
CoFI: Consistency-Guided Fault Injection for Cloud Systems
Haicheng Chen

Department of Computer Science and Engineering
The Ohio State University, United States

chen.4800@osu.edu

Wensheng Dou
State Key Lab of Computer Science, Institute of Software,

Chinese Academy of Sciences
University of Chinese Academy of Sciences, China

wsdou@otcaix.iscas.ac.cn

Dong Wang
State Key Lab of Computer Science, Institute of Software,

Chinese Academy of Sciences
University of Chinese Academy of Sciences, China

wangdong18@otcaix.iscas.ac.cn

Feng Qin
Department of Computer Science and Engineering

The Ohio State University, United States
qin.34@osu.edu

ABSTRACT
Network partitions are inevitable in large-scale cloud systems. De-
spite developer’s efforts in handling network partitions throughout
designing, implementing and testing cloud systems, bugs caused by
network partitions, i.e., partition bugs, still exist and cause severe
failures in production clusters. It is challenging to expose these
partition bugs because they often require network partitions to
start and stop at specific timings.

In this paper, we propose Consistency-Guided Fault Injection
(CoFI), a novel technique that systematically injects network parti-
tions to effectively expose partition bugs. We observe that, network
partitions can leave cloud systems in inconsistent states, where
partition bugs are more likely to occur. Based on this observation,
CoFI first infers invariants (i.e., consistent states) among different
nodes in a cloud system. Once detecting violations to the inferred
invariants (i.e., inconsistent states) while running the cloud system,
CoFI injects network partitions to prevent the cloud system from re-
covering back to consistent states, and thoroughly tests whether the
cloud system still proceeds correctly at inconsistent states. We have
applied CoFI to three widely-deployed cloud systems, i.e., Cassan-
dra, HDFS, and YARN. CoFI has detected 12 previously-unknown
bugs, and four of them have been confirmed by developers.

CCS CONCEPTS
• Computer systems organization → Cloud computing; Reli-
ability; • Software and its engineering → Software testing and
debugging.

KEYWORDS
Cloud system, netwrok partition, fault injection, testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416548

ACM Reference Format:
Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin. 2020. CoFI:
Consistency-Guided Fault Injection for Cloud Systems. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), Sep-
tember 21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3324884.3416548

1 INTRODUCTION
Cloud systems are playing an increasingly important role in our
daily life. A majority of Fortune 500 companies adopt cloud storage
to host their data [6, 11]. Many popular social media websites are
backed up by cloud services [15, 27]. As a result, the dependability
of cloud systems has becomemore important than ever.When cloud
systems fail, the consequences are usually severe. For example, a
three-hour AWS outage in 2017 led to a 150 million dollar loss
for S&P 500 companies [10]. As another example, when Facebook
service failed in 2014, many Los Angeles residents called 911 [5].

Cloud systems run on networked commodity machines, where
network partitions can occur as frequently as once a week and one
incident may last for minutes or even hours [2, 17, 19, 40, 41]. There-
fore, dependable cloud systems must handle network partitions
correctly. Unfortunately, this is a challenging task since network
partitions can happen to any node and can start and stop at any
time. Even though developers strive to handle network partitions
throughout designing, implementing, and testing a cloud system,
network partitions can still lead to cloud system failures [2, 7].

We use a three-node replica-based cloud system in Figure 1 to
illustrate the typical process when a cloud system encounters a
network partition. Normally, different nodes in a cloud system keep
their states consistent by exchanging messages (Phase 1). When
a network partition starts, the nodes on the different sides of the
partition become disconnected. This may occur when the three
nodes have consistent states (Phase 2). However, the two nodes on
the left side may change their states (e.g., serving a data update
request from the client), causing inconsistency between the two
sides (Phase 2 to Phase 3). Similarly, a network partition may occur
when the left two nodes are already inconsistent with the right
node (Phase 1 to Phase 3). This is possible because in cloud systems
node states are updated asynchronously. When a network partition
starts, cloud systems often have various built-in mechanisms to
recover from inconsistent states, e.g., repeatedly trying to connect
the partitioned nodes for recovery. Thus, cloud systems can still

https://doi.org/10.1145/3324884.3416548
https://doi.org/10.1145/3324884.3416548

ASE ’20, September 21–25, 2020, Virtual Event, Australia Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin

Phase 1 Phase 3Phase 2 Phase 4 Phase 5

Figure 1: A network partition’s effect on a three-node cluster.
Each circle represents one node. Circles with the same pat-
tern (i.e., solid, hollow, horizontal stripe, or vertical stripe)
represent nodes that are consistent. In Phases 2 and 3, the
lightnings represent network partitions, and the dotted ar-
rows represent the message attempts failed by the network
partition.

operate without the partitioned nodes. When the network heals,
the two sides of the partition may have inconsistent states (Phase 4).
In this case, the cloud system will try to recover the whole cluster
back to a consistent state (Phase 5). In this paper, we refer to the
cloud system bugs triggered by network partitions as partition
bugs. A partition bug can occur if the cloud system cannot handle
the network disconnection in Phases 2 or 3, or cannot handle the
inconsistency caused by the network partition in Phases 3 or 4.

Fault injection is a common technique for testing cloud sys-
tems against adversarial conditions, e.g., node crashes and network
partitions. Many works inject node crashes when testing cloud
systems [1, 29, 30]. However, node crashes and network partitions
are fundamentally different. First, node crashes and network parti-
tions often exercise different recovery operations of a cloud system.
Second, crashing a node will remove its in-memory state, while
partitioning a node will not. So, these node-crashing injection tech-
niques are inapplicable to expose partition bugs in cloud systems.
Recently, a few tools have been proposed to inject network failures
when testing cloud systems. For example, Namazu randomly drops
network packages with a configured probability [32]. However,
such a fault model resembles an unreliable network, which is differ-
ent from network partitions. NEAT [2] and Jepsen [23] can inject
network partitions when testing cloud systems, but they rely on
developers to specify when a network partition starts and stops.

In this paper, we proposeConsistency-guided Fault Injection (CoFI),
an automated technique to expose partition bugs by systematically
injecting network partitions into cloud systems. We find that par-
tition bugs are more likely to occur when cloud systems are
running at inconsistent states (i.e., Phases 3 and 4 in Figure 1)
due to two main reasons. First, node communications at incon-
sistent states are harder to reason about than those at consistent
states. Second, cloud systems strive to recover system states from
inconsistency as quickly as possible, leaving smaller time windows
for developers to test cloud systems at inconsistent states. Based on
this observation, CoFI’s main idea is to inject network partitions to
thoroughly exercise cloud systems at inconsistent states.

Specifically, CoFI first employs distributed program invariants
[14, 20] to represent the consistent states in a cloud system. A dis-
tributed program invariant (or invariant for short) is a property
that must hold when multiple nodes are each at certain program
point. Using invariants to represent consistent states allows CoFI to
automatically identify consistent states in different cloud systems.

Network
partition

C1 C2 C3
①C1:(t0,Normal)GOSSIP{C1:(t1,Left)}

②C1:(t1,Left)

④C1:()

C1:(t0,Normal)
/* Shouldn’t become Normal again */

③N*GOSSIP{C1:(t1,Left)}

⑤GOSSIP{C1:(t0,Normal)}
4 if (!status.contains(nodeId)) {
5 status.put(nodeId, nodeStatus);
6 }

1 if (nodeDeadFor1Minute(nodeId)) {
2 status.remove(nodeId);
3 }

①C1:(t0,Normal)

③N*GOSSIP{C1:(t1,Left)}

Figure 2: The triggering process of CASSANDRA-2115. This par-
tition bug can only be triggered when a network partition
starts and stops at specific timings.

Then, CoFI monitors the cloud system’s runtime states and starts
a network partition when an inconsistent state occurs, i.e., an in-
variant is temporarily violated. Starting the network partition at
inconsistent states can prevent the cloud system from recovering
back to consistent states, so that CoFI can thoroughly test the cloud
system at inconsistent states. Finally, CoFI systematically explores
the stopping point of the network partition based on message types.
Hence, CoFI enables more efficient testing of the cloud system than
exhaustively stopping the partition for every message.

We have implemented a prototype of CoFI and applied it to multi-
ple versions of three popular cloud systems, namely Cassandra [35],
HDFS [39], and YARN [38]. CoFI can successfully detect 4 known
bugs, and 12 unknown bugs that have never been reported before.
Moreover, the triggering processes of 10 out of these 16 bugs have
timing requirements on both the starting and the stopping points
of their network partitions. At the time of this writing, developers
have confirmed four of the 12 unknown bugs reported by CoFI.

