
dependence analysis (Section 3.2.1) and DOM dependence
analysis (Section 3.2.2). Further, we use these dependences to
build the Event Dependence Graph (EDG).

Step 3: The key event generation. We perform dynamic
slicing on EDG (Section 3.3) to obtain the key events related to
an error. We perform rule-based weak dependence analysis to
further remove irrelevant events (Section 3.4).

3.1. Unhandled Event Analysis

According to the DOM3 event model [15], an event could be
propagated from the root DOM element along the tree structure
to the target DOM element (capture phase), and then bubbles up
to the root DOM element (bubble phase). All the event handlers
with the same type as the event at the capture phase or bubble
phase will be triggered if the event is not canceled in the middle.
Fig. 4 shows this process.

However, even an event is fired by the user, it may not
trigger any event handler registered by the user. Thus, the event
cannot make any change to the application states. Thus, this
event can be safely removed. For example, in Fig. 3, a
mouseover event on addBtn can trigger the event handler
binding to its ancestor dayView, so the mouseover event cannot
be removed. A click event on popup will not trigger any event
handler, so this click event should be removed.

The key issue in this step is how to obtain the registered
event handlers for each DOM element. To resolve this problem,
we treat each registered event handler as a special attribute of
the corresponding DOM element. We keep a map for the DOM
element to its corresponding event handlers. As shown in Fig. 4,
an event handler can be registered in 3 different ways: (1) Event
handlers can be registered and unregistered by two native
functions addEventListener and removeEventListener. For this
case, we can directly rewrite these two native functions to
intercept the event handlers that are registered or unregistered.
This could be done by taking advantage of JavaScript’s dynamic
feature. (2) For the second and third cases, event handlers can be
set by a property name that is concatenated by a prefix “on” and
the corresponding event type, such as onclick. For this case, we
intercept such property operations and identify event handlers

Fig. 3. Partial DOM tree of TodoList. onmouseover and onclick are event

handlers that are bound to DOM element DayView and AddBtn, respectively.

Fig. 4. Standard event flow model.

1) div.addEventListener(‘click’, f)
2) div.onclick=function(){…}
3) <div onclick=’…’></div>

document

body

div

Standard DOM event
flow

capture

bubble

root

Day
View

Settin

g
View

Popup

View

Add

Btn

day13 day11

Todo
View

popup

title Save

Btn

onmouseover

onclick

registered. Through the above setting, we can associate all the
registered event handlers to their corresponding DOM elements.

3.2. Event Dependence Analysis

If an event ei depends on another event ej, one of the
following two conditions should be satisfied: (1) The event
handler of ei reads some JavaScript variables defined or written
by the event handler of ej. (2) The event handler of ei reads some
DOM elements appended or modified by the event handler of ej.
Thus, we perform JavaScript dependence analysis (Section 3.2.1)
and DOM dependence analysis (Section 3.2.2) in the following.

3.2.1. JavaScript Dependence Analysis

JavaScript dependence analysis builds the dependences
among JavaScript instructions. If a JavaScript instruction op1
uses a variable that is defined or modified by another instruction
op2, we say that op1 depends on op2. Note that each DOM
instruction is also a JavaScript instruction, here we only consider
the dependences among JavaScript instructions without
considering DOM instructions’ semantics. We will discuss
DOM dependence analysis in Section 3.2.2.

We summarize the abstract JavaScript instructions that can
affect JavaScript dependence in Fig. 5. A constant value cons
can be a number num, a string str, and the special constant
undefined or null. A variable v represents an object in JavaScript.
The instructions include constant assignment, variable
assignment, function definition, property reading and writing,
binary operation, unary operation and function call. Each
instruction (op) is assigned a unique id (op.id). Note that a DOM
API could be either property access or function call. Therefore,
each DOM instruction is also a JavaScript instruction, which is
Get Property, Put Property or Function Call.

Table 1 lists all the rules for JavaScript dependence analysis
(JSDep(op)). We use def(v) to denote the instruction op that
defines or recently changes variable v, and dp(op) to denote the
instruction op’s dependences. For example, def(x) = 5 denotes
that an variable x is modified by an instruction with id = 5. We
then execute the instruction “y = x” (with id=10). According to
the rules in Table 1, def(y) = 10, and dp(10) = {5}. Thus, we
build the dependence between instructions 10 and 5.

For an event handler, it should depend on the instruction that
registers the event handler. Losing this dependence may cause
mistakenly pruning the registering events and thus fail to replay.
We treat each registered event handler as a property of the
related DOM element. It is initialized when it is registered and
accessed when the event handler is triggered. So, we can resolve
this dependence in DOM dependence analysis.

3.2.2. DOM Dependence Analysis

The DOM APIs are designed for manipulating web page’s
state (the DOM tree). Our JavaScript dependence rules (Section
3.2.1) cannot precisely capture the dependence among these
DOM APIs. We summarize the problems as follows:

 Inconsistent ways to modify the DOM tree. The DOM tree
can be modified by an assigning statement or a native
function call. As shown in Listing 2, an attribute of a DOM
element may be set by a name className but accessed by a
native function call with the attribute name class.
Dependences may be missing without understanding the
semantics of these DOM APIs.

 Since DOM is a tree structure, a DOM instruction on a node
may depend on previous modifications on this node’s
ancestor nodes or child nodes. For example, in Fig. 6, after

Table 1. JavaScript dependence analysis.

op JSDep(op) Description

v = cons def(v)=op.id; dp(op)=∅ Constant variables do not depend on others.

v1 = v2 def(v1)=op.id; dp(op)={def(v2)} Assign operation depends on the definition of v2.

v = {op*} def(v1)=op.id; dp = ∅ Function variables do not depend on others.

v1 = v2.v3 def(v1)=op.id; dp(op)={def (v2), def (v3), def (v2.v3)}
Get property operation depends on object v2, property name v3, and the
property value v2.v3.

v1.v2 = v3 def(v1.v2)=op.id; dp(op)={def (v1), def (v2), def (v3)} Set property operation depends on object v1, property name v2, and value v3.

v1 = v2 ⨂ v3 def(v1)=op.id; dp(op)={def (v2), def (v3)} Binary operation depends on the two input values v1, and v2.

v1 = ⨀ v2 def(v1)=op.id; dp(op)={def (v2)} Unary operation depends on the input value v2.

v1.v2 ({vp1,…,vpn}) dps(op)={def (v1), def (v1.v2), def (vp1), …, def (vpn)}
Function call operation depends on object v1, the function object v2, and the

input parameters vp1, …, vpn.

v=v1.v2({vp1,…, vpn})
def(v1)=op.id; dp(op)={def (v1), def (v1.v2), def
(vp1), …, def (vpn), def(ret)}

Function call operation depends on object v1, the function object v2, and the
input parameters vp1, …, vpn. ret represents the return value of function v2.

JavaScript abstract instructions
cons ::= num | str | bool | undefined | null

v ::= object variable

op ::= v = cons // Assign a constant to v
 | v1 = v2 // Assign variable v2 to v1

 | v = {op*} // Assign a function object to v

 | v1 = v2.v3 // Get property v3 of object v2
 | v1.v2 = v3 // Put property v2 of object v1

 | v1 = v2 ⨂ v3 // Binary operation, ⨂∈{+, −, ∗, /, etc.}

 | v1 = ⨀ v2 // Unary operation, ⨀∈{!, etc.}
 | v1.v2 ({vp1, …, vpn}) // Call object v1’s function v2 without return

 | v = v1.v2 ({vp1, …, vpn }) // Call object v1’s function v2 with return

Fig. 5. JavaScript abstract instructions.

