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    Abstract: This is an extended experimental report that contains the details we have left out due to the space limitation of our VLDB 
2019 paper “An Experimental Evaluation of Garbage Collectors on Big Data Applications”. In this report, we perform the following new 
experiments to verify the generality of our findings presented in the VLDB paper.  

(1) We vary the sizes of CPU and memory in the Join application, and present the performance differences in Section 2 and Section 3.  
(2) We compare the performance differences between DataFrames and RDDs in GroupBy and Join applications in Section 4 and 5.  
(3) We vary the aggregated columns of GroupBy and Join, and performed new experiments on 16GB dataset in Section 6 and 7.  
(4) We present the CPU and memory consumption of SVM and PageRank in Section 8 and 9. 

  
1. Experimental environments 
    We perform the evaluation on a cluster of nine mn4.2xlarge 
server nodes on Alibaba Cloud. One node serves as the master, 
and the others serve as workers. Each node has 4 physical cores (8 
virtual cores) and 32 GB RAM that concurrently runs 4 executor 
JVMs. To avoid memory contention, each JVM is configured to 
run only one task by default. Therefore, each JVM has one 
physical core with 6.5 GB heap, and the remaining 6 GB memory 
of each node is used for off-heap Java NIO buffers, operating 
system, and Hadoop DataNode process. For the master node, the 
driver program is configured to use 16 GB memory to 
accommodate the large (~12.8 GB) parameter vectors in SVM. 
We use Spark 2.1.2 standalone version with Hadoop HDFS 2.7.1, 
running on Ubuntu 16.04 and Oracle HotSpot JVM 64-Bit 1.8.0, 
to perform all the experiments. We use Spark standalone version 
instead of YARN-based version to eliminate the memory effects 
of YARN containers. Before each run, we clear the OS buffer 
caches and restart the workers to eliminate the cache effects. In 
the following sections, we present the experimental results on 
several representative Spark applications. 

2. Join-200G with CPU variation 
2.1 Application description 
    Join is a SQL application simplified from the join query in the 
benchmark [1, 2] as follows.  
    SELECT URL, pageRank, adRevenue  
  FROM Rankings As R, UserVisits As U 
    WHERE R.URL = U.URL; 
    This SQL application is implemented with basic RDD-based 
APIs. The map tasks transform each row of table Rankings to 
<URL, pageRank> record and transform each row of table 
UserVisits to <URL, adRevenue> record. In shuffle phase, each 
reduce task performs join() operator to group the two tables’ rows 
with the same key as <URL, list(pageRanks, adRevenues)>. These 
grouped shuffle records are kept in memory as long-lived 
accumulated records. In output phase, the join() operator 
calculates the Cartesian product of the two sets pageRanks and 
adRevenues, and output <URL, pageRank, adRevenue> record one 

by one. Since these records are directly output into HDFS, they 
are regarded as massive temporary output records. This 
application suffers from heavy shuffle, since the shuffled records 
is the sum of the number of rows from Rankings and UserVisits 
tables. 

2.2 Input data 
    The dataset is generated by HiBench [3].  

Application Input data size  
Join-200G 200GB Uservisits (1.2B rows) 

40GB Rankings (600M rows) 

2.3 Configurations 
    We varied the CPU cores for each task from 1 to 2, while fixing 
the memory size of each executor JVM as 6.5GB. 

Name Executor CPU Executor Memory 
Join-CPU-1 1 (1 core for each task) 6.5 GB 
Join-CPU-2 2 (2 cores for each task) 6.5 GB 

 

2.4 Experimental results 
2.4.1 Performance comparison results 
    We only observed performance differences in reduce stage and 
compared the performance of the slowest reduce task as shown in 
Table 1. 

Table 1: The performance comparison among the slowest reduce 
tasks with different CPU configurations and garbage collectors. 

Name The performance of the slowest reduce tasks 
GC Ttask Tcomp TGC TYGC TFGC TconGC 

Join-CPU-1 Parallel 62m  19m 41m 27s 2436s 0s 
Join-CPU-2 Parallel 41m  14m 25m 28s 1504s 0s 
Join-CPU-1 CMS 32m 30m 31s 30s 1s 64s 
Join-CPU-2 CMS 23m 21m 29s 31s 1s 77s 
Join-CPU-1 G1 35m 31m 120s 80s 40s 631s 
Join-CPU-2 G1 25m 23m 66s 46s 24s 395s 
 
    Figure 1 illustrates the time-series memory usage and GC pause 
time comparison among the slowest Join-CPU-2 reduce tasks with 
different garbage collectors. 



 
 

 

2.4.2 Summary of the results 
Summary: After doubling the CPU cores of each task in the 
applications with long-lived accumulated results, the tasks’ 
execution time drops ~30% and GC time drops 6-45%. The 
root causes are that (1) The collectors launch more GC threads to 
perform the GC work that reduces the individual GC pause time. 
For example, the average full GC pause time of Parallel tasks 
drops from to 18.2s to 11.5s, due to more parallel GC threads to 
perform the GC work. (2) The CPU contention between the 
application threads and GC threads is reduced. For CMS and G1 
tasks, the computation time drops ~30% due to alleviated CPU 
contention between data operators and GC threads. However, this 
CPU enlargement cannot reduce the GC frequencies. 

