
Detecting Cache-Related Bugs in Spark Applications
Hui Li∗

Dong Wang∗
State Key Lab of Computer Sciences, Institute of Software,

Chinese Academy of Sciences
University of Chinese Academy of Sciences

Beijing, China
{lihui2012,wangdong18}@otcaix.iscas.ac.cn

Tianze Huang∗
Beijing University of Posts and Telecommunications

Beijing, China
huangtianze@bupt.edu.cn

Yu Gao
Wensheng Dou†

Lijie Xu
State Key Lab of Computer Sciences, Institute of Software,

Chinese Academy of Sciences
University of Chinese Academy of Sciences

Beijing, China
{gaoyu15,wsdou,xulijie}@otcaix.iscas.ac.cn

Wei Wang
Jun Wei

Hua Zhong
State Key Lab of Computer Sciences, Institute of Software,

Chinese Academy of Sciences
University of Chinese Academy of Sciences

Beijing, China
{wangwei,wj,zhonghua}@otcaix.iscas.ac.cn

ABSTRACT
Apache Spark has been widely used to build big data applications.
Spark utilizes the abstraction of Resilient Distributed Dataset (RDD)
to store and retrieve large-scale data. To reduce duplicate compu-
tation of an RDD, Spark can cache the RDD in memory and then
reuse it later, thus improving performance. Spark relies on applica-
tion developers to enforce caching decisions by using persist() and
unpersist() APIs, e.g., which RDD is persisted and when the RDD
is persisted / unpersisted. Incorrect RDD caching decisions can
cause duplicate computations, or waste precious memory resource,
thus introducing serious performance degradation in Spark appli-
cations. In this paper, we propose CacheCheck, to automatically
detect cache-related bugs in Spark applications. We summarize six
cache-related bug patterns in Spark applications, and then dynami-
cally detect cache-related bugs by analyzing the execution traces
of Spark applications. We evaluate CacheCheck on six real-world
Spark applications. The experimental result shows that CacheCheck
detects 72 previously unknown cache-related bugs, and 28 of them
have been fixed by developers.

CCS CONCEPTS
•Computer systems organization→Cloud computing; Relia-
bility; • Software and its engineering→ Software testing and
debugging; Software maintenance tools.
∗Hui Li, Dong Wang and Tianze Huang are equal contributors to the paper.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397353

KEYWORDS
Spark, cache, bug detection, performance

ACM Reference Format:
Hui Li, Dong Wang, Tianze Huang, Yu Gao, Wensheng Dou, Lijie Xu,Wei
Wang, Jun Wei, and Hua Zhong. 2020. Detecting Cache-Related Bugs in
Spark Applications. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’20), July 18–22, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3395363.3397353

1 INTRODUCTION
Apache Spark [50, 51] has become one of the most popular big
data processing systems, and has been widely used in many big
Internet companies, e.g, Facebook [18], Alibaba [2], eBay [19]. As an
in-memory big data framework, Apache Spark can provide order
of magnitude of performance speedup over disk-based big data
frameworks, e.g., Apache Hadoop [1]. Especially, Apache Spark
works better on iterative analytics, e.g, machine learning [37], and
graph computation [33], which requires data to be shared across
different iterations.

A Spark application consists of two kinds of operations: transfor-
mation (e.g., map and filter) and action (e.g., count and take). Spark
utilizes the abstract of Resilient Distributed Dataset (RDD) to store
and retrieve large-scale data, which is a read-only collection of
objects partitioned across a set of machines. Transformations are
used to create RDDs, and actions are used to obtain actual com-
putation results on RDDs. Once an action completes, all its used
RDDs are discarded from memory. To reuse an RDD loaded by an
action, Spark provides persist() API to manually cache1 the loaded
RDD. Thus, the following actions can reuse the cached RDD, and
avoid duplicate computations. Note that, an RDD can be persisted
in different cache levels, e.g., in memory and on disk. Spark pro-
vides unpersist() API to manually release cached RDDs when they

1We use cache and persist interchangeably in this paper.

https://doi.org/10.1145/3395363.3397353
https://doi.org/10.1145/3395363.3397353
https://doi.org/10.1145/3395363.3397353

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Hui Li, Dong Wang, Tianze Huang, Yu Gao, Wensheng Dou, Lijie Xu, Wei Wang, Jun Wei, and Hua Zhong

will not be used by following actions, thus saving precious mem-
ory. Figure 1a shows an example about how to reuse RDDwords
(Section 2.1).

Apache Spark relies on developers to enforce caching decisions
through persist() and unpersist() APIs. Developers need to clearly fig-
ure outwhich RDD should be cached,when the RDD is persisted and
unpersisted. The lazy evaluation of RDDs in Spark (Section 2.3) fur-
ther complicates cache mechanisms, e.g., a persist() operation must
be performed before its corresponding action operation. Improper
caching decisions on RDDs usually cause performance degradation,
even worse, out of memory errors. For example, if an RDD used
by two actions is not persisted, the RDD will be computed twice,
and thus degrading the application performance (e.g., SPARK-1266
[3]). If a cached RDD is not used anymore, it occupies much pre-
cious memory, and affects the normal execution (e.g., SPARK-18608
[16]). In our experiment, improper caching decisions can seriously
degrade the performance of Spark applications (0.1% − 51.6%), and
even cause Out of Memory (OOM). In this paper, we refer to im-
proper caching decisions on RDDs as cache-related bugs.

To improve the performance of Spark applications, existing stud-
ies mainly focus on improving memory usage in the Spark system,
e.g., Yak [39], AstroSpark [45] and Simba [31], and optimizing cache
mechanisms in the Spark system, e.g., Neutrino [47], LRC [49] and
Lotus [43]. However, cache-related bug patterns and detection ap-
proaches in Spark applications have not been studied. Note that,
Spark applications have the different execution model from tradi-
tional programs (e.g., C/C++ and Java). Thus, the memory / resource
leak detection techniques in traditional programs [32, 34, 40] can-
not be directly applied on cache-related bug detection in Spark
applications.

In this paper, we first analyze the execution semantics of cache
mechanisms in Spark, and summarize six bug patterns for cache-
related bugs in Spark applications, i.e., missing persist, lagging per-
sist, unnecessary persist, missing unpersist, premature unpersist, and
lagging unpersist (Section 3). We then propose CacheCheck to au-
tomatically detect cache-related bugs in Spark applications. After
running a Spark application (without any modification or instru-
mentation to the application) on our modified Spark system (Sec-
tion 5), CacheCheck collects the application’s execution trace and
caching decisions. Then, CacheCheck infers the correct caching
decisions for the application based on the execution semantics of
cache mechanisms in Spark. Finally, by analyzing the difference
between the original caching decisions and inferred correct caching
decisions, CacheCheck reports the inconsistencies as cache-related
bugs.

We implement CacheCheck, and make it publicly available at
https://github.com/Icysandwich/cachecheck. We evaluate its effec-
tiveness on real-world Spark applications, including GraphX [22]
and MLlib [23] and Spark SQL [29], etc. Experimental results show
that: (1) CacheCheck can precisely detect all 18 known cache-related
bugs in Spark applications. (2) CacheCheck detects 72 previously-
unknown cache-related bugs on the latest versions of six Spark
applications. We have reported these cache-related bugs to the con-
cerned developers. So far, 53 have been confirmed by developers,
of which 28 have been fixed. Developers also express their great
interests in CacheCheck.

We summarize the main contributions of this paper as follows.

• We summarize six cache-related bug patterns in Spark ap-
plications, which can seriously degrade the performance of
Spark applications.
• We propose an automated approach, CacheCheck, to detect
cache-related bugs in Spark applications.
• We implement CacheCheck and evaluate it on real-world
Spark applications. The experimental results show that it
can detect cache-related bugs effectively.

The remainder of this paper is organized as follows. Section 2
explains Spark programming model, cache mechanism, and Spark
execution semantics briefly. Section 3 presents the six cache-related
bug patterns in Spark applications. Section 4 presents our cache-
related bug detection approach. Section 5 presents our CacheCheck
implementation, and Section 6 evaluates CacheCheck on real-world
Spark applications. Section 7 and Section 8 discuss threats and
related work, and Section 9 concludes this paper.