Fig. 6. Dependence example for DOM instructions.

body

table div

p

op1: add node div

op2: add node p

op3: read innerHTML of div

adding a node div to node body in op1, a new node p is
added to node div by op2. Therefore, op2 depends op1. op3
depends on op1 because the operated DOM element div
must exist, and op3 depends on op2 because the reading
innerHTML operation on the node div will get the
serialization string of its subtree. Thus, we need to scan the
DOM tree to validate whether there is dependence between
two DOM instructions in the DOM tree.

To resolve these problems, we abstract the DOM
instructions and extend the JavaScript dependence analysis to
propagate DOM-specific dependences. We summarize the
DOM APIs into eight instructions in Fig. 7. DOM instructions
can (1) read, add, remove, and replace a DOM element, and (2)
modify a subtree of a DOM element, and (3) read, write, and
remove an attribute of a DOM element. Each DOM instruction
dop associates with a JavaScript instruction op.

DOM dependence analysis builds the dependences among
DOM instructions. If a DOM instruction dop1 uses a DOM
element that is defined or modified by another DOM instruction
dop2, we say that dop1 depends on dop2. Table 2 presents the
dependence propagation rules of DOM dependence analysis.
The first column shows DOM instructions. The second column
shows the DOM dependence rules DOMDep(dop). We treat the
DOM tree as a fine-grained variable that contains nodes and
attributes. We associate the DOM elements with the instruction
id that defines or modifies the DOM elements. In Table 2, we
use the functions bind(op, ele, dop) and bind(op, ele, attr, dop)
to build the association, clearBind(ele), clearBind(ele, attr) and

clearSubTreeBind(ele) to clear the association when necessary,
and dp(op) to denote the instruction op’s DOM dependences.

To trace DOM-specific dependences, we introduce the
function SearchDOMDep to search for DOM-specific
dependences. Algorithm 1 presents our searching algorithm for
SearchDOMDep. The algorithm first searches the ancestors of
ele for the DOM instructions that have the types of DNAdd,
DNRm, DNReplace and DSubtreeMod (Line 1). Thus, we can
guarantee the structural integrity (all its ancestor nodes already
exist) when we access ele. Next, if the instruction dop is reading
an attribute attr of ele, then current dop will depend on the
instructions that modified this attribute (Line 3). Finally, if the
current DOM instruction dop is related to the subtree (such as
reading innerHTML), the subtree nodes will be searched (Line
5). We have manually inspected the DOM APIs according to
DOM3 specification [15] to decide the DOM instruction type
and whether it is necessary to search the subtree of ele
(needSearchSubtree).

Since a DOM instruction dop is also a JavaScript instruction
op, the dependence of a DOM instruction dop includes two parts:
JavaScript dependences calculated by JSDep(op) and DOM
dependences calculated by DOMDep(dop).

3.2.3. DDG and EDG

In this section, we describe how to build the Dynamic
Dependence Graph (DDG) and the Event Dependence Graph
(EDG).

The Dynamic Dependence Graph DDG(N, E) consists of a
set of nodes N and a set of directed edges E. Nodes N are

Table 2. DOM dependence analysis.

Id dop DOMDep(dop) Description

1 DNRead ele dp(dop.op)={SearchDOMDep(ele)} DOM element read depends on instructions that create/modify ele.

2 DNAdd pEle, ele
dp(dop.op)={SearchDOMDep(pEle)}

bind(dop.op, ele, DNAdd)

DOM element add depends on instructions that create/modify ele’s parent

node pEle. It also binds a new operation on ele.

3 DNRm ele
dp(dop.op)={SearchDOMDep(ele)}
clearBind(ele)

DOM element remove depends on instructions that create/modify ele. It also
clears operations on ele.

4 DNReplace ele1, ele2

dp(dop.op)={SearchDOMDep(ele1)}

clearBind(ele1)

bind(dop.op, ele2, DNReplace)

DOM element replace depends on instructions that create/modify the

original ele1. It also clears original operations on ele, and binds a new

operation on ele.

5 DSubTreeMod ele

dp(dop.op)={SearchDOMDep(ele)}

clearSubTreeBind(ele)

bind(dop.op, ele, DSubTreeMod)

DOM subtree modify depends on instructions that create/modify the original

ele. It also clears original operations on ele and its subtree, and binds a new

operation on ele

6 DAttrRead ele, attr dp(dop.op)={SearchDOMDep(ele, attr)} DOM attribute read depends on instructions that create/modify ele and attr.

7 DAttrWrite ele, attr

dp(dop.op)={SearchDOMDep(ele, attr)}

clearBind(ele, attr)

bind(dop.op, ele, attr, DAttrWrite)

DOM attribute write depends on instructions that create/modify the original

ele and attr. It also clears original operations on ele and attr, and binds a new

operation on ele.attr.

8 DAttrRm ele, attr
dp(dop.op)={SearchDOMDep(ele, attr)}

clearBind(ele, attr)

DOM attribute remove depends on instructions that create/modify the

original ele and attr. It also clears original operations on ele and attr.

DOM abstract instructions

ele ::= DOM element
attr ::= DOM element attribute

dop ::=

 | DNRead ele // Read a node ele
 | DNAdd pEle, ele // Add node ele to parent node pEle

 | DNRm ele // Remove node ele from DOM tree

 | DNReplace ele1, ele2 // Replace node ele1 with node ele2
 | DSubTreeMod ele // Modify the subtree of node ele

 | DAttrRead ele attr // Read attribute attr of node ele

 | DAttrWrite ele attr // Write attribute attr of node ele

 | DAttrRm ele attr // Remove attribute attr of node ele

Fig. 7. DOM abastract instructions.

Algorithm 1. Searching algorithm for SearchDOMDep

Input: dop (the DOM instruction), ele (the DOM element), attr

(the attribute, if ncecssary)

Output: ids (dependent instruction ids)

//search ancestor nodes to make sure existence of ele, attr

//searching types: DNAdd, DNRm, DNReplace, DSubtreeMod

1. ids = searchAncestors(ele, attr);

2: if attr != NULL //if accessing ele.attr

//get the instruction ids that modify ele.attr

3: ids = ids ∪ getMutations(ele, attr);
4: if needSearchSubtree(dop)

5: ids = ids ∪ searchSubtree(ele);
6: return ids;

JavaScript instructions or DOM instructions, and edges E are the
directed dependences among nodes N.

We build the Event Dependence Graph EDG(N, E) based on
DDG. EDG consists of a set of event nodes N and a set of
directed edges E. Each edge ei → ej in E denotes that at least one
instruction in event ei depends on an instruction in event ej.

The example in Fig. 8 illustrates DDG and EDG including
JavaScript dependence and DOM dependence. In order to
clearly demonstrate DDG and EDG, we use a simplified version
of the source code in Listing 1. This simplified example has
three event handers: onLoad, onAdd and onSave. Fig. 8 shows
the dependences of JavaScript and DOM instructions. Note that,
in Fig. 8, each DOM instruction is associated with its
manipulating DOM elements and the dependences are retrieved
by searching the DOM tree in Algorithm 1. As shown in Fig. 8,
the set property innerHTML of popup at line 3 (op4) depends on
op2 according to the JavaScript property writing rule by
resolving JSDep. The operation getElementById (Line 5) reads
the value attribute of element title (op13). Thus, according to the
DAttrRead rule, op13 depends on op2 (by resolving JSDep) and
op4 (by resolving DOMDep). The registering event handler
onSave is treated as an attribute with a unique name (op9). When
it is triggered by an event, an property read to this event handler
is recorded (op11), and this operation depends on the registering
operation op9.

