
An Extended Experimental Report of Garbage Collectors
on Big Data Applications

Lijie Xu1, Tian Guo2, Wensheng Dou1, Wei Wang1, Jun Wei1
1 Institute of Software, Chinese Academy of Sciences

2 Worcester Polytechnic Institute

 Abstract: This is an extended experimental report that contains the details we have left out due to the space limitation of our VLDB
2019 paper “An Experimental Evaluation of Garbage Collectors on Big Data Applications”. In this report, we perform the following new
experiments to verify the generality of our findings presented in the VLDB paper.

(1) We vary the sizes of CPU and memory in the Join application, and present the performance differences in Section 2 and Section 3.
(2) We compare the performance differences between DataFrames and RDDs in GroupBy and Join applications in Section 4 and 5.
(3) We vary the aggregated columns of GroupBy and Join, and performed new experiments on 16GB dataset in Section 6 and 7.
(4) We present the CPU and memory consumption of SVM and PageRank in Section 8 and 9.

1. Experimental environments
 We perform the evaluation on a cluster of nine mn4.2xlarge
server nodes on Alibaba Cloud. One node serves as the master,
and the others serve as workers. Each node has 4 physical cores (8
virtual cores) and 32 GB RAM that concurrently runs 4 executor
JVMs. To avoid memory contention, each JVM is configured to
run only one task by default. Therefore, each JVM has one
physical core with 6.5 GB heap, and the remaining 6 GB memory
of each node is used for off-heap Java NIO buffers, operating
system, and Hadoop DataNode process. For the master node, the
driver program is configured to use 16 GB memory to
accommodate the large (~12.8 GB) parameter vectors in SVM.
We use Spark 2.1.2 standalone version with Hadoop HDFS 2.7.1,
running on Ubuntu 16.04 and Oracle HotSpot JVM 64-Bit 1.8.0,
to perform all the experiments. We use Spark standalone version
instead of YARN-based version to eliminate the memory effects
of YARN containers. Before each run, we clear the OS buffer
caches and restart the workers to eliminate the cache effects. In
the following sections, we present the experimental results on
several representative Spark applications.

2. Join-200G with CPU variation
2.1 Application description
 Join is a SQL application simplified from the join query in the
benchmark [1, 2] as follows.
 SELECT URL, pageRank, adRevenue
 FROM Rankings As R, UserVisits As U
 WHERE R.URL = U.URL;
 This SQL application is implemented with basic RDD-based
APIs. The map tasks transform each row of table Rankings to
<URL, pageRank> record and transform each row of table
UserVisits to <URL, adRevenue> record. In shuffle phase, each
reduce task performs join() operator to group the two tables’ rows
with the same key as <URL, list(pageRanks, adRevenues)>. These
grouped shuffle records are kept in memory as long-lived
accumulated records. In output phase, the join() operator
calculates the Cartesian product of the two sets pageRanks and
adRevenues, and output <URL, pageRank, adRevenue> record one

by one. Since these records are directly output into HDFS, they
are regarded as massive temporary output records. This
application suffers from heavy shuffle, since the shuffled records
is the sum of the number of rows from Rankings and UserVisits
tables.

2.2 Input data
 The dataset is generated by HiBench [3].

Application Input data size
Join-200G 200GB Uservisits (1.2B rows)

40GB Rankings (600M rows)

2.3 Configurations
 We varied the CPU cores for each task from 1 to 2, while fixing
the memory size of each executor JVM as 6.5GB.

Name Executor CPU Executor Memory
Join-CPU-1 1 (1 core for each task) 6.5 GB
Join-CPU-2 2 (2 cores for each task) 6.5 GB

2.4 Experimental results
2.4.1 Performance comparison results
 We only observed performance differences in reduce stage and
compared the performance of the slowest reduce task as shown in
Table 1.

Table 1: The performance comparison among the slowest reduce
tasks with different CPU configurations and garbage collectors.

Name The performance of the slowest reduce tasks
GC Ttask Tcomp TGC TYGC TFGC TconGC

Join-CPU-1 Parallel 62m 19m 41m 27s 2436s 0s
Join-CPU-2 Parallel 41m 14m 25m 28s 1504s 0s
Join-CPU-1 CMS 32m 30m 31s 30s 1s 64s
Join-CPU-2 CMS 23m 21m 29s 31s 1s 77s
Join-CPU-1 G1 35m 31m 120s 80s 40s 631s
Join-CPU-2 G1 25m 23m 66s 46s 24s 395s

 Figure 1 illustrates the time-series memory usage and GC pause
time comparison among the slowest Join-CPU-2 reduce tasks with
different garbage collectors.