2 BACKGROUND
In this section, we briefly introduce the programming model and
the cache mechanism in Apache Spark.

2.1 Spark Programming Model
Spark uses the abstract of Resilient Distributed Dataset (RDD) to
store and retrieve data in a distributed cluster. An RDD is an im-
mutable data structure that is divided into multiple partitions, and
each of them can be stored in memory or on disk across machines.
Developers can perform two types of operations on RDDs: transfor-
mation (e.g., map) and action (e.g., count). Transformations create
new RDDs from the existing ones with the specific computation
(e.g., user-defined function). Actions return a value (not RDD) by
performing a necessary computation (e.g., count) on an existing
RDD.

A Spark application usually creates RDDs from input data, ex-
ecutes several transformations on RDDs, and performs actions to
obtain computation results when necessary [35]. Figure 1a shows
a code snippet that contains two jobs: obtaining the total number
of words in a text file (Line 4) and taking the first 10 words in the
file (Line 5). In this example, we create a new RDD data by loading
a text file from HDFS (Line 1). Then, we split data into words by
using transformation flatMap (Line 2). To get the total number of
words, we perform the action count on words (Line 4). To obtain
the first 10 words, we perform the action take onwords (Line 5).

Lineage graph: In Spark, all transformations are lazy. When
we perform transformations on RDDs, Spark does not immedi-
ately perform the transformation computation. Instead, Spark logs
all computation dependencies between RDDs in a DAG (Directed
Acyclic Graph), which is referred to as lineage graph. Spark keeps
on building this lineage graph until an action operation is applied
on the last RDD. After that, Spark generates a job to execute each
transformation in the lineage graph.

For example, in Figure 1a, sc.textFile() (Line 1) and data.flatMap()
(Line 2) are not executed by Spark immediately. They will only get
executed oncewe perform an action on RDDwords , i.e.,words.count()
(Line 4). All the transformations in Figure 1a are included in a lin-
eage graph as shown in Figure 1b. The action operation triggers

https://github.com/Icysandwich/cachecheck

Detecting Cache-Related Bugs in Spark Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

.count()

data

words

𝐴1 𝐴2
.take(10)

P

(b) Prepare A1

RDD DependencyAction Persist mark Persisted Unpersist markExecution flow

(c) Execute A1

data

words

𝐴1
.count()

P

𝐴1. 1

𝐴1. 2

𝐴1. 3 𝐴2
.take(10)

(e) After A2

.count()

data

words

𝐴1

P

𝐴2
.take(10)

(d) Execute A2

data

words

𝐴1 𝐴2
.count() .take(10)

𝐴2. 1

P

P P P

1: val data = sc.textFile(“hdfs://…”)

2: val words = data.flatMap(x=>x.split(“ ”))

3: words.persist()

4: words.count()

5: words.take(10)

6: words.unpersist()

(a) Code example

Figure 1: The execution process and cache mechanism in Spark.

1: val data = sc.textFile("hdfs://…")

2: val words = data.flatMap(x=>x.split(“ ”))

3: words.persist()

4: words.count()

5: val pairs = words.map((_,1))

6: val result = pairs.reduceByKey(_+_)

7: result.persist()

8: result.count()

9: words.unpersist()

10: result.take(10)

11: result.unpersist()

.count()

data

result

words

𝐴1

.take(10)

𝐴2
.count ()

𝐴3

pairs

Figure 2: Word count example. The left side shows its code,
and the right side shows its lineage graph.

the application execution. In other words, the created DAG will be
committed to the cluster and the application begins to execute.

2.2 Cache Mechanism in Spark
In the process of an action execution, the transformations that the
action depends on are actually computed and the transformed RDDs
are materialized. Once the execution completes, these interim RDDs
will be released by the Spark system. Therefore, each transformed
RDD should be recomputed each time when an action runs on it.
As shown in Figure 1a, RDD data andwords are used twice by two
actions: words.count() (Line 4) and words.take(10) (Line 5). Since
each action generates a job, these two RDDs will be computed twice,
thus increasing the execution time.

To speed up applications that use certain RDDs multiple times,
Spark allows developers to cache data for reuse. By using cache-
related APIs, these interim RDDs can be kept in memory (by default)
or on disk. So, whenever we invoke another action on the cached
RDD, no recomputation takes place. There are two APIs for caching
an RDD: cache() and persist(level : StoraдeLevel). The difference
between them is that cache() persists the RDD intomemory, whereas
persist(level) can persist the RDD in memory or on disk according
to the caching strategy specified by level. For easy presentation,
we consistently use persist() to represent these two APIs in this
paper. Freeing up space from the memory is performed by API
unpersist(). In Figure 1a,words is cached by calling persist() on it
(Line 3). After the execution of words.count() (Line 4), the data of
RDD words is stored in memory. When executing words.take(10)
(Line 5), we do not need to recompute data and words anymore.
Whenwords is no longer needed, we remove the cached RDD from
memory immediately by invoking unpersist() on it (Line 6).

2.3 Spark Execution Semantics
As discussed earlier, when we call a transformation, only the lineage
graph is built. When we perform a cache-related API on an reusable
RDD, Spark only marks that the RDD should be persisted. The
actual caching process takes place when the first action is executed
on the RDD. When the next action is executed, Spark finds that the
RDD has been cached and thus does not need to recompute it. If
this reusable RDD is not cached, recomputation on this RDD takes
place and all the RDDs it depends on may be recomputed, too.

Figure 1b shows the dependency relationships between RDDs
used by action A1 (Line 4 in Figure 1a) and action A2 (Line 5 in
Figure 1a). In Figure 1b, words is marked as persisted (Line 3 in
Figure 1a). When A1 is triggered, it tries to find all involved RDDs
in the lineage graph from bottom to top. Then the actual execution
is performed at the sequence of A1.1, A1.2 and A1.3 in Figure 1c.
Sincewords is marked as persisted, afterwords is computed,words
is stored in the memory (A1.2). WhenA2 is triggered, it tries to find
all involved RDDs first. Since words is already persisted, there is
no need to find involved RDDs thatwords depends on. The actual
execution of action A2 starts fromwords (A2.1 in Figure 1d). After
the execution of action A2,words is freed by Line 6 in Figure 1a, as
shown in Figure 1e.

3 CACHE-RELATED BUG PATTERNS
In Spark, which RDD should be persisted and when the RDD is
persisted / unpersisted are totally decided by developers. How-
ever, developers may misunderstand their Spark applications and
the caching mechanisms, and introduce cache-related bugs. To
combat cache-related bugs, we thoroughly investigate the Spark
programming model and cache mechanism. Further, we enumerate
all possible ways to utilize cache-related APIs, and evaluate their
performance impacts. All cases that can slowdown Spark appli-
cations are considered as cache-related bug patterns. Finally, we
summarize six cache-related bug patterns.

In this section, we use the word count example shown in Figure 2
to illustrate cache-related bug patterns. RDDdata is created by load-
ing a text file from HDFS (Line 1), and further split intowords (Line
2) by white spaces. We obtain the number of words by performing
action count on words (Line 4). Transformation map maps each
word inwords with 1 to create a new key-value RDD pairs (Line 5),
and transformation reduceByKey further shuffles pairs based on the
key and obtains RDD result that contains the number for each par-
ticular word (Line 6). We further obtain the total number of unique
words in the file by performing action count on result (Line 8), and

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Hui Li, Dong Wang, Tianze Huang, Yu Gao, Wensheng Dou, Lijie Xu, Wei Wang, Jun Wei, and Hua Zhong

1: val data = sc.textFile("hdfs://…")

2: val words = data.flatMap(x=>x.split(“ ”))

3:+words.persist()

4: words.count()

5: val pairs = words.map((_,1))

6: val result = pairs.reduceByKey(_+_)

7: result.persist()

8: result.count()

9:+words.unpersist()

10: result.take(10)

11: result.unpersist()

(a) Missing persist

1: val data = sc.textFile("hdfs://…")

2: val words = data.flatMap(x=>x.split(“ ”))

3:+words.persist()

4: words.count()

5:- words.persist()

6: val pairs = words.map((_,1))

7: val result = pairs.reduceByKey(_+_)

8: result.persist()

9: result.count()

10: words.unpersist()

11: result.take(10)

12: result.unpersist()

(b) Lagging persist

1: val data = sc.textFile("hdfs://…")

2: val words = data.flatMap(x=>x.split(“ ”))

3: words.persist()

4: words.count()

5: val pairs = words.map((_,1))