EDG is built based on the DDG. For example, the event that
triggers event handler onSave depends on the event that triggers

onAdd, because there are edges between them. As we can see,
the resulted DDG of combined JavaScript dependence analysis
and DOM dependence analysis consists of 4 kinds of
dependences: JS node to DOM node, DOM node to JS node, JS
node to JS node, and DOM node to DOM node. JavaScript
dependence analysis or DOM dependence analysis alone only
form a subgraph of DDG in Fig. 8.

3.3. Key Event Generation

Calculating the key events related to an error is a graph
reaching problem. Algorithm 2 gives our slicing algorithm DS.
The algorithm backward traverses the EDG to find all events
that the erroneous event depends on. q is a queue that contains
the nodes that need to trace back, and is initialized as the
erroneous event (Line 2). If q contains at least one node, then q
dequeues a node ei and adds it to the result set result (Line 6),
and adds all nodes that ei can reach in the EDG to the queue q
(Lines 7~9). Therefore, we can iteratively trace from these nodes
and find more reachable nodes. A simplified event dependence
graph of our motivation example in Fig. 2 is shown in Fig. 9.
Based on Algorithm 2, we can calculate the key events as [1,
294, 301, 305, 309, 313, 317].

3.4. Weak Dependence Analysis

Our slicing-based approach in Section 3.3 conservatively

assumes that ei depends on ej if there is any dependence between

them, without considering whether the dependence is necessary.
Thus, lots of irrelevant events are still kept in the event slice. Fig.
10 shows an interesting example. Based on Algorithm 2, all
events {e0, e1, e2, e3, e4} should be selected to reproduce the error
in e4. Although e4 depends on e1, e2, and e3, if we remove e1, e2,
and e3, we can still reproduce the error in e4. This is because the
condition (c>0) in e4 can still be true after we remove e1, e2, and
e3. Since these events (e.g., e1, e2, and e3) can be removed and
do not affect the error reproducing, we say these dependences
caused by these events are weak.

It is challenging to remove all weak dependences by
statically analyzing the event trace, since we need to know
whether each instruction can affect the occurrence of the error.
For example, we need to know whether the path condition in
Line 11 is true after removing e3.We observe that, for an

onLoad:

1. popupView = getElementById(…);

onAdd:

2. popup = document.createElement('div')
3. popup.innerHTML = ‘<div id="title"></div>...<div id="save"></div>’;
4. popupView.appendChild(popup)
5. popup.getElementById('save').addEventListener('click',onSave);

onSave:

 6. todo.title = popup.getElementbyId(‘title’).value;

Fig. 8. Constructing DDG and EDG. The above part shows a simiplied
version of source code in Listing 1. Event handers are shown in the dashed

boxes. JavaScript instructions are shown in the rectangles, and DOM

instructions are shown in the round rectangles. The solid arrows show
dependences between instructions. Each DOM instruction is associated with

its manipulating DOM elements (dashed lines). The right part shows the

simplied DOM tree used by this example.

Fig. 9. A simplied EDG for the example in Fig. 2.

__ _____________________________________

Algorithm 2. Slicing algorithm DS
__

Input: g (event dependence graph), e (erroneous event node to

trace from)

Output: result (key events)

1: Set result = {}

2: Queue q = {e}; //initialized as the erroneous event

3: while q.length>0

4: ei = q.deQueue();

5: if !result.contains(ei)

6: result.add(ei);// add adjacent nodes of ei in graph g

7: for each ej in adjacentNodes(g, ei)

8: if !result.contains(ej)

9: q.enQueue(ej);

onAdd

onLoad

onSave

2. Write, popup (L2)

3. DNRead, popup (L3)

4. DSubTreeMod, popup

(L3)
5. DNRead, popup (L4)

9. DAttrWrite, #save, click (L5)

8. DNRead, #save (L5)

7. DNAdd, popupView, popup (L4)

6. DNRead, popupView (L4)

1. Write, popupView (L1)

11. DAttrRead, #save, click

13. DAttrRead, #title, value (L6)

14. PutField, todo, title (L6)

12. DNRead, #title (L6)

save

popup

view

popup

title

1

5 73 294

301
11 305

309 313

317

∙∙∙

instruction op that modifies a variable, if deleting op has no
effect on the subsequent execution, then op can be removed
without affecting the error reproducing. Based on this
observation, we develop two heuristics to conservatively
remove weak dependences in common cases.

 Rule 1. If a variable v is defined / modified by an instruction
op in event e, and it is not used in all the path conditions in
following events, and v is not concerned by the erroneous
event, then all the dependences that depend on op are weak.
Since variable v is not used in the path conditions, its value
cannot change the control flow for the following events, and
will not affect the error occurrence. For example, in Fig. 10,
variable a (in e0, e1, e2, and e3) is not used in the all the
subsequent condition statements and is not concerned by the
e4. Thus, three dependencies that uses variable a (i.e.,
Line8→Line6, Line6→Line5, Line5→Line1) are weak, and
can be removed.

 Rule 2. Assume that a variable v is defined / modified by an
instruction op in event e, and it is used in the subsequent
path condition pc. If the code block in pc does not modify
any state of the web application, e.g., only read some data,
we can safely remove the relevant dependences. No matter
whether the path condition pc is true or not, the state of the
web application will not be changed. So, this will not affect
the error occurrence. For example, in Fig. 10, e2 modifies
variable b, and then e4 uses variable b in Line 10. This
dependence (i.e., Line10→Line7) can be removed since the
code block in Line 10 does not modify any state of the web
applications.

Weak dependence analysis can be performed on the
JavaScript or DOM dependence analysis. Note that our rules
only cover common cases but cannot remove all the weak
dependences. For example, in Fig. 10, e4 depends on e3
(Line11→Line9). This dependence (Line11→Line9) should be
identified as weak dependence, because if we remove e3, the
path condition (Line 11) in e4 still holds true. However, it is
challenging to know whether the path condition in Line 11
holds true after removing e3 by static analysis. Thus, our current
rules cannot remove e3.

3.5 Replayable Criteria

We classify symptoms of web application errors into the
following three cases. 1) The rendering errors (e.g., missing UI
components). Such errors can always be observed on the web

pages. 2) Unhandled exception thrown by the program. Such
errors can cause the code termination or be observed by the
debugging tools. 3) A specific piece of code specified at source
code. It can also be the specific piece of code that is expected to
be executed.

The criterion for web application error reproducibility is
whether the assertions of the above symptoms hold. Our tool can
automatically insert user-defined assertions for a given event
when replaying the event trace.

4. Implementation

Our implementation JSTrace is based on JavaScript record-
replay. We adopted a similar record-replay mechanism to
Mugshot [8]. We extended the replay phase to support event
trace reduction. JSTrace is entirely written in JavaScript and
transparent to users. Thus, JSTrace is easy to deploy.