2.4.2 Summary of the results
Summary: After doubling the CPU cores of each task in the
applications with long-lived accumulated results, the tasks’
execution time drops ~30% and GC time drops 6-45%. The
root causes are that (1) The collectors launch more GC threads to
perform the GC work that reduces the individual GC pause time.
For example, the average full GC pause time of Parallel tasks
drops from to 18.2s to 11.5s, due to more parallel GC threads to
perform the GC work. (2) The CPU contention between the
application threads and GC threads is reduced. For CMS and G1
tasks, the computation time drops ~30% due to alleviated CPU
contention between data operators and GC threads. However, this
CPU enlargement cannot reduce the GC frequencies.

Implication: For the applications with CPU-intensive operators
and long-lived accumulated records, it is better to allocate more
CPU cores for each task to avoid long GC pause and serious CPU
contention. Furthermore, we need to design intelligent policies to
balance CPU utilization between the tasks and garbage collectors.

3. Join-200G with memory variation
3.1 Application and Input data
 The application and datasets are the same with that in “Join-
200G with CPU variation” in Section 2.

3.2 Configurations
 We varied the memory for each task from 6.5G to 5.5G, while
fixing the CPU cores of each task to be 1.

Name Executor CPU Executor Memory
Join-6.5GB 1 (1 core for each task) 6.5 GB
Join-5.5GB 1 (1 core for each task) 5.5 GB

3.3 Experimental results
3.3.1 Performance comparison results
 We only observed performance differences in reduce stage and
compared the performance of the slowest reduce tasks as shown in
Table 2.

Table 2: The performance comparison among the slowest reduce
tasks with different memory configurations.

Name The performance of the slowest reduce task
GC Ttask Tcomp TGC TYGC TFGC TconGC

Join-6.5G Parallel 62m 19m 41m 27s 2436s 0s
Join-5.5G Parallel OOM - - - - -
Join-6.5G CMS 32m 30m 31s 30s 1s 64s
Join-5.5G CMS 34m 32m 38s 37s 1s 288s
Join-6.5G G1 35m 31m 120s 80s 40s 631s
Join-5.5G G1 36m 33m 164s 110s 54s 743s

3.3.2 Summary of the results
Summary: After lowering 15% of the task’s memory size in
the application with long-lived accumulated results, Parallel
tasks suffer from OOM errors and CMS/G1 tasks suffer from
3-6% longer execution time and 18-27% longer GC time. The
OOM root cause is that Parallel collector suffers from the smallest
old space due to its heap sizing policy. Small old space cannot
accommodate the accumulated shuffled records plus the extra
buffers generated in shuffle spill. For CMS and G1 tasks, the
performance degradation is caused by the increased GC cycles
under higher memory pressure.
Implication: Given input data size, we need an intelligent
memory estimator to determine the proper memory size to avoid
OOM errors and reduce the GC overhead.

4. SQLGroupBy with DataFrame APIs
4.1 Application description
GroupBy is a SQL application simplified from the aggregation
query in Spark’s BigSQL benchmark [1, 2]. The sourceIP,
visitDate, and adRevenue are three columns from table UserVisits.
 SELECT sourceIP, visitDate, SUM(adRevenue)
 FROM UserVisits GROUP BY sourceIP, visitDate;

 We can use both RDD-based and DataFrame-based APIs to
implement this application. For performance comparison, the
RDD-based implementation is named as RDDGroupBy, and the
DataFrame-based implementation is named as SQLGroupBy.

4.2 Input data
 The dataset is generated by HiBench [3].

Application Input data size
SQLGroupBy 200GB Uservisits (1.2B rows)

Figure 1: The memory usage and GC pause time comparison among the Join-CPU-2 slowest tasks. FGC Pause only illustrates the time of stop-the-
world phases in each full GC cycles, including initial-mark, remark, and cleanup phases. The concurrent-mark phase is illustrated by the blue circle,
and the diameter of the circle denotes the span time of the concurrent-mark phase.

4.3 Configurations

Name Executor CPU Executor Memory
SQLGroupBy 1 (1 core for each task) 6.5 GB
RDDGroupBy 1 (1 core for each task) 6.5 GB

4.4 Experimental results
4.4.1 Performance comparison results
 We only observed performance differences in reduce stage and
compared the performance of the slowest reduce tasks as shown in
Table 3.

Table 3: The performance comparison among the slowest reduce
tasks with RDD and DataFrame APIs.

Name The performance of the slowest reduce task
GC Ttask Tcomp TGC TYGC TFGC TconGC

RDDGroupBy P 24m 6m 17m 28s 16m 0s
SQLGroupBy P 12m 12m 3s 2s 1s 0s
RDDGroupBy C 17m 15m 47s 30s 17s 129s
SQLGroupBy C 12m 12m 4s 3s 0.4s 17s
RDDGroupBy G1 20m 15m 55s 45s 19s 264s
SQLGroupBy G1 12m 12m 1.2s 1s 0.2s 0.1s
* P refers to Parallel collector, while C refers to CMS collector.

 Figure 2 illustrates the time-series memory usage and GC pause
time comparison among the slowest SQLGroupBy reduce tasks
with different garbage collectors.