In summary, we make the following contributions in this paper.
• We propose consistency-guided fault injection (CoFI), a novel ap-
proach to expose partition bugs by systematically injecting net-
work partitions at inconsistent states of cloud systems. CoFI can
efficiently expose partition bugs that have timing requirements
on the starting and stopping points of network partitions.

• We implement a prototype of CoFI1, and evaluate CoFI using
multiple versions of three popular cloud systems, namely Cas-
sandra, HDFS, and YARN. CoFI detects 12 previously-unknown
bugs, and four of them have been confirmed by developers.

2 MOTIVATION AND CHALLENGES
In this section, we first motivate consistency-guided fault injection
(i.e., CoFI) with a real-world example. Then, we use the motivating
example to discuss how CoFI addresses its main challenges.

2.1 A Motivating Example
2.1.1 The Triggering Process. Figure 2 shows the triggering process
of CASSANDRA-2115, a partition bug that manifests when two Cas-
sandra nodes exchange gossip messages at a specific inconsistent
state. In a Cassandra cluster, each node obtains the status of its
peers through exchanging gossip messages. Updates to a node’s
status are ordered using vector clocks. IfC1,C2 andC3 are the three
1https://hanseychen.github.io/CoFI/

https://issues.apache.org/jira/browse/CASSANDRA-2115
https://issues.apache.org/jira/browse/CASSANDRA-2115
https://hanseychen.github.io/CoFI/

CoFI: Consistency-Guided Fault Injection for Cloud Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

nodes in a cluster, both C2 and C3 will know that C1 is running
normally (Step 1). The cluster is now at a consistent state (Phase 1
in Figure 1). When a user decommissions C1, C1 will change its
status to “Left”, increases its clock value (from t0 to t1), and then
notifies its peers about the update. When C2 receives the update
message, it will modify its local copy accordingly (Step 2) since the
incoming message has a greater clock value (t1 > t0). However, due
to a network partition, C3 does not receive any message about the
update (Step 3). As a result, C3 will falsely believe that C1 is still
running normally. At this moment, the cluster becomes partitioned
and inconsistent (Phase 3 in Figure 1). After certain amount of time,
C2 dropsC1’s status, together with the clock value (Step 4). At this
point, the network partition heals, allowing C2 and C3 to exchange
messages at the inconsistent state where C2 forgets about C1 while
C3 thinks C1 is running normally (Phase 4 in Figure 1). We use {∅,
Normal} to denote this inconsistent state. C3 then propagates to
C2 an outdated value of C1’s status (Step 5). Since C2 now knows
nothing aboutC1, it will blindly acceptC3’s value, even though it is
outdated (t0 < t1). As a result,C1 reappears to be running normally
after it has already been decommissioned!

2.1.2 Timing Requirements on Network Partitions. To trigger this
bug, C2 and C3 need to exchange a gossip message at the inconsis-
tent state {∅, Normal}. This requires the network partition to start
after Step 1 and before Step 3 , as well as to stop after Step 4 and
before Step 5 . First, if the network partition starts before Step 1 ,
C3 will not considerC1 as running normally. Second, if the network
partition starts after Step 3 or stops before Step 4 , C2 and C3 will
eventually agree that C1 has left. Finally, if the network partition
does not stop before Step 5 , C2 and C3 will not exchange gossip
messages at state {∅, Normal}. The bug will not be triggered if any
of the aforementioned situations happens. Such a complex timing
requirement on the network partition makes the bug difficult to be
exposed using random or developer-specified fault injection.

2.2 Challenges and Solutions
To trigger the partition bug in our motivating example, CoFI injects
network partitions to thoroughly test the cloud system at inconsis-
tent states. CoFI needs to address the following three challenges.

2.2.1 Challenge 1: How to Represent and Decide Consistent States?
The consistency of a system state is closely related to the specific
protocols that individual cloud system adopts. For example, Cas-
sandra uses Paxos to replicate user data [36] while HDFS uses
replication pipeline [39]. Moreover, even for the same protocol,
two cloud systems may have their own implementations such as
Cassandra’s and Google Spanner’s Paxos implementations [18].
CoFI employs distributed program invariants [14, 20] to represent
the consistent states in a cloud system. A distributed program in-
variant is a property that must hold when multiple nodes are each
at certain program point. For a selected invariant, a cloud system
state is consistent if it satisfies the invariant. Otherwise, the state
is inconsistent. We can use the following invariant to represent the
consistent states in our motivating example, i.e., C2 and C3 agree
on C1’s status:

status[C1]@C2 == status[C1]@C3

From Figure 2 we can see that, at a consistent state, e.g., Step 1 , the
above invariant is satisfied. Conversely, at an inconsistent state, e.g.,
Step 2 , the above invariant is violated. Since the invariants can be
automatically extracted from cloud systems, such consistent states
can be easily applied to different protocols and implementations.

2.2.2 Challenge 2: When to Start a Network Partition? An intuitive
idea is to start a network partition at every point during the sys-
tem execution since it simulates the real-world scenario that the
network can be partitioned at any time. However, this approach
is impractical due to extremely high overhead. In our motivating
example, Step 3 alone lasts for more than one minute, containing
too many execution points to explore. Instead, CoFI injects a net-
work partition as soon as it detects an inconsistent state at run time.
For example, using the invariant in §2.2.1 to represent consistent
states, CoFI will start the network partition after C2 updates its
local copy of C1’s status to “Left” (Step 2) and before C3 updates
its local copy ofC1’s status to “Left”. To provide maximum chances
of exposing partition bugs, CoFI injects network partitions at the
message level (instead of at the user operation level as employed by
other tools [2, 23]) by failing the message exchanges among nodes.
Therefore, the gossip messages at Step 3 will be failed, keepingC2
and C3 inconsistent.

2.2.3 Challenge 3: When to Stop a Network Partition? To exercise a
cloud system at inconsistent states, one can try to stop the network
partition at every execution point (i.e., enabling message exchange
before each message is sent). However, this approach of exhaus-
tively searching all possible points to stop the network partition has
very high overhead. For instance, Step 3 alone consists of more
than 100 gossip messages. Trying to stop the network partition
before each of them will be inefficient for exposing our motivating
bug. To address this issue, CoFI classifies messages into different
types and systematically explores the timing of stopping a network
partition for each type of messages, instead of each message. Af-
ter the classification, the gossip messages at Step 3 are grouped
into only a few types, drastically reducing the number of stopping
points to explore.

3 CONSISTENCY-GUIDED FAULT INJECTION
In this section, we first discuss CoFI’s fault model. Then, we explain
CoFI’s workflow and explain its major steps.

3.1 Fault Model
CoFI tests a cloud system by injecting a period of temporary network
partition to one node in the system. Here, “temporary” means that
a started network partition will stop at certain point. Note that
starting a network partition at inconsistent states only tests the
cloud system at Phase 3 in Figure 1. To thoroughly test a cloud
system at inconsistent states, CoFI also stops the network partition
to test the cloud system at Phase 4, i.e., exchanging messages among
inconsistent nodes.

The specifics of our fault model are as follows. First, in a test run,
only one node will be partitioned. Second, the network partition
can start and stop at any time (controlled by CoFI), but CoFI will
only start and stop the network partition once per test run. Third,
during the network partition, all the messages being sent from or

ASE ’20, September 21–25, 2020, Virtual Event, Australia Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin

Bug
Reports

Stage 1: Invariant Mining

Workload Checker Interesting
VariablesCloud

System

Invariants

Stage 2: Fault Injection

Figure 3: CoFI’s workflow. The two solid boxes represent the
two stages of CoFI’s workflow. The three dotted boxes rep-
resent the configurable inputs to each stage.

delivered to the partitioned node will be failed. CoFI focuses on this
simple network partition model because it is realistic, and more
importantly, cloud systems are expected to correctly handle such a
simple fault model at the minimum. It is worth noting that CoFI can
be extended to test more complicated fault models, e.g., partitioning
multiple nodes and simplex partition [2]. We leave them as future
work.

3.2 CoFI in A Nutshell
Figure 3 presents an overview of CoFI’s workflow. CoFI works in
two stages: invariant mining and fault injection. In the invariant
mining stage, CoFI first runs the cloud system using the workload
and records the runtime values of the interesting variables. Then,
CoFI mines distributed program invariants from the recorded vari-
able values. The mined invariants will be used to guide starting and
stopping network partitions in the fault injection stage. Specifically,
for each invariant, which represents consistent system states, CoFI
systematically explores the scenarios of network partitions that
start at an inconsistent state where the invariant is violated and
stop at a later execution point. During each testing run, CoFI uses
the checker to detect incorrect system behaviors, e.g., system down.
When the checker fails, CoFI will generate a detailed bug report
to help developers diagnose the failure. The bug report contains
information about the executed workload, the failure symptom,
the runtime values of the invariant-related variables, as well as the
messages failed by the network partition.