Architecture. Fig. 11 shows JSTrace’s architecture. At the
record phase, the record proxy retrieves the original web page
and instruments it to record the event trace. The recorded event
trace is periodically updated to the server and stored in a log file.
The Cache is used to store web pages and nondeterministic data
from web server, and makes sure that the replay phase will get
the same data as that at the record phase. The replay proxy is
designed to replay a given event trace. Dynamic analysis module
can perform event trace reduction at several levels, i.e.,
unhandled event analysis (Handler), JavaScript dependence
analysis (JS), DOM dependence analysis (DOM), and weak
dependence analysis (Weak). Users can record or replay an event
trace at a given level by simply switching a proxy in their
browser. JSTrace also provides a web interface to show all
recorded event traces and corresponding reduced traces with
corresponding dependence details.

Instrumentation. We instrument JavaScript code using
Jalangi [10] to capture all executed JavaScript (including DOM)
instructions. The instrumentation is patched to the client side
code, thus the dynamically generated code in JavaScript can be
instrumented as well, such as eval, setTimeout and
setTimeinterval. All the JavaScript instructions in libraries are
instrumented, too.

JavaScript dependence analysis. To trace dependences
dynamically, we incorporate the idea of shadow execution [10],
in which the analysis can update and access the shadow value of
a variable v. The shadow value records the value of def(v). For
simplicity, we define a shadow member for each value using the
JavaScript API defineProperties with the option enumerable
configured as false, since this added shadow member should not
be seen by the original code. When the value of variable v is

e0 1. a=1

2. b=false

3. c=1

4. d=0

e1 5. a++

e2 6. a++
7. b=true

e3 8. a++
9. c=d+2

e4 10. if(b) alert (‘b is true’);

11. if(c>0) throw new Error(‘…’);

Fig. 10. Code snippet for weak dependence analysis. The dependences are
shown as arrows. An arrow with × and Rule1/Rule2 denotes that

dependence can be removed by Rule1/Rule2. e4 is the erroneous event.

Fig. 11. The architecture of JSTrace

Record proxy Replay proxy

Cache

Dynamic analysis
Handler | JS | DOM | Weak

Record request Replay request

Logs

Original web page Log trace reduction
× Rule1

× Rule1

× Rule1

× Rule2

modified, the shadow value is updated with the id of the
operating instruction.

DOM dependence analysis. We regard a JavaScript
instruction as a DOM instruction if the operating object or
returned value is DOM element. The information that are used
by SearchDOMDep (Algorithm 1) is determined by the
semantic of the API according to DOM specification [15], e.g.,
input.value is a DNRead instruction performed on DOM
element input, and it is unnecessary to search the subtree of input
to find dependences.

Weak dependence analysis. Weak dependence analysis is
an optimization process that is performed on the basis of other
analysis such as JS or DOM analysis. For Rule 1 in Section 3.4,
we ignore the instructions whose operated variables are not
concerned by the erroneous event and are not depended by the
variables in the subsequent path conditions. For Rule 2 in
Section 3.4, we modify the instrumentation module of Jalangi
[10] to capture the enter point and the exit point of each branch
for the corresponding path condition, we further judge whether
there are writing instructions between these two points.

5. Evaluation

In this section, we measure reproducibility and efficiency of
JSTrace on 13 real-world errors from 10 different open source
web applications in GitHub. Besides, we also evaluate JSTrace
on 12 errors used by [11], which were collected from
StackOverflow [16]. Thus, we can measure whether JSTrace is

applicable to other error dataset. Specifically, we investigate the
following four research questions:

RQ1: Can the reduced event traces faithfully reproduce the
errors?

RQ2: Can JSTrace efficiently reduce the event trace?

RQ3: Is JSTrace’s performance acceptable?

RQ4: Is JSTrace applicable to other error dataset?

5.1. Experimental Subjects and Methodology

To answer research questions RQ1-3, We evaluated JSTrace
on 13 real-world errors from 10 different open source web
applications in GitHub. In order to select representative web
applications, we first used the condition “language:JavaScript
tag:bug comment:>2” and the keywords repro, steps, or sample
(i.e., common used words in a bug report describing reproducing
steps) to collect web applications that satisfy the following
criteria: they contain JavaScript; the issues are marked as bugs
with multiple comments; and they have descriptions for
reproducing. From the result, we made further study on the
errors, and selected the errors that can be manually reproduced
and have certain difficulty to diagnose (with multiple steps to
reproduce). Finally, we classified them to different categories
and bias the applications that are more popular, weighed by the
number of stargazers in GitHub. Since some applications do not
maintain issue lists in Github (e.g., KodExplorer and TODOList
in Table 3), but they document their changes in a change log file,
we also search the change logs to find bugs using the above
criteria. Finally, we have selected 13 real-world errors form 10
web applications.Table 3 provides an overview of our evaluated
web applications. These web applications are designed for
different purpose and functionality. For example, chart.js [17] is
a drawing library, Handsontable [18] is an excel-like application,
and TodoList is an offline HTML5 application that works like a
calendar. These web applications are complicated, for example,
KodExplorer uses 5.8M JavaScript code.

To answer RQ4, we used web application errors that were
collected from StackOverflow by [11]. We chose 12 out 30 of
their subjects from their project website [26]. The other 18 errors
were removed for the following reasons: (1) The length of
reduced event trace is 1. We prior to selecting complicated errors
which depends on other events. (2) We cannot reproduce the
errors. Table 4 shows the details about the 12 selected web
application errors. As we can see, these applications are
relatively small, but they provide diverse functionality. Since
they have already been used in [11], we regard them as
representative errors in real-world web applications.

Since we did not have the original event trace to trigger these
13 errors in Table 3, we ran these applications for a while, and
finally triggered the errors. Table 5 shows the details about event
traces and the reduced event traces. The column ALL shows the
number of events in the original event traces. The column
Expected shows the number of the minimal events to reproduce
the corresponding errors. In order to evaluate how effective
JSTrace is, we compare JSTrace in different granularity of
JavaScript and DOM dependence, e.g., unhandled event
analysis (Handler) and JavaScript dependence analysis without
consider DOM dependence (JS), combination of JS and coarse-

Table 3. Real-world applications and errors.

Apps Description Stars JS size Error Issue

Chart.js[17] Basic charts 14,803 105K
1 503

2 920

Handsontable[18]
Excel-like data grid

editor
4,989 4.7M

3 1366

4 638

5 2231

JPushMenu[19] A menu library 134 1.5M 6 1

TodoList[14] Offline calendar 19 312K 7

FullPage[20]
Create full screen
scrolling websites

9,518 882K 8 146

Editor.md[21] A markdown editor 530 257K 9 18

My-mind[22] Online mind mapping 1,449 223K 10 12

Foundation[23]
Responsive front-end
framework

22,885 576K 11 7528

Reveal[24]
HTML presentation

framework
26,893 424k 12 463

KodExplorer[25] Online file manager 585 5.8M 13

Table 4. Web application errors collected from [11].