4.4.2 Findings
Finding 1: Three collectors’ GC time drops down from 1-17
min to ~4s, and the individual full GC pause time of
ParallelGC tasks drops down from ~10 s to ~0.3 s. The reason
is that Spark SQL adopts an explicit memory manager named
Tungsten, which is highly optimized for SQL operations [4].
Tungsten reduced the number and size of in-memory data objects
through operating many SQL operations directly against binary
data rather than Java objects. It stores the shuffled records in
serialized binary form, compacts them into map-like binary data
structure, and performs aggregation functions directly on the
serialized objects. As a result, the volume of in-memory Java
objects are greatly reduced, which further reduces the GC
frequency and the work of object marking and sweeping.
However, Tungsten is currently only applicable for specific SQL

operators with many limitations. (1) It requires the operated data
types are fixed-width types such as primitive Int, Double, and
Date. Variable-length types like String are not supported. (2) The
aggregation functions are able to be performed on serialized data
with fixed-width results. Thus, the aggregation functions do not
need to deserialize the binary objects into Java objects and do not
generate intermediate Java objects during aggregation. In Spark
SQL, typical aggregation functions such as SUM and AVG satisfy
this requirement, but many user-defined aggregation functions
(UDAF) may generate complex user-defined types that cannot fit
Tungsten’s internal format.

5. SQLJoin with DataFrames APIs
5.1 Application description
Join is a SQL application simplified from the join query in the
benchmark [1, 2]. The pageRank is a column from table Rankings
and adRevenue is a column from table UserVisits.
 SELECT URL, pageRank, adRevenue
 FROM Rankings As R, UserVisits As U
 WHERE R.URL = U.URL;
 We can use both RDD-based and DataFrame-based APIs to
implement this application. For performance comparison, the
RDD-based implementation is named as RDDJoin, and the
DataFrame-based implementation is named as SQLJoin.

5.2 Input data
 The dataset is generated by HiBench [3].

Application Input data size
SQLJoin and
RDDJoin

200GB Uservisits (1.2B rows)
40GB Rankings (600M rows)

5.3 Configurations

Name Executor CPU Executor Memory
SQLJoin 1 (1 core for each task) 6.5 GB
RDDJoin 1 (1 core for each task) 6.5 GB

Figure 2: The memory usage and GC pause time comparison among the SQLGroupBy slowest reduce tasks on 200GB dataset.

5.4 Experimental results
5.4.1 Performance comparison results
 We only observed performance differences in reduce stage and
compared the performance of the slowest reduce task as follows.

Table 4: The performance comparison among the slowest reduce
tasks with different APIs.

Name The performance of the slowest reduce task
GC Ttask Tcomp TGC TYGC TFGC TconGC

RDDJoin Parallel 62m 19m 41m 27s 2436s 0s
SQLJoin Parallel 24m 24m 3s 2s 1s 0s
RDDJoin CMS 32m 30m 31s 30s 1s 64s
SQLJoin CMS 24m 24m 5s 4s 1s 51s
RDDJoin G1 35m 31m 120s 80s 40s 631s
SQLJoin G1 24m 24m 2s 1.5s 0.2s 0.2s

* P refers to Parallel collector, while C refers to CMS collector.

5.4.2 Findings
Finding 2: Three collectors’ GC time drops down from 1~41
min to ~5s, and the individual full GC pause time of
ParallelGC tasks drops down from ~10 s to ~0.3 s. The reasons
are the same with that in Section 4.4.2.

6. GroupBy on small dataset (16G)
6.1 Application description
 GroupBy is a SQL application simplified from the aggregation
query in Spark’s BigSQL benchmark [1, 2]. Figure 2 illustrates
the GroupBy dataflow where sourceIP denotes an IP address and
is a column of table UserVisits.
 SELECT * FROM UserVisits
 GROUP BY SUBSTR(sourceIP, 1, 7);

 The map tasks perform map() that transforms each row of table
UserVisits to <sourceIP[1,7], row> (the first 7 characters of
sourceIP). The space complexity of map() is O(1). In reduce
stage, each reduce task performs groupByKey() that groups the
shuffled records with the same key to <sourceIP[1,7], list(row)>.
The space complexity of groupByKey() is O(n), where n
represents the length of list(row). groupByKey() exhibits memory
usage pattern of long-lived accumulated records because the
<sourceIP[1,7], list(rows)> records are accumulated in a
HashMap-like data structure and remain in memory until either
being spilled onto disk or the completion of reduce task. The
number of the shuffled records of reduce tasks is equal to the
number of rows in UserVisits.

6.2 Input data
 The dataset is generated by HiBench [3].

Application Input dataset
GroupBy-1.0 16GB Uservisits (90M rows)
GroupBy-0.5 8GB Uservisits (45M rows)

6.3 Experimental results
Table 5: The applications’ execution time on different GCs.

Application The application execution time
Parallel CMS G1

GroupBy-0.5 3.5(1.1) 2.8(0.5) 2.7(0.3)
GroupBy-1.0 × (OOM) × (OOM) × (OOM)

 In this section, we explore the impact of long-lived
accumulated records on application’s shuffle spill and GC
performance using GroupBy-0.5 as an example.