Implication: For the applications with CPU-intensive operators 
and long-lived accumulated records, it is better to allocate more 
CPU cores for each task to avoid long GC pause and serious CPU 
contention. Furthermore, we need to design intelligent policies to 
balance CPU utilization between the tasks and garbage collectors.  

3. Join-200G with memory variation 
3.1 Application and Input data 
    The application and datasets are the same with that in “Join-
200G with CPU variation” in Section 2. 

3.2 Configurations 
    We varied the memory for each task from 6.5G to 5.5G, while 
fixing the CPU cores of each task to be 1. 

Name Executor CPU Executor Memory 
Join-6.5GB 1 (1 core for each task) 6.5 GB 
Join-5.5GB 1 (1 core for each task) 5.5 GB 

 

3.3 Experimental results 
3.3.1 Performance comparison results 
    We only observed performance differences in reduce stage and 
compared the performance of the slowest reduce tasks as shown in 
Table 2. 

Table 2: The performance comparison among the slowest reduce 
tasks with different memory configurations. 

Name The performance of the slowest reduce task 
GC Ttask Tcomp TGC TYGC TFGC TconGC 

Join-6.5G Parallel 62m 19m 41m 27s 2436s 0s 
Join-5.5G Parallel OOM - - - - - 
Join-6.5G CMS 32m 30m 31s 30s 1s 64s 
Join-5.5G CMS 34m 32m 38s 37s 1s 288s 
Join-6.5G G1 35m 31m 120s 80s 40s 631s 
Join-5.5G G1 36m 33m 164s 110s 54s 743s 

3.3.2 Summary of the results 
Summary: After lowering 15% of the task’s memory size in 
the application with long-lived accumulated results, Parallel 
tasks suffer from OOM errors and CMS/G1 tasks suffer from 
3-6% longer execution time and 18-27% longer GC time. The 
OOM root cause is that Parallel collector suffers from the smallest 
old space due to its heap sizing policy. Small old space cannot 
accommodate the accumulated shuffled records plus the extra 
buffers generated in shuffle spill. For CMS and G1 tasks, the 
performance degradation is caused by the increased GC cycles 
under higher memory pressure.  
Implication: Given input data size, we need an intelligent 
memory estimator to determine the proper memory size to avoid 
OOM errors and reduce the GC overhead.  

4. SQLGroupBy with DataFrame APIs 
4.1 Application description 
GroupBy is a SQL application simplified from the aggregation 
query in Spark’s BigSQL benchmark [1, 2]. The sourceIP, 
visitDate, and adRevenue are three columns from table UserVisits. 
    SELECT sourceIP, visitDate, SUM(adRevenue) 
  FROM UserVisits GROUP BY sourceIP, visitDate; 
 
    We can use both RDD-based and DataFrame-based APIs to 
implement this application. For performance comparison, the 
RDD-based implementation is named as RDDGroupBy, and the 
DataFrame-based implementation is named as SQLGroupBy. 

4.2 Input data 
    The dataset is generated by HiBench [3].  

Application Input data size 
SQLGroupBy 200GB Uservisits (1.2B rows) 

 
Figure 1: The memory usage and GC pause time comparison among the Join-CPU-2 slowest tasks. FGC Pause only illustrates the time of stop-the-
world phases in each full GC cycles, including initial-mark, remark, and cleanup phases. The concurrent-mark phase is illustrated by the blue circle, 
and the diameter of the circle denotes the span time of the concurrent-mark phase.  

 



 
 

 

4.3 Configurations 
 

Name Executor CPU Executor Memory 
SQLGroupBy 1 (1 core for each task) 6.5 GB 
RDDGroupBy 1 (1 core for each task) 6.5 GB 

 

4.4 Experimental results 
4.4.1 Performance comparison results 
    We only observed performance differences in reduce stage and 
compared the performance of the slowest reduce tasks as shown in 
Table 3. 

Table 3: The performance comparison among the slowest reduce 
tasks with RDD and DataFrame APIs. 

Name The performance of the slowest reduce task 
GC Ttask Tcomp TGC TYGC TFGC TconGC 

RDDGroupBy P 24m 6m 17m 28s 16m 0s 
SQLGroupBy P 12m 12m 3s 2s 1s 0s 
RDDGroupBy C 17m 15m 47s 30s 17s 129s 
SQLGroupBy C 12m 12m 4s 3s 0.4s 17s 
RDDGroupBy G1 20m 15m 55s 45s 19s 264s 
SQLGroupBy G1 12m 12m 1.2s 1s 0.2s 0.1s 
* P refers to Parallel collector, while C refers to CMS collector. 

    Figure 2 illustrates the time-series memory usage and GC pause 
time comparison among the slowest SQLGroupBy reduce tasks 
with different garbage collectors. 