6:- pairs.persist()

7: val result = pairs.reduceByKey(_+_)

8: result.persist()

9: result.count()

10: words.unpersist()

11: result.take(10)

12:- pairs.unpersist()

13: result.unpersist()

(c) Unnecessary persist

1: val data = sc.textFile("hdfs://…")

2: val words = data.flatMap(x=>x.split(“ ”))

3: words.persist()

4: words.count()

5: val pairs = words.map((_,1))

6: val result = pairs.reduceByKey(_+_)

7: result.persist()

8: result.count()

9:+words.unpersist()

10: result.take(10)

11: result.unpersist()

(d) Missing unpersist

1: val data = sc.textFile("hdfs://…")

2: val words = data.flatMap(x=>x.split(“ ”))

3: words.persist()

4: words.count()

5: val pairs = words.map((_,1))

6:- words.unpersist()

7: val result = pairs.reduceByKey(_+_)

8: result.persist()

9: result.count()

10:+words.unpersist()

11: result.take(10)

12: result.unpersist()

(e) Premature unpersist

1: val data = sc.textFile("hdfs://…")

2: val words = data.flatMap(x=>x.split(“ ”))

3: words.persist()

4: words.count()

5: val pairs = words.map((_,1))

6: val result = pairs.reduceByKey(_+_)

7: result.persist()

8: result.count()

9:+words.unpersist()

10: result.take(10)

11: result.unpersist()

12: -words.unpersist()

(f) Lagging unpersist

Figure 3: Cache-related bug examples and corresponding fix methods for the word count example in Figure 2.

obtain the first 10 records in result by performing action take(10)
on result (Line 10). Note that, words and result are persisted (Line
3 and Line 7). They are correct decisions for us. Then, we use six
bug examples in Figure 3 to illustrate why other persist decisions
are incorrect and how they can degrade performance.

3.1 Missing Persist
A transformed RDD in an action will be released by default when
the action completes. If an RDD is used by the following actions, it
will be recomputed multiple times, thus degrading the execution
performance. To improve the execution performance, developers
should persist these RDDs that can be used multiple times.

Figure 3a introduces a missing persist bug. In Figure 3a, RDD
data andwords are used by two actions words.count() (Line 4) and
result.count() (Line 8). Ifwords is not persisted, data andwords will
be computed twice. We do not need to persist data ifwords is per-
sisted, because ifwords is persisted, data will not be recomputed.
Therefore, the best caching decision is to persistwords before the
first action (i.e., words.count()) that depends onwords is triggered.
This bug slows down the example by 21.4%. For another real-world
example, the missing persist bug SPARK-16697 [13] in MLlib [23]
slows down its application by 51.6% (More details about perfor-
mance slowdown can be found in Table 1).

3.2 Lagging Persist
As discussed earlier, an RDD is only marked as persisted when
the persist() API is invoked. The actual caching process takes place
when the RDD is materialized by an action. Therefore, for an RDD

that needs to be persisted, the persist() API must be called on the
RDD before the first action that depends on it is triggered. Other-
wise, the RDD cannot be persisted as expected.

Figure 3b introduces a lagging persist bug. The persist() operation
on RDD words (Line 5) is invoked after action words.count() and
before action result.count() (Line 9). When action words.count() at
Line 4 is executed,words is not marked as persisted, and will not be
persisted. When action result.count() is executed, data andwords
are computed again, sincewords is not cached yet. In this example,
lagging persist ofwords causes recomputation of data andwords
in action result.count(). This bug slows down the example by 22.9%.

3.3 Unnecessary Persist
Cached RDDs usually occupy large precious memory. Therefore, if
an RDD is not reused by multiple actions, it should not be persisted.
Unnecessary persist can occupy extra memory, and affects the
application execution, thus causing performance degradation.

Figure 3c introduces an unnecessary persist bug on RDD pairs,
which is persisted at Line 6. Since RDD result has been persisted
after the execution of action result.count() (Line 9). The following
action result.take() will use cached result rather than pairs. Thus,
it is unnecessary to persist pairs in this example. This bug slows
down the example by 4.5%. The real-world unnecessary persist bug
SPARK-18608 [16] slows down its application by 23.3%.

3.4 Missing Unpersist
If an RDD is persisted but not unpersisted when it will not be used
anymore, the RDD will be kept in memory until the application

Detecting Cache-Related Bugs in Spark Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

completes or it may be replaced by other cached RDDs. Thus, the
unpersisted RDD can occupy precious memory, and affects the
application execution, thus causing performance degradation.

Figure 3d introduces a missing unpersist bug. RDDwords stays
in memory until the application completes. In fact, after action
result.count() at Line 8, words will not be used anymore. Thus, it
should be unpersisted at Line 9. This bug slows down the example
by 0.9%. The real-world missing unpersist bug SPARK-3918 [6] in
MLlib [23] causes an OOM in its application.

3.5 Premature Unpersist
A cached RDD should be unpersisted until it will not be used any-
more. Premature unpersist of a cached RDD will invalidate the
cached RDD, and cause its recomputation, thus slowing down the
application.

Figure 3e introduces a premature unpersist bug. RDDwords is un-
persisted after action words.count() and before action result.count()
at Line 6. Thus, action result.count() at Line 9 has to recompute
words . Only after executing action result.count(), RDDwords will
not be used anymore and can be unpersisted (Line 10). This bug
slows down the example by 35.7%.

3.6 Lagging Unpersist
Once a cached RDD will not be used anymore, it should be un-
persisted right away. Otherwise, the cached RDD still occupies
precious memory, and affects the application execution, thus caus-
ing performance degradation.

Figure 3 introduces a lagging unpersist bug. After executing
action result.count(), RDD result is persisted and RDDwords will
not be used anymore. So, RDDwords should be unpersisted right
after action result.count() (Line 9). However, RDDwords is kept in
memory until it is unpersisted at Line 12. This bug slows down the
example by 0.3%.

4 DETECTING CACHE-RELATED BUGS
Given a Spark application, CacheCheck works in three steps. First,
after running the application, CacheCheck collects its actual exe-
cution trace about its lineage graph, actions and caching decisions
(Section 4.1). Second, from collected lineage graph and actions,
CacheCheck infers the correct caching decisions based on the exe-
cution semantics of Spark (Section 4.2). Third, CacheCheck analyzes
the actual and correct caching decisions, and identifies the differ-
ence, which usually indicates cache-related bugs (Section 4.3).

4.1 Execution Trace
The execution of a Spark application consists of a number of actions.
In order to detect cache-related bugs, we need to recordwhich RDDs
are persisted, and when they are persisted and unpersisted. Thus,
we only consider three kinds of operations in the execution trace
of a Spark application. They are listed as follows.
• action: We use rdd.action() to denote that an action is per-
formed on rrd .
• persist :We use rdd.persist() to denote that apersist operation
is performed on rdd .
• unpersist : We use rdd.unpersist() to denote that an unpersist
operation is performed on rdd .

An execution trace of a Spark execution can be represented as
follows.

τ = (action |persist |unpersist)∗

In the execution trace, each action contains its partial lineage
graph that it directly depends on. For example, in Figure 2, actionA1
contains its partial lineage graph G1 = data → words → A1, and
actionA2 contains its partial lineage graphG2 = data → words →
pairs → result → A2, and action A3 contains its partial lineage
graph G3 = data → words → pairs → result → A3, Note that,
Spark generate a unique ID for each RDD. In the execution trace,
the recorded lineage graph is built on these unique IDs. For easy
presentation and understanding, we use variable names instead of
these unique IDs in the lineage graphs.

We can further combine the partial lineage graphs of all actions
to generate the whole lineage graph G. The whole lineage graph
generation algorithm is straightforward. For each action Ai , we
inspect each edge e in its lineage graph Gi . If e does not exist in G,
we merge edge e and its corresponding nodes into G. For example,
we can combine G1, G2, and G3, and generate the lineage graph in
the right side of Figure 2.

Note that, the execution trace precisely reflects the caching de-
cisions for the Spark application, e.g., which RDDs are persisted,
and when they are persisted and unpersisted. Take Figure 2 as an
example. After running this application, we can obtain an execu-
tion trace as follows: {words.persist(), words.count(), result.persist(),
result.count(), words.unpersist(), result.take(10), result.unpersist()}.
From this trace, we can see thatwords is persisted before action A1
(i.e.,words .count ()), andwords is unpersisted after action A2 (i.e.,
result .count ()).