Subjects Error type LOC Error

Canada Incorrect values 105 14

OnlineShopping Cannot add items to cart 30 15

AgeCaculate Invalid calculation 114 16

CarRental Unresponsive DatePicker 125 17

Insurance Form submitted with empty field 93 18

StudentInfo Invalid input 92 19

Airport Invalid Input 44 20

BestCars Invalid Input 38 21

Game Faulty button click 68 22

Numbers Incorrect calculation 118 23

Patient form Form submitted with empty field 93 24

Dentist form Invalid Input 86 25

grained DOM analysis (CG_DOM), combination of JS and fine-
grained DOM analysis (FG_DOM), and weak dependence
analysis performed on the basis of FG_DOM (Weak). In coarse-
grained DOM dependence analysis, we manually identifies
whether an DOM operation is writing or reading DOM elements.
We simply consider the DOM as a whole object when building
DOM dependence. In fine-grained DOM dependence analysis,
we use the approach in Section 3.2.2. The rate columns (i.e.,
Rate1 and Rate2) measure how many irrelevant events to the
corresponding error are removed. The column Improvement
shows the improvement for each error when performing
FG_DOM analysis (JavaScript and fine-grained DOM
dependence) with/without weak dependence analysis.

5.2. RQ1: Reproducibility

To address research question RQ1, we validated whether the
reduced trace can faithfully reproduce the corresponding error.
Table 5 shows the result on 13 web application errors. The R
flag with value Y or N represents whether the reduced trace can
successfully reproduce the corresponding error or not.

As shown in Table 5, the unhandled event analysis can
significantly reduce event traces, and the resulted event traces
are reproducible (Handler/R). However, the resulted event
traces are still quite long to diagnose. For example, for errors 2
and 9 we remove only less than a half irrelevant events, but the
length of expected event trace is usually no more than 6
(Excepted).

JavaScript dependence analysis (JS/R) and fine-grained
DOM dependence analysis (FG_DOM/R) can further reduce the
event traces. However the resulted event traces of JavaScript
dependence analysis may not be reproducible since JavaScript
dependence analysis ignore DOM dependence. In the 13 errors,
3 of them cannot be reproduced. The fine-grained DOM
dependence analysis (FG_DOM/R) and weak dependence
analysis (Weak/R) performs best in reproducibility, all the errors
are successfully reproduced. The weak dependence analysis
safely removes irrelevant events and obtains the closest event
traces to the expected ones.

Due to the missing DOM dependences, the reduced event
traces of JavaScript dependence analysis failed to reproduce
some errors. This indicates that DOM dependence analysis is
necessary for event trace reduction in web applications.

5.3. RQ2: Efficiency

We use the reduction rate to evaluate the efficiency of event
trace reduction. Table 5 shows the result. The column Rate1
shows the reduction rate of our combined JavaScript and fine-
grained DOM dependence analysis without applying weak
analysis, and is calculated by (ALL – FG_DOM) / (ALL –
Expected). The 100% reduction rate indicates that all the error-
irrelevant events are removed. In Table 5, the average reduction
rate is 96%. Note that fine-grained DOM dependence
(FG_DOM) can remove more irrelevant events compared to the
coarse-grained DOM dependence (CG_DOM). On average,
FG_DOM can remove 7% (calculated by (CG_DOM –
FG_DOM) / (ALL – Expected)) more of irrelevant events. This
shows that our fine-grained DOM analysis is necessary.

However, the result of FG_DOM still contains irrelevant
events. We dug into the errors and found that the unremoved
irrelevant events are mostly caused by the following cases: 1)
Array operation, since we treat an array as a single object. The
applications Chart.js and HandsonTable suffer from this
problem. 2) setTimeout and setTimeInterval. Such function calls
are often used to periodically check and modify a shared data or
showing animations, and result in large amount of dependences
and lower the reduction rate. The applications Chart.js and
FullPage suffer from this problem. 3) Redundant data
dependences. For example, an event ei+1 reads the value of
variable guid, which is set by a previous event ei. Thus, there is
a JavaScript dependence between ei and ei+1. However, the error
does not care about the exact value of variable guid. Thus, the
event ei is not expected to be included in the final reduced event
trace. Almost all the applications suffer from this problem.

Our weak dependence analysis can remove some irrelevant
events in the above cases. The whole reduction rate is 97% when
applying weak dependence analysis (column Rate2 in Table 5).
Our weak dependence analysis can remove 28% of irrelevant
events from FG_DOM (column Improvement in Table 5,
calculated by (FG_DOM – Weak) / (FG_DOM – Expected)).
As we can see in Table 5, 10 out 13 errors benefit from our rule-
based weak dependence analysis (with positive improvement)
and more than a half of irrelevant events are removed in some
cases (e.g., errors 5 and 11). This shows that our rules cover
many cases although it cannot remove all the weak dependencies.
For 3 errors (i.e., errors 6, 10, 12), we have no improvement. It

Table 5. Reduction results on real-world errors.

Error
Event trace Slicing-based approach Weak dependence

#All #Expected #Handler/R #JS/R # CG_DOM/R # FG_DOM/R Rate1 #Weak/R Rate2 Improvement

1 1139 6 351/Y 52/N 79/Y 58/Y 95.4% 44/Y 96.6% 27%

2 1168 6 770/Y 139/Y 139/Y 92/Y 92.6% 82/Y 93.5% 12%

3 403 5 345/Y 29/Y 297/Y 59/Y 86.4% 37/Y 92.0% 41%

4 694 3 668/Y 28/Y 81/Y 58/Y 92.0% 27/Y 96.5% 56%

5 606 6 462/Y 34/Y 51/Y 34/Y 95.3% 15/Y 98.5% 68%

6 342 2 6/Y 2/Y 6/Y 2/Y 100.0% 2/Y 100.0% 0%

7 1410 3 851/Y 21/N 43/Y 24/Y 98.5% 23/Y 98.6% 5%

8 398 3 39/Y 30/Y 36/Y 30/Y 93.2% 29/Y 93.4% 4%

9 1023 2 791/Y 9/Y 72/Y 9/Y 99.3% 8/Y 99.4% 14%

10 1454 6 351/Y 8/Y 22/Y 8/Y 99.9% 8/Y 99.9% 0%

11 567 2 62/Y 30/Y 56/Y 32/Y 91.8% 5/Y 99.2% 90%

12 617 5 500/Y 12/Y 12/Y 12/Y 98.9% 12/Y 98.9% 0%

13 3461 3 2118/Y 17/N 27/Y 26/Y 99.3% 16/Y 99.6% 43%

Average reduction rate 96% 97% 28%

is because the reduced event trace of error 6 is already minimal,
and our rules do not work for errors 10 and 12, since our rules
do not cover the case that a modified variable is used in a
subsequent path condition and the corresponding blocks contain
write operations (as discussed in Section 3.4).

In summary, JSTrace can remove 97% irrelevant events on
average. Our weak dependence analysis can further remove 28%
of irrelevant events that cannot be removed by our previous
work [13].

5.4. RQ3: Performance

Time overhead. The time cost for the original run with /
without JSTrace analysis is shown in Table 6. As we can see, the
time overhead is 1.5~11.3X.

Memory overhead. We have evaluated the memory usage
of the 13 errors on Google Chrome and taken a heap snapshot
on the profiles tab of the developer tool when the execution is
ended. We used this profiler to take snapshot of JavaScript heap
only, thus this size does not include the images, canvas, audio
files, plugin data or native memory.

Table 6 shows the memory usage of the original and JSTrace.
The extra memory is used to record shadow values and DOM
searching information. The result shows that the overhead of
memory is 1.4~13.3X.

Although the time overhead and memory overhead is huge
for the 13 errors in our experiments, JSTrace can still be used in
practice. In common cases, JavaScript code for a single web
page should not be very large, and 1MB+ will be considered
large. The size of our evaluated application “handsontable” has
exceeded 4.7 MB, and our approach can handle it well.
Therefore, our approach can handle practical web applications
properly.