4.4.2 Findings 
Finding 1: Three collectors’ GC time drops down from 1-17 
min to ~4s, and the individual full GC pause time of 
ParallelGC tasks drops down from ~10 s to ~0.3 s. The reason 
is that Spark SQL adopts an explicit memory manager named 
Tungsten, which is highly optimized for SQL operations [4]. 
Tungsten reduced the number and size of in-memory data objects 
through operating many SQL operations directly against binary 
data rather than Java objects. It stores the shuffled records in 
serialized binary form, compacts them into map-like binary data 
structure, and performs aggregation functions directly on the 
serialized objects. As a result, the volume of in-memory Java 
objects are greatly reduced, which further reduces the GC 
frequency and the work of object marking and sweeping. 
However, Tungsten is currently only applicable for specific SQL 

operators with many limitations. (1) It requires the operated data 
types are fixed-width types such as primitive Int, Double, and 
Date. Variable-length types like String are not supported. (2) The 
aggregation functions are able to be performed on serialized data 
with fixed-width results. Thus, the aggregation functions do not 
need to deserialize the binary objects into Java objects and do not 
generate intermediate Java objects during aggregation. In Spark 
SQL, typical aggregation functions such as SUM and AVG satisfy 
this requirement, but many user-defined aggregation functions 
(UDAF) may generate complex user-defined types that cannot fit 
Tungsten’s internal format. 
 

5. SQLJoin with DataFrames APIs 
5.1 Application description 
Join is a SQL application simplified from the join query in the 
benchmark [1, 2]. The pageRank is a column from table Rankings 
and adRevenue is a column from table UserVisits. 
    SELECT URL, pageRank, adRevenue  
  FROM Rankings As R, UserVisits As U 
    WHERE R.URL = U.URL; 
    We can use both RDD-based and DataFrame-based APIs to 
implement this application. For performance comparison, the 
RDD-based implementation is named as RDDJoin, and the 
DataFrame-based implementation is named as SQLJoin. 
 

5.2 Input data 
    The dataset is generated by HiBench [3].  

Application Input data size  
SQLJoin and 
RDDJoin 

200GB Uservisits (1.2B rows) 
40GB Rankings (600M rows) 

 

5.3 Configurations 
 

Name Executor CPU Executor Memory 
SQLJoin 1 (1 core for each task) 6.5 GB 
RDDJoin 1 (1 core for each task) 6.5 GB 

 

 
Figure 2: The memory usage and GC pause time comparison among the SQLGroupBy slowest reduce tasks on 200GB dataset. 

 

 



 
 

 

5.4 Experimental results 
5.4.1 Performance comparison results 
    We only observed performance differences in reduce stage and 
compared the performance of the slowest reduce task as follows. 

 
Table 4: The performance comparison among the slowest reduce 
tasks with different APIs. 

Name The performance of the slowest reduce task 
GC Ttask Tcomp TGC TYGC TFGC TconGC 

RDDJoin Parallel 62m  19m 41m 27s 2436s 0s 
SQLJoin Parallel 24m 24m 3s 2s 1s 0s 
RDDJoin CMS 32m 30m 31s 30s 1s 64s 
SQLJoin CMS 24m 24m 5s 4s 1s 51s 
RDDJoin G1 35m 31m 120s 80s 40s 631s 
SQLJoin G1 24m 24m 2s 1.5s 0.2s 0.2s 

* P refers to Parallel collector, while C refers to CMS collector. 

5.4.2 Findings 
Finding 2: Three collectors’ GC time drops down from 1~41 
min to ~5s, and the individual full GC pause time of 
ParallelGC tasks drops down from ~10 s to ~0.3 s. The reasons 
are the same with that in Section 4.4.2. 

6. GroupBy on small dataset (16G) 
6.1 Application description 
    GroupBy is a SQL application simplified from the aggregation 
query in Spark’s BigSQL benchmark [1, 2]. Figure 2 illustrates 
the GroupBy dataflow where sourceIP denotes an IP address and 
is a column of table UserVisits. 
    SELECT * FROM UserVisits 
  GROUP BY SUBSTR(sourceIP, 1, 7); 
 

    The map tasks perform map() that transforms each row of table 
UserVisits to <sourceIP[1,7], row> (the first 7 characters of 
sourceIP). The space complexity of map() is O(1). In reduce 
stage, each reduce task performs groupByKey() that groups the 
shuffled records with the same key to <sourceIP[1,7], list(row)>. 
The space complexity of groupByKey() is O(n), where n 
represents the length of list(row). groupByKey() exhibits memory 
usage pattern of long-lived accumulated records because the 
<sourceIP[1,7], list(rows)> records are accumulated in a 
HashMap-like data structure and remain in memory until either 
being spilled onto disk or the completion of reduce task. The 
number of the shuffled records of reduce tasks is equal to the 
number of rows in UserVisits. 