We collect the execution trace using dynamic method by slightly
instrumenting Spark’s code. The details are shown in Section 5.
Thus, complex code structures, e.g., loops and recursions, will be
unfolded as a sequential trace in this step.

4.2 Correct Caching Decision Generation
To judge whether the caching decisions in a given actual execution
trace τa are correct or not, we construct the correct execution trace
τ c , which reflects the correct caching decisions. In order to do so,
we extract all actions in the actual execution trace τa , and ignore all
caching decisions in τa . Then, we construct the correct execution
trace τ c in three steps. First, we identify all RDDs that need to be
persisted (Section 4.2.1). Second, we identify the correct locations
for persisting these RDDs (Section 4.2.2). Third, we identify the
correct locations for unpersisting these RDDs (Section 4.2.3).

4.2.1 Identify RDDs That Need to be Persisted. As discussed in
Section 3.1, if an RDD is used by multiple actions, the RDD needs
to be persisted. In the lineage graph, the reused RDD is depended
by multiple actions. For example, in Figure 2, words is used by
actionA1 andA2. Thus,words should be persisted. However, not all
RDDs that are depended by multiple actions should be persisted. In
Figure 2, pairs is depended by action A2 and A3. If we persist pairs
and do not persist result , RRD result will be computed twice byA2
andA3, respectively. If we persist pairs and result , the cached pairs
will not be reused, and cause an unnecessary persist (Section 3.3).
Therefore, CacheCheck needs to identify optimal decisions about
what RDDs should be persisted.

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Hui Li, Dong Wang, Tianze Huang, Yu Gao, Wensheng Dou, Lijie Xu, Wei Wang, Jun Wei, and Hua Zhong

Algorithm 1: Identify RDDs that need to be persisted.
Input: actions (Executed action list)
Output: cachedRDDs

1 cachedRDDs ← ∅;
2 foreach a1,a2 ∈ actions do
3 identifyCachedRDDs(a1.rdd , a2);
4 end
5

6 Function identifyCachedRDDs(rdd , a2) do
7 if a2.dependsOn(rdd) then
8 cachedRDDs .add(rdd);
9 else
10 foreach pRDD ∈ rdd .parentRDDs do
11 identifyCachedRDDs(pRDD, a2);
12 end
13 end

.count()

data

result

words

𝐴1

𝐴2
.count ()

pairs

data

result

words

.take(10)

𝐴2
.count ()

𝐴3

pairs

.count()

data

result

words

𝐴1

.take(10)

pairs

𝐴3

(a) (c)(b)

Figure 4: Identify cached RDDs for the example in Figure 2.

Algorithm 1 shows how to identify RDDs that need to be per-
sisted for an execution trace. We aim to find the minimal set of
RDDs, if they are persisted, all RDD recomputation will be elimi-
nated. For every two actions a1 and a2 in the executed action list
actions , CacheCheck finds the closest RDDs that are depended by
both a1 and a2 (Line 2−4). CacheCheck starts from the RDD that
a1 directly depends on (a1.rdd at Line 3), and checks whether the
RDD is used by action a2. If a2 also depends on rdd , then rdd is one
of the closest RDDs that are used by two actions, and rdd needs to
be persisted (Line 7−8). If a2 does not depend on rdd , CacheCheck
further checks whether the parent RDDs of rdd are depended by
a2 (Line 10−12).

Take Figure 2 as an example. This example contains three actions:
words.count(), result.count() and result.take(10). The cached RDD
identification process is shown in Figure 4. For action words.count()
and result.count(), the closest RDD shared by them is words as
shown in Figure 4a. For action result.count() and result.take(10), the
closest RDD shared by them is result as shown in Figure 4b. For
action words.count() and result.take(10), the closest RDD shared by
them iswords as shown in Figure 4c. Therefore,words and result
need to be persisted.

4.2.2 Identify Persist Locations. After finding all the RDDs that
should be persisted in Algorithm 1, we need to identify when to

Algorithm 2: Generate correct caching decisions.
Input: actions (Executed action list), cachedRDDs
Output: τc (Correct trace)

1 τc ← ∅;
2 τc .addAll(actions);
3 /* Identify persist locations */
4 foreach rdd ∈ cachedRDDs do
5 for i ← 1; i ≤ actions .lenдth; i++ do
6 if actions[i].dependsOn(rdd) then
7 τc .insertBe f ore(actions[i], rdd .persist());
8 break;
9 end

10 end
11 /* Identify unpersist locations */
12 foreach rdd ∈ cachedRDDs do
13 lastAction ← NULL;
14 for i ← 1; i ≤ actions .lenдth; i++ do
15 if use(action[i], actions[i].rdd , rdd) then
16 lastAction ← actions[i];
17 end
18 τc .insertAf ter (action[i], rdd .unpersist());
19 end
20

21 /* Does curRDD use tarRDD? */
22 Function use(action, curRDD, tarRDD) do
23 if curRdd = tarRDD then
24 return True;
25 else if isCached(action, curRDD)= False then
26 foreach pRDD ∈ curRDD.parentRDDs do
27 if use(action, pRDD, tarRDD) then
28 return True;
29 end
30 return False;
31 end
32

33 /* Has rdd been cached before executing action? */
34 Function isCached(action, rdd) do
35 if cachedRDDs .contain(rdd) = False then
36 return False

37 preAction ← τc .previousAction(action);
38 if preAction , NULL then
39 if τc .isBe f ore(rdd .persist(),preAction) then
40 return True;
41 return False;
42 end

persist these RDDs. Algorithm 2 presents how to identify when
to persist an RDD. First, we construct an initial execution trace
by adding all actions into it (Line 2). For the example shown in
Figure 2, the initial execution trace is {words.count(), result.count(),
result.take(10)}.

For each RDD rdd in cachedRDDs , the operation rdd.persist()
should be inserted before the first action that depends on rdd (Line

Detecting Cache-Related Bugs in Spark Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Algorithm 3: Detect cache-related bugs.
Input: τ c (Correct trace), τa (Actual trace)

1 for i ← 1; i ≤ τa .lenдth; i + + do
2 op ← τc [i];
3 if op < τa then
4 if op.isPersist then
5 Report ’missing persist on op.rdd’;
6 if op.isUnpersist then
7 if !op.isAf ter (τc .lastAction) ∧

τa .havePersist(op.rdd) then
8 Report ’missing unpersist on op.rdd’;
9 else
10 if op.isPersist then
11 cAction ← τc .nextAction(op);
12 aAction ← τa .nextAction(op);
13 if cAction.isBe f ore(aAction) then
14 Report ’lagging persist on op.rdd’;
15 else if op.isUnpersist then
16 cAction ← τc .previousAction(op);
17 aAction ← τa .previousAction(op);
18 if cAction.isBe f ore(aAction) then
19 Report ’lagging unpersist on op.rdd’;
20 else if aAction.isBe f ore(cAction) then
21 Report ’premature unpersist on op.rdd’;
22 end
23 for i ← 1; i ≤ τa .lenдth; i + + do
24 op ← τa [i];
25 if op < τc then
26 if op.isPersist then
27 Report ’unnecessary persist on op.rdd’;
28 end

4−10). For the example shown in Figure 2,words and result should
be cached. For RDD words , words.count() is the first action that
depends on it. For RDD result , result.count() is the first action that
depends on it. Therefore the new trace that contains the RDD
persist locations is: {words.persist(), words.count(), result.persist(),
result.count(), result.take(10)}.

4.2.3 Identify Unpersist Locations. If a cached RDD is not used any
more by following actions, it should be unpersisted as early as pos-
sible to save memory. That is to say, once the last action that uses a
cached RDD has been executed, the RDD should be discarded. First,
we find the last action which uses a cached RDD (Line 13−17). Then,
we insert rdd.unpersist() right after the last action (Line 18). To de-
cide if an action uses an RDD rdd , CacheCheck starts to check if the
RDD curRDD that action directly depends on uses rdd (Line 15). If
curRDD is not cached before, then CacheCheck checks whether its
parent RDDs use tarRDD (Line 25−29). If curRDD has been cached
(Line 34−42), then CacheCheck will stop search, since action will
use cached curRDD, and does not use its parent RDDs. Take Fig-
ure 2 as an example. the last action that useswords is result.count()
and the last action that uses result is result.take(10). Note that,
once result is persisted by action A2, action A3 will use the cached

result , and will not usewords any more. Therefore, the new correct
trace is: {words.persist(), words.count(), result.persist(), result.count(),
words.unpersist(), result.take(10), result.unpersist()}.