5.5. RQ4: Applicability

We applied JSTrace on the 12 application errors, which were
also used in recent work [11]. Table 7 shows our result. We can
see that, in these errors, all the irrelevant events are removed,
and the corresponding errors can still be reproduced. Because
these 12 errors have simple data flow and many of the events are
user-input events, JSTrace performs much better on these errors
than our 13 real-world errors.

6. Case Study

JSTrace can help diagnose web applications errors not only
by removing irrelevant events, but also by providing summaries
of dependences between statements and associated events. Thus,
JSTrace can facilitate developers to inspect the error-related
code. The previous user study [11] has investigated to what
extent a reduced recording assists programmers in the
debugging process given a faulty web application. The overall
result shows that the reduced recordings significantly increased
programmers’ efficiency in failure detection, fault localization
and fault correction. Therefore, in this section, we performed
several case studies and focused on validating how the provided
dependence summaries can help error diagnosis (usefulness of
JSTrace). The summaries are denoted as a set of dependencies
in form of (si, ei)→(sj, ej), which means statement si depends on
statement sj, and si is executed in event ei, sj is executed in event
ej. In the following code snippets (e.g., Fig. 12), the code
separated by a line is executed during different events.

6.1. Editor.md

Editor.md is an open source embeddable online markdown
editor. There is a functionality error related to a button. When
the button is clicked, a dialog is expected to show up. However,
the dialog does not show up until it is clicked twice. Function
showInfoDialog in Fig. 12 is the event handler for the click on
the button.

For this problem, we may guess that the error is caused by
forgetting to show up the dialog. We can exclude this possibility
since JSTrace observes that infoDialog.show() (Line 9 in Fig. 12)
is executed twice during the two click events. When we inspect
Line 9 and its dependent statements, it is easy to find that, the
code is written in a common singleton pattern judge-create-and-
use (i.e., create the dialog if it does not exist, and then use it).
For the first click e1, infoDialog is an array with 0 element since

Table 6. Overhead.

Error
Original Dynamic slicing

Time(s) Mem(MB) Time(s) Time(X) Mem(MB) Mem(X)

1 8 4.5 14 1.75 12.2 2.71

2 10 4.7 18 1.8 30.5 6.49

3 11 10.3 47 4.3 64.1 6.22

4 12 7.5 38 3.2 74.4 9.92

5 15 23.4 83 5.5 45.3 1.94

6 4 12.5 6 1.5 21.3 1.70

7 21 12.4 237 11.3 161 12.98

8 7 4.8 15 2.1 64 13.33

9 17 11.2 143 8.4 144 12.90

10 13 11.6 64 4.9 16.3 1.41

11 5 5.4 30 6 30.6 5.67

12 9 11.3 45 5 33.1 2.93

13 17 7.7 72 4.2 40.8 5.30

Table 7. Reduction result on applications from [11].

Error #Original #Excepted #Reduced/R

14 17 2 2/Y

15 10 2 2/Y

16 9 3 3/Y

17 11 2 2/Y

18 10 2 2/Y

19 9 2 2/Y

20 6 2 2/Y

21 4 2 2/Y

22 13 2 2/Y

23 8 2 2/Y

24 8 2 2/Y

25 9 2 2/Y

 1. showInfoDialog : function() {
 2. ...
 3. var infoDialog = editor.find("." + classPrefix + "dialog-info");

 4. if (infoDialog.length < 1)

 5. {

 6. this.createInfoDialog(); // create an InfoDialog

 7. + infoDialog = editor.find("."+classPrefix+"dialog-info");//fix
 8. }

 9. infoDialog.show();

 10. ...
 11. return this;

Fig. 12. Code snippet for Editor.md.

no dialog with class name “dialog-info” exists (Line 3). Then
the dialog with class name “dialog-info” is created at Line 6,
however the infoDialog is not updated as expected (like the fix
at Line 7) and still holds nothing. Thus, no dialog shows up when
calling infoDialog.show (Line 9). While for the second click e2,
infoDialog is an array with 1 element since a “dialog-info”
dialog has been created after the first click (Line 6), thus a dialog
can popup (Line 9).

Summary. This case shows that JSTrace can facilitate error
diagnosis by providing dependence information: (Line 3,
e2)→(Line 6, e1), (Line 9, e2)→(Line 3, e2). The developers only
need to inspect the code in the dependence chain, which
significantly reduces the amount of code to inspect.

6.2. HandsonTable

HandsonTable is an excel-like web application. We use <x,
y> to refer to the cell at row x and column y. The following steps
reveal an error. e1: A user clicks the dropdown component of
cell <3, 3> and a dropdown list pops up. e2: The user moves his
mouse over an item in the dropdown list. e3: The user clicks
another cell <3, 2>. Surprisingly, both <3, 2> and <3, 3> have
been changed to an unexpected value while they are expected to
keep unchanged.

JSTrace can trace where the unexpected value come from.
As the source code shown in Fig. 13, cell <3, 3> is mistakenly
updated at Line 14 with the value of the item, which the user
moves mouse over. The parameter row (Line 14) comes from
the function call parameter at Line 3 (i.e., (Line 14, e3)→(Line
3, e1)). The parameter val comes from Line 12 (i.e., (Line 14,
e3)→(Line 12, e3)) which read the value of the item that the user
moves mouse over (i.e., (Line 12, e3)→(Line 7, e2)).

Summary. Although web application uses large amount of
puzzling function closures and variable scopes (such as the
function in Lines 3, 9 and 11, which make the control flow really
hard to understand), JSTrace can make it easier to trace the
abnormal variables.

6.3. Chart.js

 Chart.js is a HTML5 drawing library using web canvas [27].
An error occurs when a user clears a chart and then adds a data
to it. From the user’s view, no data has been added to the chart
since the x coordination is mistakenly calculated as a value that
exceeds the visible boundary of the screen.

As shown in Fig. 14, function addData (Line 19) is called
when adding a data to the chart, and function removeData (Line
1) is called when removing a data from the chart. We set
statement at Line 26 to trace from since this line of code is
responsible for rendering the chart. By inspecting the statements
along the dependence chain, the developer can efficiently locate
the error which is caused by the division by zero error at Line 8
and finally inducing a value Infinity as the x coordination which
is out of the visible boundary.

Summary. The root cause of an error may be far from where
it manifests. By inspecting the statements along the dependence
chain, developers can reduce the diagnosis complexity.

Fig. 13. Code snippet for Handsontable.

1. removeData : function(){

2. ...
3. this.valuesCount--; //when remove a data from a chart

4. }

5. calculateX : function(index){

6. var isRotated = (this.xLabelRotation > 0),
7. innerWidth = this.width - (this.xScalePaddingLeft +

this.xScalePaddingRight),

8. valueWidth = innerWidth/(this.valuesCount - //devision by 0
 ((this.offsetGridLines) ? 0 : 1)),

9. valueOffset = (valueWidth * index) +

 this.xScalePaddingLeft;
10. ...
11. return Math.round(valueOffset);

12. }
13. calculateBarX : function(datasetCount, datasetIndex, barIndex){

14. var xWidth = this.calculateBaseWidth(),

15. xAbsolute = this.calculateX(barIndex) - (xWidth/2),
16. barWidth = this.calculateBarWidth(datasetCount);

17. return xAbsolute + (barWidth * datasetIndex) +

(datasetIndex * options.barDatasetSpacing) + barWidth/2;
18. }

19. addData : function(valuesArray,label){

20. ...
21. this.datasets[datasetIndex].bars.push(new this.BarClass({

22. x: this.scale.calculateBarX(this.datasets.length, dataset
 Index, this.scale.valuesCount+1),

23. ...
24. }));
25. this.scale.addXLabel(label);

26. this.update(); // will read array this.datasets

27. }
Fig. 14. Code snippet for Chart.js.