6.2 Input data 
    The dataset is generated by HiBench [3].  

Application Input dataset  
GroupBy-1.0 16GB Uservisits (90M rows) 
GroupBy-0.5 8GB Uservisits (45M rows) 

 

6.3 Experimental results 
Table 5: The applications’ execution time on different GCs. 

Application The application execution time  
Parallel CMS G1 

GroupBy-0.5 3.5(1.1) 2.8(0.5) 2.7(0.3) 
GroupBy-1.0 × (OOM) × (OOM) × (OOM) 

 

    In this section, we explore the impact of long-lived 
accumulated records on application’s shuffle spill and GC 
performance using GroupBy-0.5 as an example.  

6.3.1 Performance comparison results  
    GroupBy-0.5 application consists of a map stage (64 map tasks) 
and a reduce stage (32 reduce tasks). The performance difference 
was only observed in reduce stage, where the memory space is 
dominated by the long-lived accumulated records. Since the 
execution time of reduce stage is determined by the slowest 
reduce task, we compare the execution time of the slowest reduce 
tasks with different garbage collectors and obtain G1121s < 
CMS131s < Parallel170s as shown in Figure 3a. We further break 
down the task execution time and group them logically into data 
computation time (CompTime), shuffle spill time (SpillTime), and 
GC time to pinpoint potential performance bottlenecks. Data 
computation time refers to the time that the task spends on data 
processing. Figure 4a shows that ParallelGC task achieves 
5%~12% shorter shuffle spill time than CMS and G1 tasks. This 
is caused by the three collectors’ different heap layouts that will 
be interpreted in Finding 3. To understand the poor GC 
performance demonstrated by ParallelGC and CMS compared to 
G1, we further decompose the GC time into young GC (YGC) 
time, full GC (FGC) time, and concurrent GC (ConGC) time in 
Figure 4b. This figure shows that ParallelGC task suffers from 
6.6~26.5x longer full GC time than CMS and G1 tasks, while 
CMS task suffers from 1.3~1.6x longer young GC time than 
ParallelGC and G1 tasks. The root causes are due to the three 
collectors’ different young/old generation sizing polices and full 
GC algorithms, which will be interpreted in Finding 4, 5, and 6.  
 

 

 
Figure 4: The execution time comparison among GroupBy-0.5 reduce 
tasks. ParallelGC task are the slowest one due to its longest full GC time. 
CMS task is slower than G1 task because of its longest young GC time 
and 7s longer full GC time. ParallelGC does not have concurrent GC 
time, while CMS and G1 tasks have ~30 s long concurrent GC time.  

 
Figure 3:  The dataflow of GroupBy application. 



 
 

 

6.3.2 Findings and their implications  
Finding 3: Compared to CMS and G1 tasks, ParallelGC tasks 
achieve 5%~12% shorter shuffle spill time but suffer from 
10% more shuffle spills. The root cause is that the three 
collectors have different heap layouts that lead to different 
spill thresholds. By default, Spark allocates 60% of the JVM 
heap to store the shuffled data and cached data. In shuffle phase, 
the reduce task launches a groupByKey() operator to accumulate 
all the shuffled records in memory. “Accumulate” means that the 
shuffled <k, v> records with the same k are aggregated into <k, 
list(v)> records. If the accumulated records exceed the 60% spill 
threshold, reduce tasks will trigger shuffle spill. Figure 5 
illustrates the distribution of the shuffled records in the 32 reduce 
tasks. It shows that 4 of the 32 ParallelGC tasks trigger shuffle 
spills and the spill threshold is 3.29G, while only one CMS/G1 
task trigger shuffle spill and the spill threshold is 3.69/3.70G. We 
found the root cause is that Parallel collector has smaller available 
heap size than CMS and G1 collectors under the same heap size 
configuration. Take the 6.5GB executor JVM for example, the 
runtime available heap size comparison is Parallel5.78G < 
CMS6.44G < G16.50G. Since Spark allocates (heap size - 300MB) * 
60% as the spill threshold, the spill threshold comparison is 
Parallel3.29G < CMS3.69G < G13.72G. The missing heap space 
(0.72G in Parallel GC) is used as an empty Survivor space for 
swapping the survival objects during young GC. Since this 
Survivor space is not used for storing new objects and occupies a 
contiguous space in Parallel collector, it is not included in the 
available heap size. CMS collector has the same problem but only 
0.06G missing space due to its smaller Survivor space. In contrast, 
G1 adopts region-based heap layout, whose Survivor space 
consists of a logical set of regions. These regions can further be 
used as Eden or Old space for storing new objects, so G1 regards 
the Survivor space as available heap space. Since Spark does not 
change the spill threshold at runtime, ParallelGC tasks achieve the 
shortest spill time with only 3.29GB spilled data. However, 
ParallelGC tasks may suffer from more shuffle spills and higher 
disk I/O than CMS and G1 tasks, when the accumulated records 
are multiple times of the spill threshold.  

Implication: We need dynamic spill threshold in accordance with 
the heap size to balance the spill time and spill frequency.  