3.3 Specifying Interesting Variables
3.3.1 Which Variables are Interesting? In the invariant mining
stage, CoFI mines distributed program invariants based on the
runtime values of some interesting variables. Which variables are
interesting? We observe that two categories of variables can bet-
ter represent the state of a cloud system, namely system metadata
(e.g., the status of a Cassandra node as shown in our motivating
example) and user metadata (e.g., the location of a container in
YARN). This meta-information is critical because anything wrong
with this meta-information may seriously affect the reliability of a
cloud system. Moreover, an interesting variable should have data
flow from or to the network so that CoFI can exercise the cloud sys-
tem in inconsistent states by controlling the timing of the network
partition. For instance, the status[C1] variable in our motivating
example is a system metadata that has data flow to and from the
network. By starting the network partition when C2 and C3 are
inconsistent on status[C1] (Step 3 in Figure 2) and stopping the
network partition after C2 removes its status[C1] (Step 4), CoFI
triggers the bug.

1 // NameNode's status on NameNode.

2 NameNode.instance.state: NameNode_Status

3 // NameNode's status on DataNode.

4 DataNode.instance.bpManager.bpByNameserviceId.bpServices.state:

NameNode_Status

Figure 4: Two interesting variables in HDFS.

3.3.2 How to Specify Interesting Variables? Since CoFI may access
an interesting variable outside of its scope, we represent an interest-
ing variable using the path to access the variable from a Java static
field (Java’s global variable). We refer to these paths as access paths.
Figure 4 lists two interesting variables (i.e., two access paths) that
refer to the same metadata in HDFS. Specifically, these two variables
both store the status of a NameNode, i.e., whether the NameNode
is active or standby. When specifying an interesting variable, one
should specify the access path followed by the metadata stored in
the variable. Let’s use the first interesting variable (Line 2) to further
explain how the access path works. NameNode.instance is a static

field that refers to a NameNode object, and state is the NameN-
ode object’s instance field that stores the NameNode’s status. At
run time, CoFI accesses this interesting variable by first accessing
the NameNode.instance object and then accessing the state field of
that NameNode.instance object. Developers can provide their own
interesting variables to represent system states, customizing CoFI
to test the states they are interested in. The effort needed to spec-
ify an interesting variable depends on the implementation details
involved in the access path. For example, it is straightforward to
derive the first access path in Figure 4 because it matches with
“the NameNode’s status”. Conversely, specifying the second access
path requires the knowledge that a DataNode stores information
about the NameNodes in the bpManager field. The metadata after
each access path is a user-defined identifier, which helps CoFI select
interesting invariants in the invariant mining stage (§3.4.3).

3.4 Invariant Mining
In the invariant mining stage, CoFI first runs the cloud system
and records the interesting variables’ values at the program points
that likely reflect consistent system states. Then, CoFI groups the
values recorded on different nodes to reconstruct the consistent
states, from which invariants are mined. Finally, from the mined
invariants, CoFI selects the interesting ones to guide fault injection
in the next stage.

3.4.1 Which Program Points to Collect Variable Values? To derive
consistent states in a cloud system, CoFI mines distributed program
invariants from the interesting variables’ runtime values at certain
program points. The convention is to choose program points like
function entrances, function exits, and loop entrances [14]. How-
ever, values at these program points may reflect the intermediate
results of a node’s local computation, which do not represent the sys-
tem’s consistent states. Instead, CoFI selects program points right
before a message is sent (before-send program points) and right
after a message is handled (after-handle programpoints). Specif-
ically, CoFI considers the entrance of a message-sending method as

CoFI: Consistency-Guided Fault Injection for Cloud Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

// C2’s code
1 void sendGossip(Gossip gsp) {
2 updateLocalStates(gsp);
3 sendGossipTo(C3);// Before-send
4 }

// C3’s code
6 void handleGossip(Gossip gsp) {
7 updateLocalStates(gsp);
8 // After-handle
9 }

C2 C3

C1:(t1,Left)

C1:(t1,Left) ③GOSSIP{C1:(t1,Left)}②line 2
line 4 line 6

line 7

Figure 5: A partial execution ofC2 andC3 if the network par-
tition in Figure 2 does not occur.

a before-send program point, and considers the exit of a message-
handling method as an after-handle program point. A before-send
program point reflects the sender node’s state when it has applied
some changes locally, and is ready to propagate such a change to its
peers. Similarly, an after-handle program point reflects the receiver
node’s state when it has finished updating its local state according
to a received message. Therefore, the sender and the receiver of the
same message are usually consistent at the pair of these program
points.

Figure 5 illustrates such a property using ourmotivating example.
It shows a partial execution of C2 and C3 if the network partition
does not occur and C2 sends a gossip message to C3 at Step 3 in
Figure 2. At the before-send program point (Line 3 in Figure 5),
C2 has updated its copy of C1’s status (Line 2). At the after-handle
program point (Line 8), C3 has also updated its copy of C1’s status
according to the gossip message fromC2 (Line 7). As a result,C2 and
C3 are consistent about C1’s status at this pair of program points.

3.4.2 How to Associate Values from Different Nodes? After col-
lecting variable values at the before-send program points and the
after-handle program points, CoFI needs to group these values to re-
construct the consistent states. Since the sender and the receiver of
a message are usually consistent at the corresponding before-send
and after-handle program points, CoFI groups the variable values
at the pair of these program points to reconstruct the consistent
state. For the example in Figure 5, CoFI groups C2’s variable values
at Line 3 and C3’s variable values at Line 8 for the same gossip
message to reconstruct the state. The constructed state contains
all the variables logged at the two before-send and after-handle
program point instances. CoFI considers the state of two nodes, i.e.,
pair-wise state, instead of the state of all the nodes in the cluster
for two reasons. First, many properties of distributed protocols can
be captured in pair-wise states. For instance, for Cassandra’s gossip
protocol, two nodes should be consistent after they have exchanged
gossips (e.g., the invariant in §2.2.1). Second, even when a property
involves more than two nodes, breaking the sub-property between
any pair of the involved nodes will be sufficient to violate the whole
property. For example, in HDFS’s replication protocol, all the repli-
cas should have the same data when a write succeeds. If any pair
of replicas have different data, the whole property no longer holds.
When the interesting variable is status[C1] in Figure 5, grouping
C2’s value at Line 3 and C3’s value at Line 8 allows CoFI to mine
the desired invariant, i.e., the invariant in §2.2.1.

3.4.3 Which Invariants areMore Interesting? After constructing the
pair-wise states, CoFI employs Daikon [14] to perform the actual
invariant mining. By default, Daikon canmine many invariants [20].

Algorithm 1: Running fault injection tests for an invariant.
Input: invariant, workload, checker

1 iStates := runWithoutPartition(invariant)
2 while iState := iStates.next() do
3 for iNd ∈ iState.inconsistentNodes do
4 passedNewMsgType := true; allMsgTypes := {}
5 while passedNewMsgType do
6 (newIStates, passedNewMsgType) :=

runWithPartition(iState, allMsgTypes)
7 iStates.add(newIStates)

8 Function runWithPartition(iState, allMsgTps) do
9 workload.start()

10 partition := WAITING; passedNewMsgTp := false
11 while workload.isRunning do
12 if partition = WAITING ∧ curState = iState then
13 partition := STARTED
14 if partition = STARTED ∧ curMsg < allMsgTps then
15 allMsgTps.add(curMsg)
16 passedNewMsgTp := true; partition := STOPPED

17 if checker.failed then
18 generateBugReport()
19 return (getNewInconsistentStates(), passedNewMsgTp)

Exploring all these invariants can be very time-consuming. There-
fore, CoFI further prunes the mined invariants based on a few
heuristics, allowing developers to run more interesting tests within
a limited budget.

First, CoFI only selects invariants that involve multiple (i.e., two
in our setting) nodes. Cross-node invariants capture the consistent
states of different nodes.When they are violated, the involved nodes
are inconsistent. Second, CoFI removes invariants among variables
that refer to different metadata because it may not be meaningful to
compare two different metadata. Record that, when specifying an
interesting variable, developers also specify the metadata referred
to by the variable (§3.3.2). If an invariant involves variables that
refer to different metadata, the invariant will be disregarded. By
default, Daikon mines many types of invariants, e.g., the equality
of variable values (e.g., vara == varb +varc), and the membership
relation between two variables (e.g., varelmnt ∈ varset). CoFI
focuses on equality invariants since it is usually easier to violate
these invariants, i.e., to create inconsistent states, during the test
runs. Since the invariant for triggering CASSANDRA-2115 asserts the
equality of the same metadata on two nodes, CoFI will select it.