1. $(that.options.item).attr('data-value', item) //initilize the dropdown items
2. …
3. instance.autocompleteEditor.bindTemporaryEvents(td, row, col, prop…);
4. …

5. mouseenter = function(){ //mouseover a dropdown item
6. ...
7. $(e.currentTarget).addClass('active')
8. }

9. HandsontableAutocompleteEditorClass.prototype.bindTemporaryEvents
10. = function(td, row, col, prop, value, cellProperties){
11. this.typeahead.select = function () {
12. var val = this.$menu.find('.active').attr('data-value');
13. ...
14. that.instance.setDataAtRowProp(row, prop, val);
15. return output;
16. };
17. }

18. HandsontableTextEditorClass.prototype.finishEditing
19. =function (isCancelled, ctrlDown) {
20. ...
21. var val = [[$.trim(this.TEXTAREA.value)]];
22. ...
23. populateFromArray({row: this.row, col:this.col},val…);
24. };
25. HandsontableAutocompleteEditorClass.prototype.finishEditing
26. = function(isCancelled, ctrlDown){
27. this.typeahead.select();
28. this.isCellEdited = false;
29. HandsontableTextEditorClass.prototype.finishEditing.call(this …);
30. }

6.4. My-mind

My-mind is a web application for creating and managing
mind maps. Fig. 15 shows an error snapshot and the related code
snippet. When a user selects a node and edits it, function select
(Line 1) and startEditing (Line 11) will be executed,
respectively. If the user selects node1 and edits it (without
pressing an enter button to finish editing), then directly selects
node2 and starts editing. Then the user will see an error: node2
is not editable and the input content is appended to node1.

To diagnose this error with JSTrace, we added two assertions
about the observed symptoms that node1 is editable and node2
is not (Line 19~20). As the figure shows, the left part of the code
is executed when selecting and editing node1 (e1), and the right
part of the code is executed when selecting and editing node2
(e2). By inspecting the related statements, we find a violation:
node1 is set editable when editing node1 (i.e., (Line 19,
e2)→(Line 13, e1)). The user could see node2 is colored yellow
as expected since it is rendered with proper style (Line 5).
However, the invisible attribute contentEditable is wrong. A
possible bug fix is the code at Line 4 at right part of the figure.

Summary. This case implies that the provided dependence
information especially DOM dependence is helpful for
inspecting concerned variables.

7. Discussion

While our evaluation shows that JSTrace is promising for
reducing event traces and diagnosing errors in web applications,
we discuss some threats and issues in our approach and
evaluation.

7.1. Threats to Validaty

A threat to our evaluation is that we only evaluated our
approach on the 13 real-world errors from 10 applications.
These 10 applications were randomly selected from real-world
open source projects, and developed for different purposes.
They have detailed descriptions for the reproducing of the errors,
and make our evaluation repeatable. Hence, they have

reasonable representativeness. Besides, multiple steps are
needed to reproduce the errors, thus they also have reasonable
complexity.

Non-determinism may make our approach fail. Our
approach can record all the non-deterministic sources. This
makes the replaying and analyzing deterministic and repeatable.

Additionally, all the errors considered occur in a single page
that may be a potential source of bias. However, our approach
has recorded all the non-determinism to make sure that the
replaying starts with a determined environment and the
execution will load the same data [8]. Therefore, from the point
of reproducibility, there is no need to trace events across pages.
Execution on each page will generate an independent event trace.

7.2. Limitations

Our rules for weak dependence analysis only cover common
cases and are incomplete, thus we cannot remove all the weak
dependences. Removing all weak dependences is out of the
scope of this paper. We leave this for future work.

8. Related Work

In this section, we focus on those pieces of work that concern
record/replay in web applications, web application dynamic
slicing, and other techniques on event-based application
debugging.

Record/replay in web applications. Mugshot [8] is a high
performance record-replay system that captures all events and
nondeterministic information (e.g., AJAX requests, random
calls, and timers) to make sure the replaying phase loads the
same data. DoDOM [28] records user interaction events, thus
web applications can be repeatedly executed using the captured
event sequence. WaRR [29] records user interactions in a web
application and uses the recorded interaction trace to perform
high-fidelity replay of the web application. Ripley [30]
replicates execution of the client-side JavaScript application on
the server replica to automatically preserve the integrity of a
distributed computation. Our record-replay component applies

Fig. 15. Code snippet for my-mind.

1. select: function(item) { //when select node1
2. document.activeElement.blur();
3. if (this.current) {
4. this.current.getDOM().node.classList.remove("current");
5. }
6. this.current = item;
7. this.current.getDOM().node.classList.add("current");
8. this.map.ensureItemVisibility(item);
9. MM.publish("item-select", item);
10. }
11. MM.Item.prototype.startEditing = function() {
12. this._oldText = this.getText();
13. this._dom.text.contentEditable = true;
14. this._dom.text.focus();
15. document.execCommand("styleWithCSS", null, false);
16. return this;
17. }

1. select: function(item) { //when select node2
2. document.activeElement.blur();
3. if (this.current) {
4. + this.current.__dom.text.contentEditable = false; //fix code
5. this.current.getDOM().node.classList.remove("current");
6. }
7. this.current = item;
8. this.current.getDOM().node.classList.add("current");
9. this.map.ensureItemVisibility(item);
10. MM.publish("item-select", item);
11. }
12. MM.Item.prototype.startEditing = function() {
13. this._oldText = this.getText();
14. this._dom.text.contentEditable = true;
15. this._dom.text.focus();
16. document.execCommand("styleWithCSS", null, false);
17. return this;
18. }
19. // the expected result: .
20. + Asserts.assertTrue(node1.contentEditable);
21. + Asserts.assertTrue(!node2.contentEditable);

node2 node1

the same technique as Mugshot [8]. For all these work, event
trace reduction are out of their scope.

Web application dynamic slicing. Dynamic slicing
[31][32][33] is more useful in program debugging and testing
than static slicing, several approaches for computing dynamic
slicing through building a reachability-graph or a dynamic
dependence graph [31][32]. Josip [34] utilizes dynamic slicing
to extract client-side web application code for the purpose of
program understanding, debugging and feature extraction. They
use the statements that reveal target behavior as slicing criteria
and perform dynamic program slicing to identify the related CSS,
HTML, and JavaScript. However, their work does not care
which event the execution is performed, their approach of
capturing dependences is inefficient to resolve our challenges.
They use parent-child relation to form structural dependence
edges between DOM elements and use the parsed AST to build
dependences between JavaScript statements. CLEMATIS [7]
corporates the dynamic slicing technique to assist developers
understand the root cause of test assertion failures by linking a
test assertion failure to the JavaScript statements that are
responsible for the checked DOM elements, but they do not
consider the non-DOM test assertions. Autoflox [35] performs
dynamic slicing for locating the DOM access that introduces a
fault, rather than pruning events. It traces the execution of
JavaScript code, and analyze this trace backward until one
possible DOM access that returns incorrect value is found.
While our approach prunes and does not only focus on DOM.