 
Finding 4: The long-lived accumulated records require large 
old space to accommodate, so different young/old generation 
sizing polices lead to different young/full GC frequencies. By 
allocating large old space without shrinkage, CMS tasks 
achieve ~30% less full GC pauses than ParallelGC and G1 
tasks. As described in Finding 3, the groupByKey() operator 
constantly accumulates shuffled records (about 3.9GB) into 
memory. We regard these records as long-lived accumulated 
records, because their lifetime spans from shuffle phase to output 
phase. Even when they are spilled onto disk, they will be 
gradually read back into memory to merge with the unspilled 
records in output phase. Since these records are long-lived objects, 
they are constantly transferred from young generation to old 
generation. Full GC will occur when the long-lived accumulated 
records are going to fill up the old generation. This indicates that 
the size of the young/old generation has impacts on the GC 
performance. Fortunately, the three collectors have adaptive 
generation sizing polices, which can dynamically adjust the 
young/old heap size according to the statistics of GC pause time 
and heap occupancy (known as GC Ergonomics [5]). However, 
we found the three collectors demonstrated different generation 
sizing patterns that lead to different GC frequencies. (1) Parallel 
GC prefers to expand and shrink the old space according to the 

  
Figure 5: The distribution of shuffled records in 32 GroupBy-0.5 
reduce tasks. Due to data skew, 28 tasks did not trigger shuffle spill 
since their accumulated records did not exceed any spill threshold. 

 
Figure 6: The memory usage and GC pause time comparison among the GroupBy-0.5 slowest tasks with different garbage collectors. BeforeGC denotes the 
size of live objects in old generation before each young or full GC. AfterGC denotes the size of live objects in old generation after each young or full GC. 
Allocated denotes the allocated space of old generation.  

 



 
 

 

heap occupancy. As shown in “Allocated” line in old generation 
in Figure 6a, Parallel GC constantly enlarges the old space to 
accommodate the increasing shuffled records. However, its 
allocated old space grows up to the smallest size (4.33GB) 
compared to that of CMS/G1 GC (~6GB) in Figure 6b/c. The 
reason is that Parallel GC limits its old space to be 66.6% of the 
heap size. When the memory usage drops down after shuffle spill, 
Parallel GC also shrinks the old space to a small size (~1.6GB). 
Small old space leads to frequent full GC pauses as shown in 
Figure 6a. (2) CMS prefers to expand the old space without 
shrinkage. Since CMS allocated large old space (about 90% of the 
heap size) and does not shrink at the spill time, it has enough old 
space to keep the long-lived accumulated records in both shuffle 
and output phases. As a result, CMS task only triggers 10 full GC 
cycles that are ~30% less than ParallelGC task. However, CMS 
tasks suffers from 4x more young GC pauses due to its smallest 
young space. (3) G1 prefers to balance the size of young/old space 
according to the statistics of GC pause time and heap usage. As 
shown in Figure 6c, G1 makes a right decision to allocate large 
old space to accommodate the increasing shuffled records in 
shuffle phase. However, after shuffle spill, it tries to enlarge the 
young space and shrink the old space to accommodate the read-
back spilled records. This is a wrong decision that leads to a long 
(5 s) young GC pause due to the to-space exhaustion (runs out of 
space of the survivor space or old space). The reason is that the 
read-back shuffled records still require large old space. 
Fortunately, G1 enlarges the old space again after this heavy GC.  

Implication: Current young/old generation resizing polices lead 
to frequent GC pauses while accommodating the long-lived 
accumulated records. We need to design more intelligent heap 
sizing polices in awareness of the memory usage in each data 
processing phase. 
Finding 5: Compared to CMS and G1 collectors, Parallel 
collector’s inappropriate generation resizing timing 
mechanism leads to 69% more full GC pauses. As described in 
Finding 4, all the three collectors can resize the old space to 
accommodate the long-lived accumulated records in shuffle 
phase. However, the three collectors have different generation 
resizing timing mechanisms (i.e., when to resize the old 
generation) that lead to different GC frequencies. Parallel GC only 
resizes the old generation at full GC pauses. As a result, 69% of 
the full GC pauses in Parallel collector are caused by this resizing 
timing requirement. In contrast, CMS and G1 collectors can resize 
the old generation during light young GC pauses, which reduces 
the frequency of full GC pauses.  
Implication: We not only need to solve how to resize the 
young/old generation but also when to perform the resizing action. 
Finding 6: For reclaiming the long-lived accumulated records, 
Parallel collector’s stop-the-world marking algorithm is 10x 
slower than CMS/G1 collectors’ concurrent marking 
algorithms. As shown in Figure 6, ParallelGC tasks have 10x 
longer individual full GC pause than CMS and G1 tasks. The 
reason is that Parallel GC uses stop-the-world object marking 
algorithm named mark-sweep-compact, which needs to suspend 
the application thread to mark the live objects and sweep the 
unreferenced objects. Since the long-lived accumulated records 
are numerous (~6 millions), this stop-the-world marking is time-
consuming that leads to up to 12s full GC pause. In contrast, CMS 
and G1 collectors use concurrent marking algorithms, which 
perform most of the object marking work concurrently with the 
application thread. As a result, their average full GC pauses drop 