Note that, CoFI’s methodology allows using any invariant to
represent consistent states, pruning out less interesting invariants
improves the test efficiency.

3.5 Fault Injection
In the fault injection stage, CoFI conducts multiple test runs for each
mined invariant, as shown in Algorithm 1. More specifically, for
each invariant, CoFI first runs the cloud system without injecting
network partition to record possible inconsistent states for starting

https://issues.apache.org/jira/browse/CASSANDRA-2115

ASE ’20, September 21–25, 2020, Virtual Event, Australia Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin

the network partition in the later runs (Line 1). Then, CoFI iter-
ates over each inconsistent state as the starting point of a network
partition (Line 2). For each inconsistent state, CoFI also explores
partitioning different inconsistent nodes (Line 3). For each <incon-
sistent state, partitioned node> pair, CoFI repeatedly runs the cloud
system to systematically explore different scenarios of network
partitions described as follows.

In each test run for exploring one scenario of a network parti-
tion, CoFI first starts the workload (Line 9) and monitors the cloud
system’s runtime state (represented by the invariant-related vari-
ables). Once the system reaches the selected inconsistent state of
the current run, CoFI starts the network partition by stopping fu-
ture messages sending from or delivering to the partitioned node
(Lines 12-13). CoFI systematically explores different network par-
tition stopping points by stopping the network partition before
different types of messages.

For each message type, CoFI explores two possible cases: stop-
ping the network partition or maintaining the network partition
at this point. Specifically, after the network partition starts, CoFI
intercepts every message that is sending from or delivering to the
partitioned node. If having not seen the type of an intercepted
message, CoFI explores the scenario of stopping the partition at
this point, which allows the current and future messages to pass
(Lines 14-16). Otherwise, CoFI maintains the network partition by
dropping the message. CoFI simulates message drop at the applica-
tion level instead of the OS level. More details will be explained in
§4. At the end of each test run, if the checker fails, CoFI generates a
bug report for the failure (Lines 17-18). CoFI terminates exploring
the scenarios of the network partition for the pair of <inconsistent
state, partitioned node> if there is no new message type encoun-
tered in the latest run (Line 5), which means CoFI has explored both
passing and failing all the message types.

Due to the non-determinism in the cloud system’s execution,
some inconsistent states may not occur in the first partition-free
run but in the later runs. Therefore, CoFI continues collecting new
inconsistent states in each test run (Line 19). The newly collected
inconsistent states will be used as the starting point of the network
partition in the successive runs (Line 7). It is also possible that some
inconsistent states CoFI initially collected may not occur in the
later test runs. To address this issue, CoFI will retry the test runs
multiple times (a configurable parameter) for the inconsistent state.

3.5.1 Identifying Inconsistent States. To identify the possible incon-
sistent states during the partition-free run (Line 1 in Algorithm 1)
and the runs with network partitions (Line 6 in Algorithm 1), CoFI
monitors the runtime values of the interesting variables. Specifically,
CoFI synchronously collects the variable values at the before-send
program points and the after-handle program points. By collecting
values at the after-handle program points, CoFI can capture the
state change that is caused by a node handling a state-changing
message. As shown in our motivating example, after C2 handles
C1’s gossip message at Step 2 in Figure 2, CoFI will immediately
know that status[C1]@C2 has become “Left”. Sometimes, a state
change is not caused by the node handling a message. For example,
Step 4 in Figure 2 happens after a timeout (Line 1 in Figure 2). To
capture these state changes, CoFI collects the variable values at
the before-send program points. Since cloud systems often employ

a heartbeat mechanism, collecting variable values at before-send
program points helps CoFI periodically refresh its copy of a node’s
state. When C2 tries to send a gossip after Step 4 in Figure 2, CoFI
will realize that status[C1]@C2 has become ∅.

3.5.2 Classifying Messages. When CoFI fails a message during a
network partition, the cloud system can react in two ways: The
cloud system can simply retry sending the message, or initiate a
different protocol to perform recovery (e.g., Cassandra will initiate
hinted-handoff when a data replication message fails). Stopping
the network partition for retried messages is unnecessary since
exchanging the same type of messages will not exercise the cloud
system differently. However, stopping the network partition in the
second scenario can test if the alternative protocol will proceed
correctly at inconsistent states.

Based on this observation, CoFI systematically explores stopping
the network partition before each type of messages (Lines 14-16
in Algorithm 1), instead of each message. An ideal message type
should correlate with the code segments that will be executed when
sending or handling the message. In this way, stopping the network
partition before different types of messages may exercise different
code segments in the cloud system.

CoFI represents the message type using the quad <stack, sender,
receiver, state>, where stack is the runtime call stack of the mes-
sage sending method, sender and receiver are the sender and the
receiver of the message, and state is the system state (i.e., the values
of the invariant-related variables) when the message is sent. The
message type includes the sender call stack of a message because it
reflects the execution path on the sender side. Moreover, messages
sent at different call stacks usually belong to different protocols
(e.g., Cassandra’s gossip and hinted-handoff protocols), or differ-
ent steps of the same protocol (e.g., the commit-request step and
the commit step of a two-phase commit protocol [42]). Therefore,
handling these messages will execute different code segments on
the receiver side. The other three elements in the message type
also correlate with the code segments that will be exercised. In our
motivating example, the following three types of messages execute
different code segments at the receiver side:

Type 1: <stackgossip, C2, C3, {Left, Normal}>
Type 2: <stackgossip, C3, C2, {Left, Normal}>
Type 3: <stackgossip, C3, C2, {∅, Normal}>

Specifically, a Type 1 message will trigger the code that checks the
message’s vector clock and updates the receiver’s state, a Type 2
message will exercise the code that checks the message’s vector
clock and discards the message, and a Type 3 message will execute
the code that blindly accepts the value in the message. For example,
all the gossip messages that C2 sends to C3 at Step 3 in Figure 2
belong to Type 1. As a result, CoFI will not redundantly try to
stop the network partition before each of these equivalent gossip
messages.

3.6 Workload and Checker
Workloads drive CoFI to exercise a target cloud system. They
can come from various sources ranging from simple unit tests to
carefully-crafted test cases for stress testing. Although CoFI can
be driven by different workloads, CoFI is most effective when the
workload includes cross-node operations that repeatedly read and

CoFI: Consistency-Guided Fault Injection for Cloud Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

write the interesting variables in different ways. With such a work-
load, CoFI can explore more network partition scenarios. For each
of our tested cloud system, we implement a few such workloads
using common admin operations (e.g., ResourceManager failover
in YARN) and user operations (e.g., file movement in HDFS).

Moreover, developers can flexibly implement checkers to assert
the system properties they care about. We provide default checkers
in CoFI, one per workload. Specifically, our checkers check for both
general failures (i.e., FATAL entries, ERROR entries, and exceptions
in execution logs, as well as node crashes) and operation-specific
failures (e.g., returning error code and reading stale data).

4 IMPLEMENTATION
CoFI has three components: an instrumentation engine, an invariant
mining engine, and a fault injection engine. The instrumentation en-
gine instruments the cloud system to enable reading the interesting
variables at run time as well as intercepting message sending and
message handling method calls. The invariant mining engine runs
the cloud system and mines distributed program invariants from
the values recorded by the instrumented code. The fault injection
engine runs the workload and the checker on the cloud system and
interacts with the instrumented code to inject network partitions.

4.1 Code Instrumentation
We build CoFI’s instrumentation engine using Javassist [8], a Java
bytecode instrumentation toolkit. To enable accessing interesting
variables at run time, the instrumentation engine adds a getter
method for each field in the target system. To intercept message
sending method calls, the instrumentation engine adds a call to
CoFI’s beforeSend() API at the beginning of each message sending
method (i.e., each before-send program point). Similarly, to inter-
cept message handling method calls, the instrumentation engine
adds a call to CoFI’s afterHandle() API at the end of each message
handling method (i.e., each after-handle program point). We inte-
grate CoFI with the knowledge of the message sending methods
and the message handling methods in popular cloud systems, e.g.,
sendOneWay() in Cassandra. Developers can configure CoFI to in-
strument different message-passing methods. Inside the message
sending methods, the instrumentation engine also adds code to sim-
ulate the network partition’s effect on the local node. In the fault
injection stage, this code will be executed when the fault injection
engine decides to fail the message. Developers can also configure
the effect of the network partition. By default, the instrumented
code throws an IOException.

Both beforeSend() and afterHandle() take three parameters: the
sender of the message, the receiver of the message, and the class
of the message. All three parameters are used to generate an ID
for the message in the invariant mining stage. The sender and the
receiver parameters are also sent to the fault injection engine to
decide the message type during the fault injection stage.