6.3.1 Performance comparison results
 GroupBy-0.5 application consists of a map stage (64 map tasks)
and a reduce stage (32 reduce tasks). The performance difference
was only observed in reduce stage, where the memory space is
dominated by the long-lived accumulated records. Since the
execution time of reduce stage is determined by the slowest
reduce task, we compare the execution time of the slowest reduce
tasks with different garbage collectors and obtain G1121s <
CMS131s < Parallel170s as shown in Figure 3a. We further break
down the task execution time and group them logically into data
computation time (CompTime), shuffle spill time (SpillTime), and
GC time to pinpoint potential performance bottlenecks. Data
computation time refers to the time that the task spends on data
processing. Figure 4a shows that ParallelGC task achieves
5%~12% shorter shuffle spill time than CMS and G1 tasks. This
is caused by the three collectors’ different heap layouts that will
be interpreted in Finding 3. To understand the poor GC
performance demonstrated by ParallelGC and CMS compared to
G1, we further decompose the GC time into young GC (YGC)
time, full GC (FGC) time, and concurrent GC (ConGC) time in
Figure 4b. This figure shows that ParallelGC task suffers from
6.6~26.5x longer full GC time than CMS and G1 tasks, while
CMS task suffers from 1.3~1.6x longer young GC time than
ParallelGC and G1 tasks. The root causes are due to the three
collectors’ different young/old generation sizing polices and full
GC algorithms, which will be interpreted in Finding 4, 5, and 6.

Figure 4: The execution time comparison among GroupBy-0.5 reduce
tasks. ParallelGC task are the slowest one due to its longest full GC time.
CMS task is slower than G1 task because of its longest young GC time
and 7s longer full GC time. ParallelGC does not have concurrent GC
time, while CMS and G1 tasks have ~30 s long concurrent GC time.

Figure 3: The dataflow of GroupBy application.

6.3.2 Findings and their implications
Finding 3: Compared to CMS and G1 tasks, ParallelGC tasks
achieve 5%~12% shorter shuffle spill time but suffer from
10% more shuffle spills. The root cause is that the three
collectors have different heap layouts that lead to different
spill thresholds. By default, Spark allocates 60% of the JVM
heap to store the shuffled data and cached data. In shuffle phase,
the reduce task launches a groupByKey() operator to accumulate
all the shuffled records in memory. “Accumulate” means that the
shuffled <k, v> records with the same k are aggregated into <k,
list(v)> records. If the accumulated records exceed the 60% spill
threshold, reduce tasks will trigger shuffle spill. Figure 5
illustrates the distribution of the shuffled records in the 32 reduce
tasks. It shows that 4 of the 32 ParallelGC tasks trigger shuffle
spills and the spill threshold is 3.29G, while only one CMS/G1
task trigger shuffle spill and the spill threshold is 3.69/3.70G. We
found the root cause is that Parallel collector has smaller available
heap size than CMS and G1 collectors under the same heap size
configuration. Take the 6.5GB executor JVM for example, the
runtime available heap size comparison is Parallel5.78G <
CMS6.44G < G16.50G. Since Spark allocates (heap size - 300MB) *
60% as the spill threshold, the spill threshold comparison is
Parallel3.29G < CMS3.69G < G13.72G. The missing heap space
(0.72G in Parallel GC) is used as an empty Survivor space for
swapping the survival objects during young GC. Since this
Survivor space is not used for storing new objects and occupies a
contiguous space in Parallel collector, it is not included in the
available heap size. CMS collector has the same problem but only
0.06G missing space due to its smaller Survivor space. In contrast,
G1 adopts region-based heap layout, whose Survivor space
consists of a logical set of regions. These regions can further be
used as Eden or Old space for storing new objects, so G1 regards
the Survivor space as available heap space. Since Spark does not
change the spill threshold at runtime, ParallelGC tasks achieve the
shortest spill time with only 3.29GB spilled data. However,
ParallelGC tasks may suffer from more shuffle spills and higher
disk I/O than CMS and G1 tasks, when the accumulated records
are multiple times of the spill threshold.

Implication: We need dynamic spill threshold in accordance with
the heap size to balance the spill time and spill frequency.