4.3 Bug Detection
CacheCheck detects cache-related bugs by analyzing the difference
of caching decisions in the collected actual execution trace (τa) and
the generated correct execution trace (τ c) in Section 4.2. For all the
buggy examples in Figure 3, CacheCheck can generate the same cor-
rect execution trace: {words.persist(), words.count(), result.persist(),
result.count(), words.unpersist(), result.take(10), result.unpersist()}.
However, their actual execution traces are different, and illustrate
different cache-related bugs. Algorithm 3 shows our cache-related
bug detection. We illustrate it as follows.

(1) Missing persist. If an operation rdd.persist() belongs to the
correct execution trace but does not belong to the actual execution
trace, CacheCheck reports a missing persist bug (Line 3−5).

(2) Lagging persist. Both the correct execution trace and the
actual execution trace contains an operation rdd.persist(). However,
in the actual execution trace, rdd.persist() is not performed before
the first action that uses rdd (Line 10−14). Take Figure 3b as an
example. We can get the actual execution trace as {words.count(),
words.persist(), result.persist(), result.count(), words.unpersist(), re-
sult.take(10), result.unpersist()}. We can see that words.persist() is lo-
cated beforewords.count() in the correct trace. However, it is located
after words.count() in the actual execution trace. So, CacheCheck
reports a lagging persist bug on RDDwords .

(3) Unnecessary persist. If an operation rdd.persist() belongs
to the actual execution trace but does not belong to the correct
execution trace, CacheCheck reports an unnecessary persist bug
(Line 25−27).

(4) Missing unpersist. If an RDD rdd that should be cached has
been persisted in the actual execution trace, but the operation
rdd.unpersist() belongs to the correct execution trace but not belong
to the actual execution trace, and the operation is not located after
the last action in the trace, CacheCheck reports a missing unpersist
bug (Line 6−8).

(5) Premature unpersist. Both the correct execution trace and the
actual execution trace contain an operation rdd.unpersist(). How-
ever, in the actual execution trace, rdd.unpersist() is performed be-
fore the last action that uses rdd (Line 20−21). Take Figure 3e as an
example. The actual execution trace of this example is {words.persist(),
words.count(), words.unpersist(), result.persist(), result.count(), re-
sult.take(10), result.unpersist()}. words.unpersist() is located after
result.count() in the correct execution trace, while it is located be-
fore result.count() in the actual trace. Thus, CacheCheck reports a
premature unpersist bug on RDDwords .

(6) Lagging unpersist. Both the correct execution trace and the
actual execution trace contain an operation rdd.unpersist(). How-
ever, in the actual execution trace, rdd.unpersist() is not performed
right after the last action that uses rdd (Line 15−19).

5 IMPLEMENTATION
CacheCheck first collects an execution trace by modifying Spark im-
plementation, and then performs cache-related bug detection offline

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Hui Li, Dong Wang, Tianze Huang, Yu Gao, Wensheng Dou, Lijie Xu, Wei Wang, Jun Wei, and Hua Zhong

on the execution trace. Here, we mainly introduce the implemen-
tation details which are not described in Section 4, including code
instrumentation for trace collection, and bug reports for helping
inspect bugs and bug deduplication.

Execution trace collection. Spark invokes SparkContext.runJob()
to execute each action in a Spark application. We modify Spark-
Context.runJob(), and record the information about each action,
including the action ID, the RDD that the action works on, and the
lineage graph of the action. To obtain each cache-related operation,
we modify RDD.persist() and RDD.unpersist(), and record the RDD
ID for each persist() and unpersist() operation. Our modification to
the Spark system is quite lightweight, and involves only 338 lines
of code. The overhead for obtaining execution traces is usually
negligible (less than 5% in our experiments).

Note that, we modify the Spark system to collect execution traces
of Spark applications. Therefore, developers only need to run their
Spark applications on our modified Spark system, without instru-
menting or modifying their applications in any way. CacheCheck
can automatically collect their execution traces and perform offline
analysis for cache-related bug detection.

Bug reports. CacheCheck detects cache-related bugs based on
the execution trace. If a cache-related bug at the same code location
is executedmultiple times, CacheCheck can report the cache-related
bug multiple times. In order to eliminate duplicate bug reports, we
consider two bug reports are the same if they satisfy the following
two conditions: (1) Their bug-related RDDs are generated in the
same code locations. (2) They have the same bug information, e.g.,
bug pattern and code locations of cache-related API invocations.

To facilitate bug inspection for developers, we provide the fol-
lowing information for each reported bug: (1) The code positions
and call stacks for each operation that relates to the bug report,
e.g, where a related RDD is generated, where a cache-related API
is called on an RDD, and invocation position for each action. (2)
The lineage graph for each action that relates to the bug report.
For example, for a missing persist on rdd , CacheCheck provides
where two actions use rdd , and which action firstly uses rdd . For
a premature unpersist on rdd , CacheCheck provides where the
unpersist() is invoked on rdd , and actions that use rdd after the
unpersist() operation.

6 EVALUATION
We evaluate CacheCheck and study the following three research
questions:

RQ1: Can cache-related bugs seriously affect the performance of
Spark applications?

RQ2: Can CacheCheck effectively detect known cache-related bugs
in Spark applications?

RQ3: Can CacheCheck detect unknown cache-related bugs in real-
world Spark applications?

To answer RQ1 and RQ2, we first build a cache-related bug bench-
mark with 18 bugs (Section 6.1). To answer RQ1, we compare the
performance difference between the buggy versions and their corre-
sponding fixed versions (Section 6.2). To answer RQ2, we evaluate
CacheCheck on our bug benchmark (Section 6.3). To answer RQ3,
we evaluate CacheCheck on six real-world Spark applications to
validate if CacheCheck can detect new bugs (Section 6.4).

6.1 Cache-Related Bug Benchmark
We select the six bug examples in Figure 3 as our micro-benchmark
(P1−P6 in Table 1). We further manually inspect issue reports in
open source Spark applications, to collect real-world cache-related
bugs. We select three representative Spark applications, i.e., GraphX
[22], MLlib [23] and Spark SQL [29], as our study applications.
These applications are representative official Spark applications,
well-maintained, and widely used in practice. All issue reports in
these applications are publicly available in Spark JIRA [28].

We use cache-related keywords, i.e., cache and persist, to search
all issue reports in GraphX, MLlib and Spark SQL. Two authors and
two master students carefully analyze each returned issue report. If
an issue report satisfies the following conditions, we select it into
our benchmark. (1) We can identify its root cause, and confirm that
it is a cache-related bug. (2) We can find its fixing patch, and obtain
its buggy version and fixed version. (3) We can reproduce it based
on an existing test case in its application.

Through the above process, we finally obtain 12 cache-related
bugs (B1−B12 in Table 1). Note that, these 12 cache-related bugs
only cover three bug patterns discussed in Section 3, i.e., 3 missing
persist bugs, 3 unnecessary persist bugs, and 6 missing unpersist
bugs. We do not observe cache-related bugs for other three bug
patterns, i.e., lagging persist, premature unpersist and lagging un-
persist. However, as discussed in Section 6.4, we detect 15 bugs for
these three bug patterns. Among them, 11 have been confirmed by
developers, and 7 have been fixed. This indicates that developers
may not have realized these three bug patterns before our study.

6.2 Performance Slowdown Caused by
Cache-Related Bugs

Experimental design. We use the 18 cache-related bugs in our
bug benchmark in Table 1 as our experimental subjects. We run this
experiment in the local mode with 8GB memory. For the six cache-
related bugs (P1−P6), we use a 660MB text file as input. For the 12
real-world cache-related bugs (B1−B12), we run their corresponding
test cases with inputs of 23.4−708MB. For each cache-related bug,
we run its buggy version and fixed version 10 times, and then use
the average execution time to compare the performance slowdown.