4.2 Invariant Mining
In the invariant mining stage, beforeSend() and afterHandle() per-
form similar tasks: Both APIs first record the interesting variables’
values through calling the getter methods. Then, the APIs generate
an ID for the message-to-send or the handled message. Finally, they

associate the variable values with the message ID and write them
to a log, from which the invariant mining engine mines invariants.

Note that CoFI needs to pair the before-send and after-handle
program points of the same message to reconstruct a system state.
To identify the same message on the sender and receiver sides, CoFI
makes two assumptions: (1) Each communication channel between
two nodes is FIFO; (2) Messages of the same class go through the
same channel. Take our motivating bug as an example, under these
two assumptions, the first gossip message that C2 sends to C3 is
the first gossip message that C3 receives from C2. All of our tested
systems satisfy these two assumptions. With these assumptions,
CoFI constructs the message ID to be the concatenation of the
message’s sender, receiver, class, and the counter i . In this way, a
message will have the same ID on the sender and receiver sides.

Whenmining invariants, the invariantmining engine first groups
the variable values at the before-send program point and the after-
handle program point of the same message to form a system state.
The engine then concatenates the states of the same program point
pair (i.e., same sender, same receiver, and same message class) to
form a trace of the states for that program point pair. Afterwards,
the engine runs Daikon [14] on the traces tomine invariants. Finally,
the mined invariants are pruned based on the rules in §3.4.3.

4.3 Fault Injection
In the fault injection stage, the beforeSend() and the afterHandle()
APIs record the runtime values of the invariant-related variables
and report them to the fault injection engine. The beforeSend()

API also reports the pending message sending event to the fault
injection engine, and waits for the engine’s decision on whether the
message should be failed. If the engine decides to fail the message,
the beforeSend() API will return a false, triggering the execution
of the instrumented code in its caller (i.e., the message sending
method) to simulate the network partition, e.g., by throwing an
IOException to signal the caller about the network partition, or by
returning from the message sending method to simulate a silent
message drop.

5 EVALUATION
Our evaluation aims to answer three research questions: (1) How ef-
fective is CoFI in detecting partition bugs in cloud systems? (2) How
does CoFI compare with other approaches for injecting network
partitions? (3) How efficient is CoFI? We perform our evaluation us-
ing a CloudLab [12] machine that runs Ubuntu 16.04. The machine
has 40 Xeon® E5-2660 processors and 157 GB memory.

5.1 Experimental Methodology
5.1.1 Target Cloud Systems. We select three widely-used open-
source cloud systems as our experiment subjects, i.e., Cassandra [35],
HDFS [39], and YARN [38]. They represent different kinds of cloud
systems. First, they provide different functionalities: Cassandra
is a distributed NoSQL database, HDFS is a distributed file sys-
tem, and YARN is a distributed computing framework. Moreover,
these systems adopt different system architectures: Cassandra is a
peer-to-peer system while HDFS and YARN are coordinator/worker
systems. Finally, to combat network partitions, these systems im-
plement different recovery mechanisms, e.g., HDFS employs data

ASE ’20, September 21–25, 2020, Virtual Event, Australia Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin

Table 1: Experimental settings for the target systems. “Var #” shows the numbers of the interesting variables for each system.

System Operations in the Workloads Interesting Metadata Var #

Cassandra-3.11.5 Create keyspace/column family, read/write data, Node status, node token, keyspace name 3add/remove column, decommission node
HDFS-3.3.0 Read/write file, move file/directory, DataNode ID, NameNode ID, NameNode status, 9
HDFS-2.10.0 failover NameNode, failover DataNode data block ID, data block location 9
YARN-3.3.0 Launch/stop application, failover NodeManager, NodeManager ID, container ID, container location, 9
YARN-2.10.0 failover ResourceManager ResourceManager ID, ResourceManager status 9

Table 2: The known bugs used to evaluate CoFI. “S” shows
whether stopping a network partition is needed to trigger
the bug. “Operations” shows the operations in the workload
for exposing each bug.

Bug ID S Operations Interesting Metadata
CASSANDRA-3975 ✓ Write data, drop table Column family name
CASSANDRA-2115 ✓ Decommission node Node status
HDFS-14372 × Shutdown DataNode DataNode ID
YARN-4288 × Start cluster NodeManager ID

re-replication to recover inconsistent user data [39], and Cassandra
uses gossip to recover inconsistent system metadata [13].

5.1.2 Detecting Partition Bugs. To evaluate CoFI’s effectiveness,
we apply CoFI to our target systems and check if CoFI can detect
both known bugs and unknown bugs.

Detecting Known Bugs. First, we collect several known parti-
tion bugs by inspecting the recently published bug datasets [2, 7, 25,
30]. If a bug satisfies the following requirements, we select it to eval-
uate CoFI: (1) It happens in our target systems. (2) It only requires
partitioning one node to trigger. (3) We can manually reproduce the
bug. Finally, we obtained four partition bugs, as shown in Table 2.
These four known bugs cover all three target systems, and have
different timing requirements on the network partition (Column S).
Table 2 also shows the operations in each bug’s workload and the
metadata stored in the interesting variables which we specify for
each bug. The operations are extracted from the bug reports. The
interesting variables are identified through understanding each
bug’s triggering process.

Detecting Unknown Bugs. To evaluate CoFI’s effectiveness in
detecting unknown bugs, we apply CoFI to test the latest versions of
our target systems. For HDFS and YARN, we test both their version
2 and version 3 since these versions are both widely deployed and
under active development. For Cassandra, we only test its version 3
since the latest minor release of its version 2 (Cassandra-2.2) will
no longer be supported after Cassandra’s next major release [37].
Table 1 lists the selected system versions.

We design several workloads for each target system using the
common user and admin operations as shown in Table 1. For HDFS
and YARN, we use the same set of operations for both of their
versions. The operations in each workload follow natural order,
e.g., create a table before writing data to it. For Cassandra-3, we
implement four workloads on a three-node cluster to test regular
data access, Paxos data access, schema update, and node decom-
mission. For both HDFS-2 and HDFS-3, we design three workloads

to test file system operations, NameNode failover, and DataNode
failover. Both the file system operations workload and the NameN-
ode failover workload run on a cluster of two NameNodes and three
DataNodes while the DataNode failover workload runs on a cluster
with two NameNodes and four DataNodes. For YARN-2, we create
three workloads: Run a YARN application in a cluster of one Re-
sourceManager and one NodeManager; ResourceManager failover
in a cluster of two ResourceManagers and one NodeManager; Node-
Manager failover in a cluster of two ResourceManagers and two
NodeManagers. For YARN-3, we build two workloads: ResourceM-
anager failover when a YARN application is running in a cluster
of two ResourceManagers and one NodeManager; NodeManager
failover when a YARN application is running in a cluster of two
ResourceManagers and two NodeManagers. Moreover, each YARN
cluster also runs on top of an HDFS cluster with one NameNode
and one DataNode.

Our checkers check for both general failures (i.e., FATAL entries,
ERROR entries, and exceptions in execution logs, as well as node
crashes) and operation-specific failures (e.g., returning an error code
and reading stale data). To exploremore network partition scenarios,
we limit at most 100 fault injection runs for each invariant.

Table 1 also shows the metadata stored in the interesting vari-
ables that we specify for each target system. For Cassandra-3, we
specify the interesting variable that stores keyspace name instead
of column family name as for triggering CASSANDRA-3975. This is
because keyspace names are accessed more often than column
family names (to access a column family, one needs to first access
the owner keyspace), potentially exposing more system behaviors
when two nodes are inconsistent on a keyspace name. To enable
accessing the interesting variables in HDFS and YARN, we add two
static fields to each version of HDFS and three static fields to
each version of YARN to refer to the objects of the main compo-
nents in the system, i.e., NameNode, DataNode, ResourceManager,
NodeManager, and ApplicationMaster. In total, this only involves
modifying 22 lines of code for all four system versions. The manual
efforts for specifying the interesting variables are acceptable: One of
our authors specified all the interesting variables and implemented
all the modifications in the target systems in a few hours, even if he
only has a basic understanding of these systems. For the developers
of these systems, specifying interesting variables should take much
less time.