Finding 4: The long-lived accumulated records require large
old space to accommodate, so different young/old generation
sizing polices lead to different young/full GC frequencies. By
allocating large old space without shrinkage, CMS tasks
achieve ~30% less full GC pauses than ParallelGC and G1
tasks. As described in Finding 3, the groupByKey() operator
constantly accumulates shuffled records (about 3.9GB) into
memory. We regard these records as long-lived accumulated
records, because their lifetime spans from shuffle phase to output
phase. Even when they are spilled onto disk, they will be
gradually read back into memory to merge with the unspilled
records in output phase. Since these records are long-lived objects,
they are constantly transferred from young generation to old
generation. Full GC will occur when the long-lived accumulated
records are going to fill up the old generation. This indicates that
the size of the young/old generation has impacts on the GC
performance. Fortunately, the three collectors have adaptive
generation sizing polices, which can dynamically adjust the
young/old heap size according to the statistics of GC pause time
and heap occupancy (known as GC Ergonomics [5]). However,
we found the three collectors demonstrated different generation
sizing patterns that lead to different GC frequencies. (1) Parallel
GC prefers to expand and shrink the old space according to the

Figure 5: The distribution of shuffled records in 32 GroupBy-0.5
reduce tasks. Due to data skew, 28 tasks did not trigger shuffle spill
since their accumulated records did not exceed any spill threshold.

Figure 6: The memory usage and GC pause time comparison among the GroupBy-0.5 slowest tasks with different garbage collectors. BeforeGC denotes the
size of live objects in old generation before each young or full GC. AfterGC denotes the size of live objects in old generation after each young or full GC.
Allocated denotes the allocated space of old generation.

heap occupancy. As shown in “Allocated” line in old generation
in Figure 6a, Parallel GC constantly enlarges the old space to
accommodate the increasing shuffled records. However, its
allocated old space grows up to the smallest size (4.33GB)
compared to that of CMS/G1 GC (~6GB) in Figure 6b/c. The
reason is that Parallel GC limits its old space to be 66.6% of the
heap size. When the memory usage drops down after shuffle spill,
Parallel GC also shrinks the old space to a small size (~1.6GB).
Small old space leads to frequent full GC pauses as shown in
Figure 6a. (2) CMS prefers to expand the old space without
shrinkage. Since CMS allocated large old space (about 90% of the
heap size) and does not shrink at the spill time, it has enough old
space to keep the long-lived accumulated records in both shuffle
and output phases. As a result, CMS task only triggers 10 full GC
cycles that are ~30% less than ParallelGC task. However, CMS
tasks suffers from 4x more young GC pauses due to its smallest
young space. (3) G1 prefers to balance the size of young/old space
according to the statistics of GC pause time and heap usage. As
shown in Figure 6c, G1 makes a right decision to allocate large
old space to accommodate the increasing shuffled records in
shuffle phase. However, after shuffle spill, it tries to enlarge the
young space and shrink the old space to accommodate the read-
back spilled records. This is a wrong decision that leads to a long
(5 s) young GC pause due to the to-space exhaustion (runs out of
space of the survivor space or old space). The reason is that the
read-back shuffled records still require large old space.
Fortunately, G1 enlarges the old space again after this heavy GC.

Implication: Current young/old generation resizing polices lead
to frequent GC pauses while accommodating the long-lived
accumulated records. We need to design more intelligent heap
sizing polices in awareness of the memory usage in each data
processing phase.
Finding 5: Compared to CMS and G1 collectors, Parallel
collector’s inappropriate generation resizing timing
mechanism leads to 69% more full GC pauses. As described in
Finding 4, all the three collectors can resize the old space to
accommodate the long-lived accumulated records in shuffle
phase. However, the three collectors have different generation
resizing timing mechanisms (i.e., when to resize the old
generation) that lead to different GC frequencies. Parallel GC only
resizes the old generation at full GC pauses. As a result, 69% of
the full GC pauses in Parallel collector are caused by this resizing
timing requirement. In contrast, CMS and G1 collectors can resize
the old generation during light young GC pauses, which reduces
the frequency of full GC pauses.
Implication: We not only need to solve how to resize the
young/old generation but also when to perform the resizing action.
Finding 6: For reclaiming the long-lived accumulated records,
Parallel collector’s stop-the-world marking algorithm is 10x
slower than CMS/G1 collectors’ concurrent marking
algorithms. As shown in Figure 6, ParallelGC tasks have 10x
longer individual full GC pause than CMS and G1 tasks. The
reason is that Parallel GC uses stop-the-world object marking
algorithm named mark-sweep-compact, which needs to suspend
the application thread to mark the live objects and sweep the
unreferenced objects. Since the long-lived accumulated records
are numerous (~6 millions), this stop-the-world marking is time-
consuming that leads to up to 12s full GC pause. In contrast, CMS
and G1 collectors use concurrent marking algorithms, which
perform most of the object marking work concurrently with the
application thread. As a result, their average full GC pauses drop

down to ~1s. However, these concurrent algorithms may suffer
from long full GC pauses when the object reclamation cannot
catch up with the object allocation. Figure 6b shows that the CMS
task suffers from a long (6.7s) full GC pause caused by
concurrent mode failure. The root cause is that the concurrent
marking/sweeping phases have not finished reclaiming the unused
objects before the old space becomes full (when the spilled
records are read back into memory). In this occasion, CMS GC
falls back to launch a stop-the-world full GC pause as that of
Parallel full GC.
Implication: Concurrent object marking algorithm can reduce the
GC pause time while reclaiming the long-lived accumulated
records. However, they may suffer from unexpected concurrent
mode failure when the object reclamation cannot catch up with the
object allocation.