down to ~1s. However, these concurrent algorithms may suffer 
from long full GC pauses when the object reclamation cannot 
catch up with the object allocation. Figure 6b shows that the CMS 
task suffers from a long (6.7s) full GC pause caused by 
concurrent mode failure. The root cause is that the concurrent 
marking/sweeping phases have not finished reclaiming the unused 
objects before the old space becomes full (when the spilled 
records are read back into memory). In this occasion, CMS GC 
falls back to launch a stop-the-world full GC pause as that of 
Parallel full GC.  
Implication: Concurrent object marking algorithm can reduce the 
GC pause time while reclaiming the long-lived accumulated 
records. However, they may suffer from unexpected concurrent 
mode failure when the object reclamation cannot catch up with the 
object allocation. 

6.4 The OOM root causes in GroupBy-1.0 
    The OOM error in GroupBy-1.0 is caused by the accumulated 
shuffled records, the characteristics of our dataset, and the 
improper batch size in merge output phase. Firstly, GroupBy 
accumulated all the shuffled records into memory, which leads to 
high memory consumption. A part of the records (~3.6GB) are 
spilled onto disk in shuffle phase. Secondly, these accumulated 
records demonstrate the feature of few keys with large values. The 
spilled accumulated shuffled records only have 60 distant keys, 
but each value is about 60MB. Thirdly, in output phase, Spark 
reads the spilled records into memory to merge with the unspilled 
records. By default, the spilled records are read into memory with 
a batch of 1,000 records. Since 60 < 1,000, all the spilled records 
are read into memory at a time. Thus, the memory usage suddenly 
increases 3.6GB that leads to the OOM error. We have submitted 
this issue to Spark community [6]. In our new experiments on 
larger dataset, we added an aggregation function SUM, so that this 
OOM error is not triggered. 

7. Join on small dataset (16G) 
7.1 Application description 
    Join is a SQL application simplified from the join query in the 
benchmark [1, 2]. Figure 7 shows the dataflow of Join. 
    SELECT * FROM Rankings As R, UserVisits As U 
    WHERE R.URL = U.URL; 

The map tasks perform map() that transforms each row of table 
Rankings to <URL, Rrow> and each row of table UserVisits to 
<URL, Urow>. The space complexity of map() is O(1). In shuffle 
phase, each reduce task performs a join() operator that groups the 
two tables’ rows with the same key as <URL, list(Rrows, 
Urows)>. These grouped shuffle records are also long-lived 
accumulated records, as explained in GroupBy. In output phase, 
the join() operator calculates the Cartesian product of the two sets 

 
Figure 7:  The dataflow of Join. 



 
 

 

(Rrows and Urows), and output <URL, (Rrow, Urow)> records 
one by one. Since these records are directly outputted onto HDFS 
after generated, they are massive temporary output records. The 
space complexity of join() is O(m+n), where m and n denotes the 
length of Rrows and Urows respectively. This application has 
heavy shuffle, since the shuffled records is the sum of the number 
of rows from Rankings and UserVisits tables. 

7.2 Input data 
    The dataset is generated by HiBench [3].  

Application Input dataset  
Join-1.0 16GB Uservisits (90M), 

8GB Rankings (120M) 
Join-0.5 8GB Uservisits (90M), 

4GB Rankings (60M) 

7.3 Experimental results 
Table 5: The applications’ execution time on different GCs. 

Application The application execution time  
Parallel CMS G1 

Join-0.5 4.8(1.3) 3.7(0.4) 4.4(0.2) 
Join-1.0 84.2(76) 10.9 (0.8) 11.6 (0.5) 

In this section, we explore the combined impact of long-lived 
accumulated records and massive temporary records while using 
Join-1.0 as an example application. 

7.3.1 Performance comparison results 
 

Join-1.0 application has two map stages (128/64 map tasks) and a 
reduce stage (32 reduce tasks). The performance differences only 
happened in reduce stage, where the memory usage consists of 
long-lived accumulated records and massive temporary output 
records. The massive temporary output records refer to the 
records generated by the Cartesian product operation in join(). 
Figure 8 compares the execution time and GC time among the 
slowest reduce tasks. The three slowest tasks have the same 
shuffled data, but did not trigger shuffle spill. From Figure 8a and 
8b, we obtain two observations. (1) ParallelGC tasks suffer from 
1000x full GC time than CMS and G1 tasks. This is mainly 
caused by the different full GC triggering conditions that will be 

interpreted in Finding 7. (2) CMS and G1 tasks suffer from 
2~3.4x longer data computation time than ParallelGC task. This is 
caused by the CMS and G1 collectors’ CPU-intensive object 
marking algorithms that will be interpreted in Finding 8.  