Other techniques on event-based application debugging.
For example, EFF [31] combines dynamic slicing and
checkpoint techniques to provide a record-replay tool that can
reduce event trace and thus support long executions. They also
build an EDG to calculate the event slice, however, their
approach does not fit our cases. The word ‘event’ in their context
refers to system calls and their way to build data dependences is
not suitable for web applications. Our work differs from theirs
for DOM-specific challenges and the way in which the graph is
constructed. We combine dynamic slicing and shadow
execution techniques to trace JavaScript programs. Thus, we can
avoid resolving the complex dynamic features of JavaScript.
AppDoctor [36] uses heuristic rules to reduce the event sequence.
It takes advantage of the specific characteristics of Android
events and compares the states of Android UI that is relatively
simple. Their rules are simple and the approach will fall back to
the worst cases if the rules do not work. Our work presents the
fine-grained dependence models to build and propagate data
dependences. The work [11] aims to reduce event traces using
delta debugging technique that treats the operations as black
boxes. Their approach relies on trial and error to decide which
inputs to discard, instead of dependence analysis.

9. Conclusion

In this article, we propose a tool JSTrace to identify the key
events related to a web application error. Given the expected
symptom that we should reproduce, we precisely trace the
dependences between JavaScript and DOM instructions, and
develop a novel dynamic slicing approach to filter out irrelevant
events. Further, we can remove irrelevant events that are still
depended by the error. The evaluation on real-world web
application errors shows that JSTrace can greatly (97%) reduce
the event trace, and achieves 100% reproducibility. Case studies

reveal that our dependence analysis is also useful for error
diagnosis.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (61672506), National Key Research and
Development Plan (2016YFB1000803), and Beijing Natural
Science Foundation (4164104).

References

[1] “Gmail.” [Online]. Available: https://mail.google.com.

[2] “Google Doc.” [Online]. Available: https://docs.google.com.

[3] “Facebook.” [Online]. Available: https://www.facebook.com.
[4] S. Thummalapenta, P. Devaki, S. Sathishkumar, S. Sinha, S. Chandra,

S. Gnanasundaram, D. D. Nagaraj, S. S. Kumar, and S. S. Kumar,
“Efficient and change-resilient test automation: An industrial case

study,” in Proceedings of International Conference on Software

Engineering(ICSE), 2013, pp. 1002–1011.
[5] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An Empirical

Study of Client-side JavaScript Bugs,” in International Symposium on

Empirical Software Engineering and Measurement(ESEM), 2013, pp.
55–64.

[6] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic

Testing of JavaScript Web Applications,” in Proceedings of ACM
SIGSOFT International Symposium on Foundations of Software

Engineering(FSE), 2014, pp. 449–459.

[7] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman,
“Understanding JavaScript Event-based Interactions,” in Proceedings

of International Conference on Software Engineering (ICSE), 2014, pp.

367–377.
[8] J. Mickens, J. Elson, and J. Howell, “Mugshot : Deterministic Capture

and Replay for JavaScript Applications,” in Proceedings of the

USENIX Conference on Networked Systems Design and
Implementation(NSDI), 2010, pp. 159–174.

[9] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive

Record/Replay for Web Application Debugging,” in Preceedings of
User Interface Software and Technology (UIST), 2013, pp. 473–484.

[10] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: a selective

record-replay and dynamic analysis framework for JavaScript,” in

Proceedings of the Joint Meeting on Foundations of Software

Engineering(ESEC/FSE), 2013, pp. 488–498.

[11] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel, “On the Use of
Delta Debugging to Reduce Recordings and Facilitate Debugging of

Web Applications,” in Proceedings of Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software (ESEC/FSE), 2015, pp. 333–344.

[12] “JavaScript.” [Online]. Available:

http://en.wikipedia.org/wiki/JavaScript.
[13] J. Wang, W. Dou, C. Gao, and J. Wei, “Fast Reproducing Web

Application Errors,” in Preceedings of International Symposium on

Software Reliability Engineering(ISSRE), 2015, pp. 530–540.
[14] “TodoList.” [Online]. Available: https://github.com/01org/webapps-

todo-list.

[15] “Document Object Model Core.” [Online]. Available:
http://www.w3.org/TR/DOM-Level-3-Core/core.html.

[16] “stackoverflow.” [Online]. Available: http://stackoverflow.com/.

[17] “Chart.js.” [Online]. Available: https://github.com/nnnick/Chart.js.
[18] “handsontable.” [Online]. Available:

https://github.com/handsontable/handsontable.

[19] “jPushMenu.” [Online]. Available:
https://github.com/takien/jPushMenu.

[20] “fullPage.js.” [Online]. Available:

https://github.com/alvarotrigo/fullPage.js/issues/146.
[21] “editor.md.” [Online]. Available: https://github.com/pandao/editor.md.

[22] “my-mind.” [Online]. Available: https://github.com/ondras/my-mind.
[23] “foundation-sites.” [Online]. Available:

https://github.com/zurb/foundation-sites.

[24] “reveal.js.” [Online]. Available: https://github.com/hakimel/reveal.js.
[25] “KODExplorer.” [Online]. Available:

https://github.com/kalcaddle/KODExplorer.

http://dict.youdao.com/w/heuristic/

[26] “webapps-delta-debugging.” [Online]. Available:

https://github.com/gigony/webapps-delta-debugging.
[27] “html5 canvas.” [Online]. Available:

http://www.w3schools.com/html/html5_canvas.asp.

[28] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM Invariants
for Web 2.0 Application Robustness Testing,” in Proceedings of the

International Symposium on Software Reliability Engineering(ISSRE),

2010, pp. 191–200.
[29] S. Andrica and G. Candea, “WaRR: A tool for high-fidelity web

application record and replay,” in IEEE/IFIP International Conference

on Dependable Systems & Networks (DSN), 2011, pp. 403–410.
[30] K. Vikram, A. Prateek, and B. Livshits, “Ripley : Automatically

Securing Web 2 . 0 Applications Through Replicated Execution

Categories and Subject Descriptors,” in Proceedings of ACM
conference on Computer and communications security (CCS), 2009, pp.

173–186.

[31] X. Zhang, S. Tallam, and R. Gupta, “Dynamic Slicing Long Running
Programs Through Execution Fast Forwarding,” in Proceedings of

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), 2006, pp. 81–91.
[32] M. Weiser, “Program slicing,” in Proceedings of the International

Conference on Software Engineering(ICSE), 1981, pp. 439–449.

[33] A. De Lucia, “Program slicing: methods and applications,” in
Proceedings of IEEE International Workshop on Source Code Analysis

and Manipulation, 2001, pp. 142–149.

[34] J. Maras, J. Carlson, and I. Crnkovi, “Extracting client-side web
application code,” in Proceedings of international Conference on World

Wide Web(WWW), 2012, pp. 819–828.

[35] F. S. Ocariza, K. Pattabiraman, and A. Mesbah, “AutoFLox: An
automatic fault localizer for client-side JavaScript,” in Proceedings of

IEEE International Conference on Software Testing, Verification and

Validation(ICST), 2012, pp. 31–40.
[36] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively

detecting mobile app bugs with AppDoctor,” in Proceedings of the

European Conference on Computer Systems(EuroSys), 2014, pp. 1–15.