6.4 The OOM root causes in GroupBy-1.0
 The OOM error in GroupBy-1.0 is caused by the accumulated
shuffled records, the characteristics of our dataset, and the
improper batch size in merge output phase. Firstly, GroupBy
accumulated all the shuffled records into memory, which leads to
high memory consumption. A part of the records (~3.6GB) are
spilled onto disk in shuffle phase. Secondly, these accumulated
records demonstrate the feature of few keys with large values. The
spilled accumulated shuffled records only have 60 distant keys,
but each value is about 60MB. Thirdly, in output phase, Spark
reads the spilled records into memory to merge with the unspilled
records. By default, the spilled records are read into memory with
a batch of 1,000 records. Since 60 < 1,000, all the spilled records
are read into memory at a time. Thus, the memory usage suddenly
increases 3.6GB that leads to the OOM error. We have submitted
this issue to Spark community [6]. In our new experiments on
larger dataset, we added an aggregation function SUM, so that this
OOM error is not triggered.

7. Join on small dataset (16G)
7.1 Application description
 Join is a SQL application simplified from the join query in the
benchmark [1, 2]. Figure 7 shows the dataflow of Join.
 SELECT * FROM Rankings As R, UserVisits As U
 WHERE R.URL = U.URL;

The map tasks perform map() that transforms each row of table
Rankings to <URL, Rrow> and each row of table UserVisits to
<URL, Urow>. The space complexity of map() is O(1). In shuffle
phase, each reduce task performs a join() operator that groups the
two tables’ rows with the same key as <URL, list(Rrows,
Urows)>. These grouped shuffle records are also long-lived
accumulated records, as explained in GroupBy. In output phase,
the join() operator calculates the Cartesian product of the two sets

Figure 7: The dataflow of Join.

(Rrows and Urows), and output <URL, (Rrow, Urow)> records
one by one. Since these records are directly outputted onto HDFS
after generated, they are massive temporary output records. The
space complexity of join() is O(m+n), where m and n denotes the
length of Rrows and Urows respectively. This application has
heavy shuffle, since the shuffled records is the sum of the number
of rows from Rankings and UserVisits tables.

7.2 Input data
 The dataset is generated by HiBench [3].

Application Input dataset
Join-1.0 16GB Uservisits (90M),

8GB Rankings (120M)
Join-0.5 8GB Uservisits (90M),

4GB Rankings (60M)

7.3 Experimental results
Table 5: The applications’ execution time on different GCs.

Application The application execution time
Parallel CMS G1

Join-0.5 4.8(1.3) 3.7(0.4) 4.4(0.2)
Join-1.0 84.2(76) 10.9 (0.8) 11.6 (0.5)

In this section, we explore the combined impact of long-lived
accumulated records and massive temporary records while using
Join-1.0 as an example application.

7.3.1 Performance comparison results

Join-1.0 application has two map stages (128/64 map tasks) and a
reduce stage (32 reduce tasks). The performance differences only
happened in reduce stage, where the memory usage consists of
long-lived accumulated records and massive temporary output
records. The massive temporary output records refer to the
records generated by the Cartesian product operation in join().
Figure 8 compares the execution time and GC time among the
slowest reduce tasks. The three slowest tasks have the same
shuffled data, but did not trigger shuffle spill. From Figure 8a and
8b, we obtain two observations. (1) ParallelGC tasks suffer from
1000x full GC time than CMS and G1 tasks. This is mainly
caused by the different full GC triggering conditions that will be

interpreted in Finding 7. (2) CMS and G1 tasks suffer from
2~3.4x longer data computation time than ParallelGC task. This is
caused by the CMS and G1 collectors’ CPU-intensive object
marking algorithms that will be interpreted in Finding 8.

7.3.2 Findings and their implications
Finding 7: Current threshold-based full GC triggering
conditions lead to frequent, but unnecessary full GC pauses
towards the long-lived accumulated records. With different full
GC triggering thresholds, ParallelGC task triggers 11x more
full GC pauses than G1 task, and G1 task triggers 4x more
full GC pauses than CMS task. Figure 9 shows that the three
collectors demonstrate different GC patterns in output phase,
where the long-lived accumulated records are kept in memory and
massive temporary output records are constantly generated.
ParallelGC task triggers ~300 full GC pauses that lead to ~1hr GC
time. In contrast, G1 task triggers only ~30 full GC pauses, while
CMS task does not trigger any full GC pauses in output phase.
The first root cause is that the three collectors have different
generation sizing policies. Parallel collector’s generation sizing
policy limits the old generation to a small size (default 2/3 of the
heap space), while CMS and G1 collectors allocate 1.2x more old
space. The second root cause is that the three collectors have
different full GC triggering conditions. Parallel GC uses a lazy
triggering condition that launches full GC when the old space

Figure 8: The execution time comparison among Join-1.0 reduce tasks is
CMS386s < G1580s < Parallel4568s. ParallelGC task is 7.8~11.8x slower than
CMS and G1 tasks, due to its extremely long full GC time. The data
computation of CMS and G1 tasks are 2~3.4x slower than ParallelGC
task. G1 task is 1.5x slower than CMS tasks due to its longer data
computation time.