 
7.3.2 Findings and their implications 
Finding 7: Current threshold-based full GC triggering 
conditions lead to frequent, but unnecessary full GC pauses 
towards the long-lived accumulated records. With different full 
GC triggering thresholds, ParallelGC task triggers 11x more 
full GC pauses than G1 task, and G1 task triggers 4x more 
full GC pauses than CMS task. Figure 9 shows that the three 
collectors demonstrate different GC patterns in output phase, 
where the long-lived accumulated records are kept in memory and 
massive temporary output records are constantly generated. 
ParallelGC task triggers ~300 full GC pauses that lead to ~1hr GC 
time. In contrast, G1 task triggers only ~30 full GC pauses, while 
CMS task does not trigger any full GC pauses in output phase. 
The first root cause is that the three collectors have different 
generation sizing policies. Parallel collector’s generation sizing 
policy limits the old generation to a small size (default 2/3 of the 
heap space), while CMS and G1 collectors allocate 1.2x more old 
space. The second root cause is that the three collectors have 
different full GC triggering conditions. Parallel GC uses a lazy 
triggering condition that launches full GC when the old space 

 
Figure 8: The execution time comparison among Join-1.0 reduce tasks is 
CMS386s < G1580s  < Parallel4568s. ParallelGC task is 7.8~11.8x slower than 
CMS and G1 tasks, due to its extremely long full GC time. The data 
computation of CMS and G1 tasks are 2~3.4x slower than ParallelGC 
task. G1 task is 1.5x slower than CMS tasks due to its longer data 
computation time. 

 
Figure 9: The memory usage and GC pause time comparison among the Join-1.0 slowest tasks. FGC Pause only illustrates the time of stop-the-world 
phases in each full GC cycles, including initial-mark, remark, and cleanup phases. The concurrent-mark phase is illustrated by the blue circle, and the 
diameter of the circle denotes the span time of the concurrent-mark phase.  

 



 
 

 

becomes full. Since the long-lived accumulated records occupied 
98% of the old space as shown in Figure 9a, Parallel GC 
constantly launches full GCs to perform object reclamation. 
However, these full GCs are unnecessary because the long-lived 
accumulated records cannot be reclaimed until output phase ends. 
In contrast, CMS and G1 use aggressive triggering conditions that 
start the GC cycle before the old space is exhausted. For G1 GC, 
it starts a concurrent collection cycle when the heap usage reaches 
45% of the heap space. For CMS GC, it starts a concurrent 
collection cycle at a higher threshold (default 92% of the old 
space) and based on runtime estimation of when the old 
generation will be exhausted. Since the long-lived accumulated 
records exceed the 45% threshold but has not reached the 92% 
threshold, G1 task suffers from consecutive full GC cycles while 
CMS task does not trigger full GC cycles in output phase.  
Implication: Current threshold-based full GC triggering 
conditions tend to trigger unnecessary full GC pauses without 
being aware of the data objects’ characteristics, e.g., sizes and 
lifecycles.  
Finding 8: Existing concurrent object marking algorithms 
used in CMS and G1 collectors are inefficient for handling 
long-lived accumulated records due to CPU resource 
contentions with CPU-intensive data operators like join(). As 
shown in Figure 9, CMS and G1 tasks have ~90% shorter GC 
time but 2~3x longer data computation time than ParallelGC task. 
The root causes include (1) The concurrent marking algorithms in 
CMS and G1 collectors have CPU contention with the data 
processing thread. The Parallel collector uses stop-the-world 
object marking algorithm that pauses the data processing thread 
during each full GC. In contrast, both CMS and G1 collectors use 
concurrent marking algorithm that performs object marking in 
parallel with the data processing thread. As a result, concurrent 
object marking incurs CPU contention with the data processing 
thread. (2) While reclaiming long-lived accumulated records, the 
concurrent marking algorithms are CPU-intensive that degrades 
the simultaneous CPU-intensive data operators like join(). To 
mark the live objects, the concurrent marking algorithm needs to 
traverse the whole object graph. This marking step is CPU-
intensive because the long-lived accumulated records are 
numerous (~10 million) and living in both shuffle and output 
phase. In output phase, the join() operator needs to compute the 
Cartesian product of the rows with the same key from two tables. 
This data computation is CPU-intensive, since Cartesian product 
has O(n2) time complexity and processes large number of (~19 
millions) temporary output records. Due to CPU contention, the 
concurrent marking algorithm slows down this CPU-intensive 
data computation of CMS and G1 tasks. Moreover, as interpreted 
in Finding 7 and shown in blue circles in Figure 9c, G1 task suffer 
from more full GC cycles (i.e., concurrent mark steps) than CMS 
task in output phase. As a result, the CPU usage of G1 task is 
much higher than CMS task in output phase as shown in Figure 
11. Thus, G1 task has 1.6x longer data computation time than 
CMS task. Given that many Spark applications are CPU-intensive 
[7], such CPU contention between GC activities and Spark 
applications will persist. 

Implication: Today’s concurrent marking algorithm reduces the 
GC pause time at the cost of degraded CPU-intensive Spark 
applications’ performance. Given the prevalence of CPU-
intensive big data applications, we need to design new marking 
algorithm that balances the trade-offs between the GC pause time 
and CPU usage of the object marking.  