Experimental result. The columns 5−7 in Table 1 (Execution
time) show the absolute execution time of the buggy / fixed versions
and the performance slowdown. We can see that cache-related bugs
can cause non-negligible (0.1% − 51.6%) performance slowdown.
Eight cache-related bugs introduce more than 5% performance
slowdown: P1, P2, P5, B1, B2, B3, B5, B8. Specially, in bug B2, all the
cached RDDs in a loop are not unpersisted, and waste huge memory,
thus causing Out of Memory (OOM). After correctly unpersisting
all RDDs in the loop, the application terminates normally.

Generally, missing persist (e.g., P1, B5), lagging persist (e.g., P2),
and premature unpersist (e.g., P5) can usually cause much perfor-
mance slowdown, since they can cause recomputation of related
RDDs. However, not all missing persist bugs can cause serious per-
formance slowdown, e.g., B6 and B7. This is because recomputing
the unpersisted RDDs in these two cases is not time-consuming.
Missing unpersist (e.g., B2, B3) and unnecessary persist (e.g., B8)
can cause much performance slowdown sometimes, if they occupy
too much memory.

Detecting Cache-Related Bugs in Spark Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 1: Experimental Results on Known Bugs

ID Issue ID App Pattern Execution time Detected New bugsBuggy(s) Fixed(s) Slowdown

P1 Pattern-MP (Figure 3a) Word count Missing persist 31.7 26.1 21.4%
√

0
P2 Pattern-LP (Figure 3b) Word count Lagging persist 32.1 26.1 22.9%

√
0

P3 Pattern-UP (Figure 3c) Word count Unnecessary persist 27.3 26.1 4.5%
√

0
P4 Pattern-MUP (Figure 3d) Word count Missing unpersist 26.3 26.1 0.9%

√
0

P5 Pattern-PUP (Figure 3e) Word count Premature unpersist 35.4 26.1 35.7%
√

0
P6 Pattern-LUP (Figure 3f) Word count Lagging unpersist 26.2 26.1 0.3%

√
0

B1 SPARK-1266 [3] MLlib Unnecessary persist 24.7 23.4 5.2%
√

4
B2 SPARK-3918 [6] MLlib Missing unpersist OOM 27.2 -

√
0

B3 SPARK-7100 [10] MLlib Missing unpersist 27.6 26.1 5.9%
√

0
B4 SPARK-10182 [9] MLlib Missing unpersist 34.2 33.6 1.8%

√
2

B5 SPARK-16697 [13] MLlib Missing persist 67.8 44.7 51.6%
√

1
B6 SPARK-16880 [14] MLlib Missing persist 262.2 256.3 2.3%

√
1

B7 SPARK-18356 [15] MLlib Missing persist 20.9 20.7 0.7%
√

2
B8 SPARK-18608 [16] MLlib Unnecessary persist 244.9 198.7 23.3%

√
3

B9 SPARK-26006 [20] MLlib Missing unpersist 56.0 54.8 2.0%
√

2
B10 SPARK-2661 [4] GraphX Missing unpersist 13.7 13.1 4.6%

√
0

B11 SPARK-3290 [5] GraphX Missing unpersist 11.9 11.7 1.8%
√

8
B12 SPARK-7116 [11] Spark SQL Unnecessary persist 20.4 20.2 0.1%

√
0

6.3 Detecting Known Cache-Related Bugs
We use the 18 cache-related bugs in Table 1 to evaluate the cache-
related bug detection ability of CacheCheck. For each cache-related
bug in Table 1, we run its test case, and use CacheCheck to detect
cache-related bugs on the collected execution trace.

The last two columns in Table 1 show the detection result.We can
see that CacheCheck can detect all 18 cache-related bugs (Detected).
CacheCheck further detects 23 new cache-related bugs (New bugs)
in these test cases. Two authors and two master students manually
inspect these new detected cache-related bugs to validate whether
they are real bugs. After manual validation, we find that all these
newly detected cache-related bugs are true. Since these new cache-
related bugs are detected on old versions of GraphX, MLLib and
Spark SQL, we do not submit them to the developers for further
confirmation.

6.4 Detecting Unknown Cache-Related Bugs
In this section, we evaluate CacheCheck on six real-world Spark
applications, and obtain developers’ feedbacks about our detected
cache-related bugs.

6.4.1 Experimental Design. We collect six Spark applications for
our experiments from two aspects. First, we use GraphX [22], MLlib
[23], Spark SQL [29], which are the three official Spark applications,
and well maintained by the Spark community. Second, we collect
another three Spark applications from GitHub by the following
steps. (1) We used the keyword “Apache Spark” to search GitHub
repositories written in Scala, and obtained around 1600 repositories.
(2) We sorted these repositories by their stargazers in descending
order, and manually checked them one by one. (3) We aimed to
select representative data process applications. Thus, If a repository
is used for examples, learning, and extensions of Spark framework,

we ignored it. (4) If a repository contains test cases, and we can run
them on Spark 2.4.3, then we selected it. By following the above
steps, we obtained three applications and evaluated CacheCheck on
them. The first four columns in Table 2 show the basic information
about all these six Spark applications.

We perform our experiments as follows. First, we run the test
cases included in these applications on our modified Spark imple-
mentation (Section 5) and collect their execution traces. The fifth
and sixth columns in Table 2 show the numbers of collected actions
and RDDs in the execution traces. Second, we use CacheCheck to
detect cache-related bugs based on these execution traces.

In our experiment, a cache-related bug may be triggered multiple
times by different test cases. We adopt the approach discussed in
Section 5 to remove duplicated bug reports. When counting bugs,
we only count unique bugs, i.e., remove duplicated bug reports from
different test cases. MCL [8] and t-SNE [7] are built on MLlib. For
these two applications, if we detect a bug occurring in MLlib, we
only count it once in MLlib, and do not count it in these applications.

6.4.2 Detection Result. Table 2 shows the unique cache-related
bugs detected by CacheCheck. In total, CacheCheck detects 72
cache-related bugs, covering the six cache-related bug patterns in
Section 3. In detail, CacheCheck detects 34 missing persist bugs
(MP), 1 lagging unpersist bug (LP), 18 unnecessary persist bugs
(UP), 5 missing unpersist bugs (MUP), 12 lagging unpersist bugs
(LUP), and 2 premature unpersist bugs (PUP). We can see that
cache-related bugs are common in real-world Spark applications.

We have submitted all these 72 bugs to developers through JIRA
and GitHub. So far, 58 bugs have been discussed by developers, and
53 of them have been confirmed as real bugs. The remaining 5 bugs
are not decided yet. Developers have fixed 28 bugs. Among the
14 bugs that have not received responses, 9 occur in third-party

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Hui Li, Dong Wang, Tianze Huang, Yu Gao, Wensheng Dou, Lijie Xu, Wei Wang, Jun Wei, and Hua Zhong

Table 2: Detecting Cache-Related Bugs on Real-World Spark Applications

App Description Star LOC Action RDD MP LP UP MUP LUP PUP

GraphX [22] Graph computation - 32,708 11 236 1(1) 0 6(5) 1(1) 0 0
MLlib [23] Machine learning - 109,786 888 4,017 24(21*) 1(1) 10(10) 2(1) 12(8) 2(2)
Spark SQL [29] SQL - 395,122 69 263 4(3) 0 0 0 0 0
MCL [8] Markov clustering 32 1,058 48 290 4 0 0 0 0 0
Betweenness [12] k betweenness centrality 40 488 6 83 0 0 1 0 0 0
t-SNE [7] Distributed t-SNE 129 798 39 97 1 0 1 2 0 0

Total 1,061 4,986 34(25) 1(1) 18(15) 5(2) 12(8) 2(2)
* The numbers in the parentheses denote the bugs confirmed by developers.

1: userInput.persist();

2: itemInput.persist();

3: itemFactor = computeFacotrs(userFactor, itemInput).persist()

4: itemFactor.count()

5: userFactor = computeFactors(itemFactor, userInput)

5: val userOutput = userInput.join(userFactor)

6: val itemOutput = itemInput.join(itemFactor)

7: userOutput.count()

8: itemFactor.unpersist() // Premature unpersist

9: itemOutput.count()

10: userInput.unpersist() // Lagging unpersist

11: itemInput.unpersist()

itemInputuserInput

itemFactor

userFactor

userOuput itemOuput

userFactor’

𝐴3
.count().count()

𝐴2
.count()
𝐴1

PP

P

Line 4 Line 7 Line 9

Figure 5: Premature unpersist and lagging unpersist bugs in simplifiedALS algorithm in SPARK-29844 [24].userFactor ′ denotes
a new RDD created in Line 5, which is different from the original RDD userFactor in Line 3.

applications on GitHub, e.g., MCL [21], mainly due to the inactive
maintenance of these applications.