Figure 9: The memory usage and GC pause time comparison among the Join-1.0 slowest tasks. FGC Pause only illustrates the time of stop-the-world
phases in each full GC cycles, including initial-mark, remark, and cleanup phases. The concurrent-mark phase is illustrated by the blue circle, and the
diameter of the circle denotes the span time of the concurrent-mark phase.

becomes full. Since the long-lived accumulated records occupied
98% of the old space as shown in Figure 9a, Parallel GC
constantly launches full GCs to perform object reclamation.
However, these full GCs are unnecessary because the long-lived
accumulated records cannot be reclaimed until output phase ends.
In contrast, CMS and G1 use aggressive triggering conditions that
start the GC cycle before the old space is exhausted. For G1 GC,
it starts a concurrent collection cycle when the heap usage reaches
45% of the heap space. For CMS GC, it starts a concurrent
collection cycle at a higher threshold (default 92% of the old
space) and based on runtime estimation of when the old
generation will be exhausted. Since the long-lived accumulated
records exceed the 45% threshold but has not reached the 92%
threshold, G1 task suffers from consecutive full GC cycles while
CMS task does not trigger full GC cycles in output phase.
Implication: Current threshold-based full GC triggering
conditions tend to trigger unnecessary full GC pauses without
being aware of the data objects’ characteristics, e.g., sizes and
lifecycles.
Finding 8: Existing concurrent object marking algorithms
used in CMS and G1 collectors are inefficient for handling
long-lived accumulated records due to CPU resource
contentions with CPU-intensive data operators like join(). As
shown in Figure 9, CMS and G1 tasks have ~90% shorter GC
time but 2~3x longer data computation time than ParallelGC task.
The root causes include (1) The concurrent marking algorithms in
CMS and G1 collectors have CPU contention with the data
processing thread. The Parallel collector uses stop-the-world
object marking algorithm that pauses the data processing thread
during each full GC. In contrast, both CMS and G1 collectors use
concurrent marking algorithm that performs object marking in
parallel with the data processing thread. As a result, concurrent
object marking incurs CPU contention with the data processing
thread. (2) While reclaiming long-lived accumulated records, the
concurrent marking algorithms are CPU-intensive that degrades
the simultaneous CPU-intensive data operators like join(). To
mark the live objects, the concurrent marking algorithm needs to
traverse the whole object graph. This marking step is CPU-
intensive because the long-lived accumulated records are
numerous (~10 million) and living in both shuffle and output
phase. In output phase, the join() operator needs to compute the
Cartesian product of the rows with the same key from two tables.
This data computation is CPU-intensive, since Cartesian product
has O(n2) time complexity and processes large number of (~19
millions) temporary output records. Due to CPU contention, the
concurrent marking algorithm slows down this CPU-intensive
data computation of CMS and G1 tasks. Moreover, as interpreted
in Finding 7 and shown in blue circles in Figure 9c, G1 task suffer
from more full GC cycles (i.e., concurrent mark steps) than CMS
task in output phase. As a result, the CPU usage of G1 task is
much higher than CMS task in output phase as shown in Figure
11. Thus, G1 task has 1.6x longer data computation time than
CMS task. Given that many Spark applications are CPU-intensive
[7], such CPU contention between GC activities and Spark
applications will persist.

Implication: Today’s concurrent marking algorithm reduces the
GC pause time at the cost of degraded CPU-intensive Spark
applications’ performance. Given the prevalence of CPU-
intensive big data applications, we need to design new marking
algorithm that balances the trade-offs between the GC pause time
and CPU usage of the object marking.

8. SVM
8.1 Application description
Support Vector Machine (SVM) is an iterative machine learning
application from Spark MLlib for large-scale data classification.
The training data is a large matrix that contains a large number of
data points. Each data point is represented as a feature vector x
and its class label y. SVM uses gradient descent algorithm to
iteratively compute the best hyperplane vector w to separate the
data points into two classes by minimizing a loss function. Figure
10 shows the dataflow of SVM, which uses linear kernel with L2
regularization. The bold variables in the code denote vectors.
 gradient = matrix.map(x=>(grad(w,x), loss(w,x)))