5.1.3 Comparing with an Alternative Approach. We compare CoFI
with injecting network partitions randomly. To be more specific,
we repeatedly run each workload for the same time as CoFI spends
when testing the target systems. During each test run, we inject a

https://issues.apache.org/jira/browse/CASSANDRA-3975
https://issues.apache.org/jira/browse/CASSANDRA-2115
https://issues.apache.org/jira/browse/HDFS-14372
https://issues.apache.org/jira/browse/YARN-4288
https://issues.apache.org/jira/browse/CASSANDRA-3975

CoFI: Consistency-Guided Fault Injection for Cloud Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 3: Bugs triggered by CoFI. “Stop” shows whether the network partition needs to stop to trigger the bug. “Status” shows
whether the bug is pending for developer’s confirmation, has been confirmed by developers, or has already been fixed. “Ran-
dom” shows whether the bug is triggered by randomly injecting network partitions during our experiment. Note that the four
known bugs are from older versions of the target systems and we only apply random injection to the latest versions of these
systems.

Bug ID Failure Symptom Interesting Metadata Stop Status Random

Known
bugs

CASSANDRA-3975 Thread keeps crashing Column family name ✓ Fixed N/A
CASSANDRA-2115 Decommissioned node reappears Node status ✓ Fixed N/A
HDFS-14372 NullPointerException DataNode ID × Fixed N/A
YARN-4288 NodeManager aborts NodeManager ID × Fixed N/A

Unknown
bugs

CASSANDRA-15758 Thread crashes Node status ✓ Pending ✓
CASSANDRA-15548 A created keyspace can’t be found Node status × Confirmed ✓
CASSANDRA-15546 Data read failure Node status × Pending ×

CASSANDRA-15437 Decommission failure Node status × Pending ✓

CASSANDRA-11804† Data access failure Node status × Confirmed ✓
HDFS-15367 File metadata inaccessible NameNode status ✓ Pending ✓
HDFS-15235 NameNode crashes NameNode status ✓ Confirmed ×

YARN-10301 Fail to stop a YARN service ResourceManager ID ✓ Pending ×

YARN-10294 Misleading error message Container’s location ✓ Pending ×

YARN-10288 Invalid application state transition Container’s location ✓ Confirmed ×

YARN-10232 Invalid application state transition Container’s location ✓ Pending ×

YARN-10231 Misleading error message Container ID ✓ Pending ✓
†We did not know CASSANDRA-11804 before CoFI exposed it. This bug is previously reported by others in Cassandra-3.5. But the original
bug reporter can no longer trigger it in later versions of Cassandra. We are the first one to report this bug in Cassandra-3.11.5.

network partition randomly. The scenario of the network partition
is determined before each test run. First, we randomly select a node
to inject network partition. Then, we decide when to start and stop
the network partition. The starting point and the stopping point of
the network partition are represented using the time offset from
the start of a test run. We randomly choose a time offset between 0
and the longest test duration to be the starting point of the network
partition, and randomly select a time offset between the starting
point and the longest test duration to be the stopping point of the
network partition. The longest test duration will be updated when
a longer test run occurs. If a test run finishes before the starting
point/stopping point is reached, the network partition does not
start/stop in that test run.

5.2 Detecting Partition Bugs
5.2.1 Overall Experimental Results. Table 3 lists the partition bugs
triggered by CoFI. In this table, we show the detailed information
about each bug, including the bug’s ID in JIRA (Bug ID), the failure
symptom of the bug (Failure Symptom), the interesting metadata
in the invariant that guides CoFI to expose the bug (Interesting
Metadata), whether the bug requires stopping the network par-
tition to trigger (Stop), whether the bug has been confirmed or
fixed by developers (Status), and whether the bug is also triggered
by randomly injecting network partitions during our experiment
(Random).

As shown in Table 3, CoFI successfully detects all four known
bugs using the workloads specified in the bug’s JIRA report, demon-
strating CoFI’s effectiveness in detecting known partition bugs.

Table 3 also shows that, CoFI identifies 12 partition bugs using the
interesting variables and the simple workloads (common user and

admin operations) that we specified for each system (Table 1). All 12
bugs are previously unknown in the system versions we test. At the
time of writing, four of the unknown bugs have been confirmed by
developers. The exposed unknown bugs have different symptoms,
including severe failures like node crashes and data access failures.
Note that these bugs only rely on a small set of interesting metadata,
i.e., Cassandra’s node status, HDFS’s NameNode status, YARN’s
ResourceManager ID, container location, and container ID.

In Table 3, we can also see that CoFI is effective in exposing
partition bugs that requires the network partition to stop at certain
points. Specifically, 10 out of 16 bugs can only be triggered by
stopping the network partition at certain timing. CoFI exposes
these bugs by systematically stopping the network partition for
each type of messages. On the contrary, it is challenging to expose
these bugs using existing techniques that rely on developers to
specify when the network partition starts and stops.

5.2.2 False Positive Analysis. Table 4 shows the detailed statistics
of applying CoFI to the latest versions of the target systems. In
total, CoFI reports 49 unique test failures in these systems (Column
Failures). 15 of these failures are caused by the unknown bugs
listed in Table 3 (Column Bugs). The remaining failures are mostly
false positives (Column False Pos.), while one failure cannot be
reproduced for diagnosis (Column Can’t Repr.).

We further investigate the false positives reported by CoFI. We
find that, most (28 out of 33) of these false positives are caused by
our checkers asserting for operation success while the operation
has to fail. For example, in one of the false positives in Cassan-
dra, a data read with quorum consistency (2 out of 3) fails with
a “NoHostAvailable” error. This failure matches with Cassandra’s

https://issues.apache.org/jira/browse/CASSANDRA-3975
https://issues.apache.org/jira/browse/CASSANDRA-2115
https://issues.apache.org/jira/browse/HDFS-14372
https://issues.apache.org/jira/browse/YARN-4288
https://issues.apache.org/jira/browse/CASSANDRA-15758
https://issues.apache.org/jira/browse/CASSANDRA-15548
https://issues.apache.org/jira/browse/CASSANDRA-15546
https://issues.apache.org/jira/browse/CASSANDRA-15437
https://issues.apache.org/jira/browse/CASSANDRA-11804
https://issues.apache.org/jira/browse/HDFS-15367
https://issues.apache.org/jira/browse/HDFS-15235
https://issues.apache.org/jira/browse/YARN-10301
https://issues.apache.org/jira/browse/YARN-10294
https://issues.apache.org/jira/browse/YARN-10288
https://issues.apache.org/jira/browse/YARN-10232
https://issues.apache.org/jira/browse/YARN-10231
https://issues.apache.org/jira/browse/CASSANDRA-11804

ASE ’20, September 21–25, 2020, Virtual Event, Australia Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin

Table 4: Thenumber of unique test failures in each system.A
failure can be a bug, a false positive (False Pos.), or undecided
if it cannot be reproduced for diagnosis (Can’t Repr.).

System Failures Bugs False Pos. Can’t Repr.
Cassandra-3 10 5 5 0
HDFS-3 7 2† 5 0
HDFS-2 9 2† 7 0
YARN-3 17 5 12 0
YARN-2 6 1‡ 4 1
Total 49 15 33 1
†The two failures in HDFS-3 and the two failures in HDFS-2
share the same two root causes (HDFS-15367 and HDFS-15235).
‡The failure in YARN-2 shares the same root cause (YARN-10232)
with one of the failures in YARN-3.

succeed

NN2Failover Command

Network
partition

①transitionToActive

②transitionToStandby
succeed

③terminate

standby

active

standby

DN

NN2:standbyinvariant
satisfied

invariant
violated

Figure 6: The triggering process of HDFS-15235.

specification because the coordinator node for the read request is
partitioned from the other two nodes. As a result, it does not have
enough peers (hosts) to serve the request.

These false positives raise a challenge in generating oracles for
fault injection tests. Specifically, the correct system behaviors may
vary in different fault scenarios. For example, if the “NoHostAvail-
able” error occurs when only a non-coordinator node is partitioned,
the failure is a bug because the coordinator should have enough
peers to serve the read request. Automatically generating oracles
for fault injection tests will be a challenge for the future research.

5.2.3 Case Study. We now show an example of how partition bugs
can occur under intricate network partition scenarios and how
CoFI’s choice of the partition starting points and the exploration of
the stopping points help CoFI expose partition bugs.

Figure 6 shows a partition bug HDFS-15235, which is triggered by
a temporary network partition that occurs when a failover attempt
is being rolled back. This is a previously-unknown partition bug
reported by CoFI. In a cluster with two NameNodes, NN2 has just
became active in a failover attempt (Step 1). Due to a network
partition, NN2 fails to respond to the failover command, which
triggers a rollback (Step 2). Normally, as the network partition
recovers,NN2 should safely change back to standby. However, a bug
in the rollback process unconditionally terminates NN2 during the
rollback (Step 3). As a result, the cluster loses a healthy NameNode
only because of an untimely transient network partition!

CoFI triggers this bug when using the invariant that NN2 and
the DataNode in the cluster (DN) agree on NN2’s status in consis-
tent states. After NN2 becomes active but before it informs DN ,

Table 5: The overhead of CoFI.