Note that, we have detected 1 lagging persist bugs, 12 lagging
unpersist bugs, and 2 premature unpersist bugs in real-world Spark
applications. Among them, 11 have been confirmed by developers,
and 7 have been fixed. Although we did not observe these bug
patterns when we collecting known cache-related bugs, developers
confirm that these bug patterns are harmful.

6.4.3 Feedbacks from Developers. So far, developers have given
feedbacks on 58 cache-related bugs. In the process of bug submis-
sion, developers have shown great interests in CacheCheck. For
example, after they confirmed and resolved one bug [24], they gave
the following comments to encourage us to submit more cache-
related bugs: "Nice, I wonder what else CacheCheck will turn up."

Besides, we also received some interesting comments from devel-
opers, which indicates that even experienced developers may not
be easy to figure out complicated caching decisions. For example,
Figure 5 shows the simplified code of our bug report SPARK-29844
[24] in MLlib. There are two cache-related bugs in this report. (1)
itemFactor (Line 8) should be unpersisted after itemOutput.count()
(Line 9), instead of after userOutput.count(Line 7). This causes a
premature unpersist bug. (2) userInput (Line 10) should be unper-
sisted before itemOutput.count() (Line 9), instead of after itemOut-
put.count() (Line 9). This causes a lagging unpersist bug. In this bug,
a developer left the following comment in its PR [25]: “I don’t see
the problem here immediately. Doesn’t this (itemOutput) depend on
some of the cached user RDDs (userInput)?” The developer thought

1: baggedInput.persist()

2: while(treeNode.nonEmpty) {

3: // findBestSplits will invoke an action

4: RandomForest.findBestSplits(baggedInput)

5: }

6: baggedInput.unpersist()

Figure 6: An unnecessary persist bug when Line 4 in the
while statement is executed only once in MLlib [26].

itemOutput depends on userInput, so userInput should be unper-
sisted after all actions completed. After we explained the fact that
itemOutput only depends on the cached itemFactor, he agreed that
moving userInput.unpersist() before itemOutput.count() is a kind of
optimization.

Whydevelopers donot fix some cache-related bugs?Among
the 53 confirmed cache-related bugs, developers do not fix 25 of
them for now. We summarize the reasons why they do not fix them
as follows.

(1) Developers thought that the performance slowdown caused
by cache-related bugs should be negligible. 17 bugs belong to this
case. First, the should-be-persisted RDD is small, and the overhead
of recomputation is negligible, e.g., SPARK-29872 [27]. Second, the
bugs can only occur in rare cases. For example, Figure 6 shows an
unnecessary persist bug in MLLib [26]. If the iteration (Line 2−5)
is only executed once, the persist on RDD baggedInput is unnec-
essary. Developers thought this rarely occurs in the production
environment. Third, the bugs occur in illustrative code (i.e., code

Detecting Cache-Related Bugs in Spark Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

1: def apply(vertices, edges): Graph[V, E] = {

2: vertices.persist()

3: val newEdges = edges.map(part => part.withoutVertex).persist()

4: new Graph(vertices, newEdges)

5: }

Figure 7: An API related to cache decisions in GraphX [17].

examples), and developers thought fixing the bugs can make code
understanding difficult, e.g., SPARK-29872 [27].

(2) Developers thought that fixing cache-related bugs makes
APIs difficult to utilize. 8 bugs belong to this case. Spark applica-
tions, e.g., GraphX, MLLib and Spark SQL, can be used as APIs to
build other applications. The caching decisions of these APIs may
not consider all their usage scenarios. Figure 7 shows an unneces-
sary persist bug in GraphX [17]. In API apply(), RDD vertices and
newEdges are persisted. This API can be invoked by many graph
processing algorithms in GraphX, e.g., SVDPlusPlus and PageRank.
Both vertices and newEdges are used by only one action in SVD-
PlusPlus, so CacheCheck reports two unnecessary persist bugs on
them. However, in PageRank, they are used by multiple actions
in an iterative computation, so the persist decisions are correct.
Developers wanted to simplify the usage of these APIs, and would
not like to fix them for different applications.

6.4.4 Slowdowns of Detected Unknown Bugs. The slowdowns of
cache-related bugs are usually highly related to the size of input
data in the Spark applications. We detected unknown cache-related
bugs by running test cases included in the applications. Note that,
these test cases usually run on small amount of data (e.g., a string
with 100 characters, a graph with 10 nodes), and complete quickly
(e.g., in less than 1 second). In these scenarios, the slowdowns can
be ignored. Therefore, we did not report the slowdowns for these
test cases. However, for real scenarios, these test cases will be run
on large amount of data (e.g., 100G) for a long time (e.g., 30 minutes).
In these scenarios, the slowdowns will be greatly important. Thus,
for the newly reported bugs that have been fixed, we run their test
cases with large amount of data like what we did in Section 6.2,
and analyzed their slowdowns. Our experiment shows that, the
slowdowns range from 0.2% to 35.4%, and 3 bugs cause Out of
Memory (OOM).

7 DISCUSSION
While our experiments show that CacheCheck is promising in
detecting cache-related bugs in Spark applications, we discuss po-
tential threats and limitations of our work.

Representativeness of our studied Spark applications.We
select a number of cache-related bugs and Spark applications in
our experiments. Our selected cache-related bugs come from real-
world Spark applications. Our selected Spark applications, e.g.,
GraphX [22], MLlib [23] and Spark SQL [29], are well maintained
and actively developed by the Spark community. Thus, we believe
our studied cache-related bugs and Spark applications can represent
the real-world cases.

Trade-off between memory and performance. Whether an
RDD should be persisted or not is usually a trade-off between exe-
cution performance and the memory requirement of the persisted

RDD. Our approach does not take the memory requirement into
consideration. However, we believe that CacheCheck can still give
developers useful suggestions about how to enforce proper caching
decisions. Additionally, Spark provides various cache storage lev-
els, e.g., off-heap, on-disk, in-memory. CacheCheck cannot provide
useful suggestions for cache levels.

Generalization to other systems. CacheCheck is currently
designed for Spark. It may be generalized to other big data systems
that have the same or similar cache mechanisms as Spark. For
example, in order to reduce the cost of recomputation and reloading
files, Hadoop and Flink have utilized or planned to utilize similar
cache mechanisms. CacheCheck may be adapted into these systems.

8 RELATEDWORK
To the best of our knowledge, no previous work can detect cache-
related bugs in Spark applications. In this section, we discuss related
work that is close to ours.

Cache optimization in Spark. Existing work mainly focuses
on cache optimization techniques in Spark implementation. Neu-
trino [47] employs fine-grained memory caching of RDD parti-
tions and uses different in-memory cache levels based on runtime
characteristics. Yang et al. [48] developed some adaptive caching
algorithms to make online caching decisions with optimality guar-
antees. Zhang et al. [52] studied the influence of disk use in the
Spark cache mechanism, and proposed a method of combined use
of memory and disk caching. These works may eliminate the use of
persist() and unpersist() operations and cache levels. To meet this
all-or-nothing property in data access, PACMan [30] coordinates
access to the distributed caches and designs new cache replace-
ment mechanisms. LRC (Least Reference Count) [49] exploits the
application-specific DAG information to optimize the cache replace-
ment mechanism. However, it is still a common practice to enforce
caching decisions by developers causing severe performance slow-
down. CacheCheck automatically detects improper persist() and
unpersist() usage in Spark applications. Thus, our CacheCheck is
orthogonal to these pieces of existing work.

Memory management optimization in Spark. Researchers
have proposed some approaches to improve memory management
in big data systems. An experimental study [46] has shown that
garbage collectors can affect big data processing performance. Yak
[39] divides the managed heap in JVM into a control space and a
data space, and optimizes garbage collection for big data systems.
Skyway [38] can directly connect managed heaps of different (lo-
cal or remote) JVM processes, and optimizes object serialization
/ deserialization. Stark [36] optimizes in-memory computing on
dynamic collections. Panthera [42] analyzes user programs running
on Apache Spark to infer their coarse-grained access patterns, and
then provides fully automatedmemorymanagement technique over
hybrid memories. Different from these approaches, CacheCheck
focuses on the caching decisions in Spark applications.