8. SVM 
8.1 Application description 
Support Vector Machine (SVM) is an iterative machine learning 
application from Spark MLlib for large-scale data classification. 
The training data is a large matrix that contains a large number of 
data points. Each data point is represented as a feature vector x 
and its class label y. SVM uses gradient descent algorithm to 
iteratively compute the best hyperplane vector w to separate the 
data points into two classes by minimizing a loss function. Figure 
10 shows the dataflow of SVM, which uses linear kernel with L2 
regularization. The bold variables in the code denote vectors. 
  gradient = matrix.map(x=>(grad(w,x), loss(w,x))) 

                   .reduce(sum(grad), sum(loss)) 

  w = w - stepSize * gradient 

At the beginning of each iteration, the initial hyperplane w is 
broadcasted to each map task. Map tasks perform map() to 
compute the vector grad(w, x) and value loss(w, x) of each data 
point x and sums the <grad, loss> together. The space complexity 
of map() is O(|x|), where |x| represents the dimension of data point 
x . Since |x| is usually huge (~60 millions in our experiments), the 
grad vector and hyperplane vector w are humongous data objects 
(large double array). Different from GroupBy and Join, SVM has 
light shuffle because each map task only outputs one record and 
only Nmap_task records are shuffled to subsequent reduce tasks. 
Each reduce task does not accumulate the shuffled records but 
perform reduce() to aggregate them into one < 𝑔𝑟𝑎𝑑 , 𝑙𝑜𝑠𝑠 > 
record. The space complexity of reduce() is also O(|x|). Finally, 
the driver program collects grad vectors from all the reduce tasks, 
sums these vectors, and updates the hyperplane w. The training 
data are regarded as long-lived cached records, because they are 
cached in memory and serve as the input data for each iteration. 

8.2 Performance comparison results 
The SVM-0.5 application has 10 iterations. In each iteration, the 
application performs a map stage (89 map tasks) and a reduce 
stage (8 reduce tasks). In both map and reduce tasks, the memory 
space is dominated by the long-lived cached records and 
humongous data objects. The performance differences only 
happen in reduce stages. We pick the slowest reduce task in each 
reduce stage and sum their execution time together as the 
execution time of iterative reduce tasks. Figure 11 shows the 
memory usage and GC pause time comparison among the SVM-
0.5 slowest tasks. Without long-lived accumulated results to mark 
and reclaim, the three collectors have the similar memory usage. 

 
Figure 10:  The dataflow of SVM.  



 
 

 

9. PageRank 
9.1 Application description 
PageRank is an iterative graph application for measuring the 
importance of each vertex according to the linked edges. Here, 
PageRank is used to compute the rank of each user in Twitter’s 
user-followers graph. 
contribs = followers.join(ranks).flatMap{ 
           (user, (followers, rank)) => 
           followers.map(f=>(f, rank/|followers|)) 
} 
ranks = contribs.reduceByKey(sum(contrib)) 
        .map(rank => 0.15 + 0.85*rank) 

The map tasks perform map() to transform each edge to be <user, 
follower> record. In the first iterative reduce stage, each reduce 
task groups the shuffled <user, follower> records into <user, 
list(followers)>, which are cached in memory as the input data for 
the following iterations. Therefore, these records are long-lived 
cached records. Next, the reduce tasks join these records with 
users’ ranks as <user, list(followers, rank)>, and computes the 
Cartesian product on the list(followers, rank). This join operation 
does not require additional data shuffling because the followers 

and ranks RDDs are co-partitioned. Join is performed in each 
iteration and generates massive temporary records. In the second 
iterative stage, the reduce tasks perform reduceByKey() to 
aggregate the shuffled <user, rank> records into <user, 
sum(rank)>. These shuffled records occupy O(Nedges) space and 
remain in memory until the iteration ends, the aggregated records 
are long-lived accumulated records. Different from GroupBy and 
Join, the long-lived accumulated records here are generated and 
reclaimed in each iteration. Finally, the reduce tasks perform 
map() to compute the new rank of each user. The rest of iterative 
stages are the same as the second iterative stage. 

9.2 Performance comparison results 
PageRank-0.5 application has a map stage (98 map tasks) and 10 
iterative reduce stages (32 reduce tasks in each iteration). We only 
observe performance differences in reduce tasks, where the 
memory usage is dominated by iterative long-lived accumulated 
records and long-lived cached records. Iterative long-lived 
accumulated records refer to the shuffled records that are 
accumulated in memory in each iteration. We merge the slowest 
task in each iteration as an iterative task, and compare the task 
performance in Figure 12. It shows that the Parallel task has 
higher CPU consumption than CMS and G1 tasks due to longer 

 
Figure 11: The memory usage and GC pause time comparison among the SVM-0.5 slowest tasks. 

 

 
Figure 12: The memory usage and GC pause time comparison among the PageRank-0.5 slowest tasks. 

 



 
 

 

individual full GC pauses. Moreover, G1 task suffer from higher 
CPU usage than CMS task due to more time-consuming object 
sweeping algorithm. 
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