System Invariants Test Runs
Mined Selected Iterations Time

Cassandra-3 513 99 9,366 222h, 20m
HDFS-3 157 48 944 24h, 09m
HDFS-2 256 68 1,305 39h, 41m
YARN-3 51 14 1,151 240h, 11m
YARN-2 32 8 250 58h, 59m
Total 1,009 237 13,016 585h, 20m

the system is inconsistent. At this point, CoFI starts a network
partition on NN2. During CoFI’s systematic exploration of different
partition stopping points, it will test stopping the network partition
before Step 2 , which then triggers the bug. In our experiment, CoFI
exposes this bug using only 15 runs when testing HDFS-3. As this
example shows, the correctness of a protocol implementation can
be hard to analyze under intricate network partition scenarios. CoFI
can help expose partition bugs in the implementation by system-
atically exploring different network partition scenarios. It is also
worth noting that to trigger this bug the network partition needs
to start and stop in the middle of one failover command issued
by the admin. Therefore, injecting network partitions at the user
operation level, i.e., starting and stopping the network partition
before or after the failover command, cannot trigger this bug.

5.3 Comparing with Random Fault Injection
Table 3 also lists the bugs triggered by randomly injecting network
partitions using the policy described in §5.1.3. We find that CoFI is
more effective in exposing partition bugs than random injection.
Specifically, the random injection only triggerred 6 out of 12 bugs
triggered by CoFI. Moreover, the random injection did not trigger
any bugs that are new to CoFI. It is also worth noting that if the
random injection does not stop the network partition, 3 out of these
6 bugs will not be triggered.

To understand why random injection is not effective in trigger-
ing partition bugs, we further analyze the triggering process of
four representative bugs (CASSANDRA-15437, HDFS-15367, HDFS-15235,
and YARN-10232) to compute the probability to trigger them ran-
domly. First, we assume that the node to partition is correctly se-
lected. Then, based on a concrete execution, we compute the prob-
ability of selecting the right starting point of the network parti-
tion P(start) and the conditional probability of selecting the right
stopping point based on the selected starting point P(end |start).
Finally, the probability to randomly trigger a bug is computed as
P(buд) = P(start) × P(end |start). We find that the two bugs trig-
gered by both CoFI and the random injection have high likelyhoods
to trigger (P(CA-15437) = 12.65%, P(HF -15367) = 8.87%), while
the other two bugs only triggered by CoFI have much lower proba-
bilities (P(HF -15235) = 0.08%, P(YN -10232) = 0.002%). Therefore,
both our experiment and our analysis suggest that CoFI is more
effective than random injection in triggering partition bugs.

5.4 Overhead Analysis
To measure the overhead of CoFI, we record several metrics while
applying CoFI to detect unknown bugs. The metrics include the

https://issues.apache.org/jira/browse/HDFS-15367
https://issues.apache.org/jira/browse/HDFS-15235
https://issues.apache.org/jira/browse/YARN-10232
https://issues.apache.org/jira/browse/HDFS-15235
https://issues.apache.org/jira/browse/HDFS-15235
https://issues.apache.org/jira/browse/CASSANDRA-15437
https://issues.apache.org/jira/browse/HDFS-15367
https://issues.apache.org/jira/browse/HDFS-15235
https://issues.apache.org/jira/browse/YARN-10232

CoFI: Consistency-Guided Fault Injection for Cloud Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

number of invariants mined and selected by CoFI, as well as the test
iterations and wall clock time CoFI spends in testing each target
system. Table 5 shows the values of these metrics.

In the fault injection stage, there are in total 13,016 test runs for
all five system versions (Column Iterations), which takes about 585
hours to finish (Column Time). Specifically, the average time for
each test run (Column Time / Column Iterations) in Cassandra
and HDFS is about 1 to 2 minutes. On average, YARN requires
more than 10 minutes to finish one test run. This is because YARN
employs a wait-and-retry mechanism for many operations. The
test time can be shortened by configuring YARN to reduce the wait
time and the number of max retries. Given that cloud systems are
complicated, the above result demonstrates that CoFI is efficient to
be used for real world cloud system testing.

Table 5 also shows, in the invariant mining stage, CoFI mines
1,009 distributed program invariants from the target systems (Col-
umn Mined). After applying CoFI’s invariant pruning strategy,
only 237 invariants remain (Column Selected). That’s said, about
76% of invariants are removed by CoFI’s invariants pruning strategy,
significantly reducing the number of invariants to test.

6 DISCUSSION
We now discuss limitations and potential threats in our approach.

CoFI’s Fault Model. CoFI focuses on a simple fault model: one
temporary network partition occurs on one node. Hence, CoFI can
miss some partition bugs, e.g., the ones triggered by partitioning
multiple nodes. Even though CoFI is not complete, our evaluation
shows that CoFI is effective in detecting partition bugs. Extending
CoFI to support more fault models can be our future work.

Identifying Interesting Variables. CoFI’s effectiveness and
efficiency depend on the quality of the specified variables. Spec-
ifying uninteresting variables, e.g., variables for local file system
data, may prevent CoFI from injecting network partitions at in-
teresting inconsistent states. Moreover, specifying variables that
are updated at the same time, e.g., nodeId and nodeId_charArray,
will cause CoFI to test redundant network partition scenarios. To
help identify interesting variables, we suggest developers to spec-
ify metadata variables that interact with network. Moreover, CoFI
provides default interesting variables for our target systems. In the
future, it is needed to automate the variable identification process.

Monitoring Variables. CoFI does not use complicated program
analysis or expensive synchronization to collect consistent states
of the cloud system. Instead, CoFI employs a simple heuristic, i.e.,
using the before-send and the after-handle program points of the
same message to construct system states. This heuristic may cause
CoFI to collect an inaccurate state, e.g., if the variables are asyn-
chronously updated in the mean time. In the future, this inaccuracy
can be removed by adding synchronization across the cluster.

Threats to Validity. Due to resource limitation, we evaluate
CoFI using five versions of three popular cloud systems. Therefore,
our experimental results may not reflect the situation in other cloud
systems, e.g., distributed streaming systems. However, we strive
to be unbiased by selecting systems with different functionalities
(i.e., a distributed NoSQL database, a distributed file system, and a
distributed computing framework) and architectures (i.e., peer-to-
peer vs. coordinator/worker).

7 RELATEDWORK
Fault Injection. Fault injection is a commonly used technique for
exposing fault-triggered bugs. In recent years, many fault injection
techniques have been proposed to expose bugs in cloud systems.
NEAT [2] and Jepsen [23] both inject network partitions when
testing cloud systems. However, they rely on developers to specify
when a network partition starts and stops, which makes them
less desirable for exposing partition bugs that have strict timing
requirements on network partitions. Moreover, both tools inject
network partitions at the user operation level, which limits their
effectiveness in exposing intricate partition bugs. On the contrary,
CoFI systematically and smartly explores different starting points
and stopping points of network partitions at message level, which
enables CoFI to expose partition bugs effectively.

Other fault injection techniques include randomly dropping
network packets [32], injecting node crashes [1, 29, 30], injecting
filesystem faults [16], injecting API failures [3, 4], and reordering
network messages [28]. CoFI is complementary to these techniques
since it focuses on a different and important fault model for cloud
systems, i.e., network partitions.

Fault injection has also been commonly used to test how general
software behaves at adversarial scenarios, such as power faults
[22, 33, 46] and adversarial inputs [26, 34, 45]. These techniques do
not focus on exposing partition bugs in cloud systems.

Bug Detection Techniques for Cloud Systems. Besides fault
injection, many other techniques have been proposed to detect
bugs in cloud systems. For example, distributed model checkers
explore all possible interleavings among network messages and
local computation to expose bugs in the cloud system implementa-
tions [21, 24, 31, 43]. While being powerful, they still suffer from
the state space explosion problem. Some tools can detect bugs by
statically analyzing the source code of the cloud systems [7, 9, 44].
Partition bugs involve complex interaction between multiple nodes
in the cloud system, which is challenging to analyze statically.

8 CONCLUSION
We present consistency-guided fault injection (CoFI), a novel tech-
nique that injects network partitions to expose partition bugs in
cloud systems. CoFI is the first fault injection technique that con-
trols both the starting point and the stopping point of the injected
network partition. Our evaluation on popular cloud systems shows
that CoFI is both effective in exposing partition bugs and efficient
to be used in real world cloud system testing.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their thor-
ough and insightful comments. In this work, Haicheng Chen and
Feng Qin were partially supported by National Science Foundation
grants #CNS-1513120 and #CCF-0953759 (CAREER Award). Wen-
sheng Dou and Dong Wang were partially supported by National
Key R&D Program of China (#2017YFB1001804), National Natural
Science Foundation of China (#61732019), Frontier Science Project
of Chinese Academy of Sciences (QYZDJ-SSW-JSC036), and Youth
Innovation Promotion Association at Chinese Academy of Sciences.
Both Haicheng Chen and Wensheng Dou are the corresponding
authors of this paper.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin

REFERENCES
[1] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-

malayan Sankaranarayana Pillai, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2016. Correlated crash vulnerabilities. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation. 151–167.