 .reduce(sum(grad), sum(loss))

 w = w - stepSize * gradient

At the beginning of each iteration, the initial hyperplane w is
broadcasted to each map task. Map tasks perform map() to
compute the vector grad(w, x) and value loss(w, x) of each data
point x and sums the <grad, loss> together. The space complexity
of map() is O(|x|), where |x| represents the dimension of data point
x . Since |x| is usually huge (~60 millions in our experiments), the
grad vector and hyperplane vector w are humongous data objects
(large double array). Different from GroupBy and Join, SVM has
light shuffle because each map task only outputs one record and
only Nmap_task records are shuffled to subsequent reduce tasks.
Each reduce task does not accumulate the shuffled records but
perform reduce() to aggregate them into one < 𝑔𝑟𝑎𝑑 , 𝑙𝑜𝑠𝑠 >
record. The space complexity of reduce() is also O(|x|). Finally,
the driver program collects grad vectors from all the reduce tasks,
sums these vectors, and updates the hyperplane w. The training
data are regarded as long-lived cached records, because they are
cached in memory and serve as the input data for each iteration.

8.2 Performance comparison results
The SVM-0.5 application has 10 iterations. In each iteration, the
application performs a map stage (89 map tasks) and a reduce
stage (8 reduce tasks). In both map and reduce tasks, the memory
space is dominated by the long-lived cached records and
humongous data objects. The performance differences only
happen in reduce stages. We pick the slowest reduce task in each
reduce stage and sum their execution time together as the
execution time of iterative reduce tasks. Figure 11 shows the
memory usage and GC pause time comparison among the SVM-
0.5 slowest tasks. Without long-lived accumulated results to mark
and reclaim, the three collectors have the similar memory usage.

Figure 10: The dataflow of SVM.

9. PageRank
9.1 Application description
PageRank is an iterative graph application for measuring the
importance of each vertex according to the linked edges. Here,
PageRank is used to compute the rank of each user in Twitter’s
user-followers graph.
contribs = followers.join(ranks).flatMap{
 (user, (followers, rank)) =>
 followers.map(f=>(f, rank/|followers|))
}
ranks = contribs.reduceByKey(sum(contrib))
 .map(rank => 0.15 + 0.85*rank)

The map tasks perform map() to transform each edge to be <user,
follower> record. In the first iterative reduce stage, each reduce
task groups the shuffled <user, follower> records into <user,
list(followers)>, which are cached in memory as the input data for
the following iterations. Therefore, these records are long-lived
cached records. Next, the reduce tasks join these records with
users’ ranks as <user, list(followers, rank)>, and computes the
Cartesian product on the list(followers, rank). This join operation
does not require additional data shuffling because the followers

and ranks RDDs are co-partitioned. Join is performed in each
iteration and generates massive temporary records. In the second
iterative stage, the reduce tasks perform reduceByKey() to
aggregate the shuffled <user, rank> records into <user,
sum(rank)>. These shuffled records occupy O(Nedges) space and
remain in memory until the iteration ends, the aggregated records
are long-lived accumulated records. Different from GroupBy and
Join, the long-lived accumulated records here are generated and
reclaimed in each iteration. Finally, the reduce tasks perform
map() to compute the new rank of each user. The rest of iterative
stages are the same as the second iterative stage.

9.2 Performance comparison results
PageRank-0.5 application has a map stage (98 map tasks) and 10
iterative reduce stages (32 reduce tasks in each iteration). We only
observe performance differences in reduce tasks, where the
memory usage is dominated by iterative long-lived accumulated
records and long-lived cached records. Iterative long-lived
accumulated records refer to the shuffled records that are
accumulated in memory in each iteration. We merge the slowest
task in each iteration as an iterative task, and compare the task
performance in Figure 12. It shows that the Parallel task has
higher CPU consumption than CMS and G1 tasks due to longer

Figure 11: The memory usage and GC pause time comparison among the SVM-0.5 slowest tasks.

Figure 12: The memory usage and GC pause time comparison among the PageRank-0.5 slowest tasks.

individual full GC pauses. Moreover, G1 task suffer from higher
CPU usage than CMS task due to more time-consuming object
sweeping algorithm.

References
[1] Spark BigSQL Benchmark.

https://amplab.cs.berkeley.edu/benchmark/.
[2] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S.

Madden, and M. Stonebraker. A comparison of approaches to
large-scale data analysis. In Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD), pages 165–178, 2009.

[3] HiBench - a big data benchmark suite.
https://github.com/intel-hadoop/HiBench

[4] Project Tungsten: Bringing Apache Spark Closer to Bare
Metal. https://databricks.com/blog/2015/04/28/project-
tungsten-bringing-spark-closer-to-bare-metal.html

[5] GC Ergonomics.
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gc
tuning/ergonomics.html#ergonomics.

[6] [SPARK-22286] OutOfMemoryError caused by memory
leak and large serializer batch size in
ExternalAppendOnlyMap.
https://issues.apache.org/jira/browse/SPARK-22286.

[7] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.
Chun. Making sense of performance in data analytics
frameworks. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 293–307,
2015.