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany.
2018. An analysis of network-partitioning failures in cloud systems. In Proceedings
of the 13th USENIX Symposium on Operating Systems Design and Implementation.
51–68.

[3] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Sosenthal, Ali Basiri, and
Hochstein Lorin. 2016. Automating failure testing research at Internet scale. In
Proceedings of the 7th ACM Symposium on Cloud Computing. 1–16.

[4] Peter Alvaro, Joshua Rosen, and Joseph M Hellerstein. 2015. Lineage-driven
fault injection. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 331–346.

[5] Ben Brody. 2014. LA residents call 911 when Facebook goes down. https://money.
cnn.com/2014/08/04/news/companies/facebook-outage-911/index.html.

[6] Box. 2020. Box customers. https://www.box.com/customers.
[7] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. 2019. Understand-

ing exception-related bugs in large-scale cloud systems. In Proceedings of the 34th
International Conference on Automated Software Engineering.

[8] Shigeru Chiba. 2020. Javassist. https://www.javassist.org.
[9] Ting Dai, Jingzhu He, Xiaohui Gu, Shan Lu, and Peipei Wang. 2018. DScope:

Detecting real-world data corruption hang bugs in cloud server systems. In
Proceedings of the 7th ACM Symposium on Cloud Computing. 333–325.

[10] Datapth.io. 2017. Recent AWS outage and how you could have avoided down-
time. https://medium.com/@datapath_io/recent-aws-outage-and-how-you-
could-have-avoided-downtime-7d9d9443d776.

[11] Dropbox Business. 2020. Customers - Dropbox business. https://www.dropbox.
com/business/customers.

[12] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
design and operation of CloudLab. In Proceedings of USENIX Annual Technical
Conference.

[13] Dynamo. 2016. Documentation. http://cassandra.apache.org/doc/latest/
architecture/dynamo.html.

[14] Michael D. Ernst. 2000. Dynamically discovering likely program invariants. Ph.D.
University of Washington Department of Computer Science and Engineering,
Seattle, Washington.

[15] Facebook. 2020. Facebook. https://www.facebook.com.
[16] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-Dusseau, and

Remzi H Arpaci-Dusseau. 2017. Redundancy does not imply fault tolerance:
Analysis of distributed storage reactions to single errors and corruptions. In
Proceedings of the 15th USENIX Conference on File and Storage Technologies. 149–
166.

[17] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
network failures in data centers: Measurement, analysis, and implications. In
Proceedings of the ACM SIGCOMM Conference. 350–361.

[18] Google. 2020. Spanner - Replication. https://cloud.google.com/spanner/docs/
replication.

[19] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or die: High-availability design principles drawn from Googles
network infrastructure. In Proceedings of the ACM SIGCOMM Conference. 58–72.

[20] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring and as-
serting distributed system invariants. In Proceedings of the 40th International
Conference on Software Engineering. 1149–1159.

[21] Haryadi S Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M Hellerstein,
Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. 2011. FATE and DESTINI: A framework for cloud recovery testing.
In Proceedings of the 8th USENIX Symposium on Networked Systems Design and
Implementation.

[22] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu, Xiaoxing Ma, and Jian
Lu. 2016. Crash consistency validation made easy. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
133–143.

[23] Kyle Kingsbury. 2018. Distributed systems safety research. Retrieved Oct 10,
2018 from https://jepsen.io/

[24] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F Lukman,
and Haryadi S Gunawi. 2014. SAMC: Semantic-aware model checking for fast
discovery of deep bugs in cloud systems.. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation. 399–414.

[25] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and Haryadi S Gunawi.
2016. TaxDC: A taxonomy of non-deterministic concurrency bugs in datacen-
ter distributed systems. In Proceedings of the 21st International Conference on
Architectural Support for Programming Languages and Operating Systems.

[26] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. Perffuzz:
Automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 254–265.

[27] Linkedin. 2020. Linkedin. https://www.linkedin.com.
[28] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu, Haryadi S Gunawi,

and Chen Tian. 2017. DCatch: Automatically detecting distributed concurrency
bugs in cloud systems. In Proceedings of the 22nd International Conference on
Architectural Support for Programming Languages and Operating Systems.

[29] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian. 2018.
FCatch: Automatically detecting time-of-fault bugs in cloud systems. In Proceed-
ings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems.

[30] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and Liang You.
2019. CrashTuner: Detecting crash recovery bugs in cloud systems via meta-
info analysis. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 114–130.

[31] Jeffrey F Lukman, Huan Ke, Cesar A Stuardo, Riza O Suminto, Daniar H Kurni-
awan, Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye, Tanakorn Leesata-
pornwongsa, et al. 2019. FlyMC: Highly scalable testing of complex interleavings
in distributed systems. In Proceedings of the 14th EuroSys Conference. 20.

[32] osrg. 2018. Namazu: Programmable fuzzy scheduler for testing distributed sys-
tems. https://github.com/osrg/namazu.

[33] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagap-
pan, Samer Al-Kiswany, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
2014. All file systems are not created equal: On the complexity of crafting
crash-consistent applications. In Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation. 433–448.

[34] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution. In NDSS,
Vol. 16. 1–16.

[35] The Apache Software Foundation. 2016. Cassandra. http://cassandra.apache.org.
[36] The Apache Software Foundation. 2016. Cassandra - Data manipulation. https:

//cassandra.apache.org/doc/latest/cql/dml.html.
[37] The Apache Software Foundation. 2016. Cassandra’s older supported releases.

https://cassandra.apache.org/download/.
[38] The Apache Software Foundation. 2019. Apache Hadoop YARN. https://hadoop.

apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.
[39] The Apache Software Foundation. 2019. HDFS Architecture. http://hadoop.

apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html.
[40] Daniel Turner, Kirill Levchenko, Jeffrey C Mogul, Stefan Savage, Alex C Snoeren,

Daniel Turner, Kirill Levchenko, Jeffrey C Mogul, Stefan Savage, and Alex C
Snoeren. 2012. On failure in managed enterprise networks. HP Labs HPL-2012-
101 (2012).

[41] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and Stefan Savage. 2010. Cali-
fornia fault lines: Understanding the causes and impact of network failures. In
Proceedings of the ACM SIGCOMM Conference. 315–326.

[42] Wikipedia. 2020. Two-phase commit protocol. https://en.wikipedia.org/wiki/
Two-phase_commit_protocol.

[43] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:
Transparent model checking of unmodified distributed systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation.

[44] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U Jain, and Michael Stumm. 2014. Simple testing can prevent most
critical failures: An analysis of production failures in distributed data-intensive
systems. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation. 249–265.

[45] Michal Zalewski. 2017. American fuzzy lop. https://lcamtuf.coredump.cx/afl/.
[46] Mai Zheng, Joseph Tucek, DachuanHuang, FengQin,Mark Lillibridge, Elizabeth S

Yang, Bill W Zhao, and Shashank Singh. 2014. Torturing databases for fun and
profit. In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation. 449–464.

https://money.cnn.com/2014/08/04/news/companies/facebook-outage-911/index.html
https://money.cnn.com/2014/08/04/news/companies/facebook-outage-911/index.html
https://www.box.com/customers
https://www.javassist.org
https://medium.com/@datapath_io/recent-aws-outage-and-how-you-could-have-avoided-downtime-7d9d9443d776
https://medium.com/@datapath_io/recent-aws-outage-and-how-you-could-have-avoided-downtime-7d9d9443d776
https://www.dropbox.com/business/customers
https://www.dropbox.com/business/customers
http://cassandra.apache.org/doc/latest/architecture/dynamo.html
http://cassandra.apache.org/doc/latest/architecture/dynamo.html
https://www.facebook.com
https://cloud.google.com/spanner/docs/replication
https://cloud.google.com/spanner/docs/replication
https://jepsen.io/
https://www.linkedin.com
https://github.com/osrg/namazu
http://cassandra.apache.org
https://cassandra.apache.org/doc/latest/cql/dml.html
https://cassandra.apache.org/doc/latest/cql/dml.html
https://cassandra.apache.org/download/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://lcamtuf.coredump.cx/afl/