Resource leak detection in traditional programs. Resource
leak in programs can cause severe problems, e.g, performance degra-
dation and system crash [44]. Researchers have made lots of efforts
to detect resource leak. Sigmund et al. [32] and Yulei et al. [40] uti-
lized value-flow analysis to detecting memory leaks in C programs.
Emina et al. [41] developed Tracker to detect resource leak in Java

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Hui Li, Dong Wang, Tianze Huang, Yu Gao, Wensheng Dou, Lijie Xu, Wei Wang, Jun Wei, and Hua Zhong

programs. Relda [34] and Relda2 [44] detect resource leak in An-
droid applications. However, all these works cannot handle with the
execution model of Spark, e.g., lazy execution. Thus, they cannot
be applied to detect cache-related bugs in Spark applications.

9 CONCLUSION
Apache Spark uses caching mechanisms to reduce the RDD recom-
putation in Spark applications, and relies on developers to enforce
correct caching decisions. In this paper, we summarize six cache-
related bug patterns in Spark applications. Our experiments on
real-world cache-related bugs show that cache-related bugs can se-
riously degrade the performance of Spark applications. We further
propose CacheCheck, which can automatically detect cache-related
bugs by analyzing the execution traces of Spark applications. Our
evaluation on real-world Spark applications shows that CacheCheck
can effectively detect cache-related bugs. In the future, we plan to
further improve the detection capability of CacheCheck using new
techniques, e.g., static analysis, and performance estimation of
cache-related bugs.

ACKNOWLEDGEMENTS
We thank Kai Zhang, Yange Fang, Kai Kang, and Xingtong Ye for
their contributions in validating detected unknown bugs. This work
was partially supported by National Key Research and Develop-
ment Program of China (2017YFB1001804), National Natural Science
Foundation of China (61732019, 61802377, 61702490), Frontier Sci-
ence Project of Chinese Academy of Sciences (QYZDJ-SSW-JSC036),
and Youth Innovation Promotion Association at Chinese Academy
of Sciences.

REFERENCES
[1] 2004. Apache Hadoop. Retrieved January 10, 2020 from http://hadoop.apache.org/
[2] 2014. Mining ecommerce graph data with Apache Spark at Alibaba Taobao. Re-

trieved January 6, 2020 from https://databricks.com/blog/2014/08/14/mining-
graph-data-with-spark-at-alibaba-taobao.html

[3] 2014. SPARK-1266: Persist factors in implicit ALS. Retrieved January 10, 2020
from https://issues.apache.org/jira/browse/SPARK-1266

[4] 2014. SPARK-2661: Unpersist last RDD in bagel iteration. Retrieved January 10,
2020 from https://issues.apache.org/jira/browse/SPARK-2661

[5] 2014. SPARK-3290: No unpersist callls in SVDPlusPlus. Retrieved January 10, 2020
from https://issues.apache.org/jira/browse/SPARK-3290

[6] 2014. SPARK-3918: Forget Unpersist in RandomForest.scala(train Method). Re-
trieved January 10, 2020 from https://issues.apache.org/jira/browse/SPARK-3918

[7] 2015. Distributed t-SNE via Apache Spark. Retrieved January 10, 2020 from
https://github.com/saurfang/spark-tsne/

[8] 2015. MCL spark. Retrieved January 10, 2020 from https://github.com/joandre/
MCL_spark/

[9] 2015. SPARK-10182: GeneralizedLinearModel doesn’t unpersist cached data. Re-
trieved January 10, 2020 from https://issues.apache.org/jira/browse/SPARK-10182

[10] 2015. SPARK-7100: GradientBoostTrees leaks a persisted RDD. Retrieved January
23, 2020 from https://issues.apache.org/jira/browse/SPARK-7100

[11] 2015. SPARK-7116: Intermediate RDD cached but never unpersisted. Retrieved
January 23, 2020 from https://issues.apache.org/jira/browse/SPARK-7116

[12] 2015. Spark betweenness. Retrieved January 10, 2020 from https://github.com/
dmarcous/spark-betweenness/

[13] 2016. SPARK-16697: Redundant RDD computation in LDAOptimizer. Retrieved
January 10, 2020 from https://issues.apache.org/jira/browse/SPARK-16697

[14] 2016. SPARK-16880: Improve ANN training, add training data persist if needed.
Retrieved January 10, 2020 from https://issues.apache.org/jira/browse/SPARK-
16880

[15] 2016. SPARK-18356: KMeans should cache RDD before training. Retrieved January
23, 2020 from https://issues.apache.org/jira/browse/SPARK-18356

[16] 2016. SPARK-18608: Spark ML algorithms that check RDD cache level for internal
caching double-cache data. Retrieved January 10, 2020 from https://issues.apache.
org/jira/browse/SPARK-18608

[17] 2016. SPARK-29878: Improper cache strategies in GraphX. Retrieved January 19,
2020 from https://issues.apache.org/jira/browse/SPARK-29878

[18] 2017. Tuning Apache Spark for Large-Scale Workloads. Retrieved January 10,
2020 from https://databricks.com/session/tuning-apache-spark-for-large-scale-
workloads

[19] 2018. Moving eBay’s Data Warehouse Over to Apache Spark – Spark
as Core ETL Platform at eBay. Retrieved January 10, 2020 from
https://databricks.com/session/moving-ebays-data-warehouse-over-to-
apache-spark-spark-as-core-etl-platform-at-ebay

[20] 2018. SPARK-26006: mllib Prefixspan. Retrieved January 23, 2020 from https:
//issues.apache.org/jira/browse/SPARK-26006

[21] 2019. Cache missing in MCL.scala. Retrieved January 25, 2020 from https:
//github.com/joandre/MCL_spark/issues/20

[22] 2019. GraphX | Apache Spark. Retrieved January 10, 2020 from http://spark.
apache.org/graphx/

[23] 2019. MLlib | Apache Spark. Retrieved January 10, 2020 from http://spark.apache.
org/mllib/

[24] 2019. SPARK-29844: Improper unpersist strategy in ml.recommendation.ASL.train.
Retrieved January 10, 2020 from https://issues.apache.org/jira/browse/SPARK-
29844

[25] 2019. SPARK-29844 pull request: Improper unpersist strategy in
ml.recommendation.ASL.train. Retrieved January 10, 2020 from
https://github.com/apache/spark/pull/26469

[26] 2019. SPARK-29856: Conditional unnecessary persist on RDDs in ML algorithms.
Retrieved January 25, 2020 from https://issues.apache.org/jira/browse/SPARK-
29856

[27] 2019. SPARK-29872 pull request: Improper cache strategy in examples. Retrieved
January 10, 2020 from https://github.com/apache/spark/pull/26498

[28] 2019. Spark JIRA. Retrieved January 10, 2020 from https://issues.apache.org/jira/
projects/SPARK

[29] 2019. Spark SQL | Apache Spark. Retrieved January 10, 2020 from http://spark.
apache.org/sql/

[30] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Warfield, Dhruba Borthakur,
Srikanth Kandula, Scott Shenker, and Ion Stoica. 2012. PACMan: Coordinated
memory caching for parallel jobs. In Proceedings of USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). 267–280.

[31] Mariem Brahem, Stephane Lopes, Laurent Yeh, and Karine Zeitouni. 2016. Astro-
Spark: Towards a distributed data server for big data in astronomy. In Proceedings
of SIGSPATIAL PhD Symposium. 3:1–3:4.

[32] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory
leak detection using guarded value-flow analysis. In Proceeding of ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 480–
491.

[33] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph processing in a distributed dataflow
framework. In Proceedings of USENIX Symposium on Operating Systems Design
and Implementation (OSDI). 599–613.

[34] Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang. 2013.
Characterizing and detecting resource leaks in Android applications. In Proceed-
ings of IEEE/ACM International Conference on Automated Software Engineering
(ASE). 389–398.

[35] Holden Karau, Andy Konwinski, PatrickWendell, and Matei Zaharia. 2015. Learn-
ing Spark: Lightning-fast big data analysis. O’Reilly Media, Inc.

[36] Shen Li, Md Tanvir Amin, Raghu Ganti, Mudhakar Srivatsa, Shanhao Hu, Yiran
Zhao, and Tarek Abdelzaher. 2017. Stark: Optimizing in-memory computing for
dynamic dataset collections. In Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS). 103–114.

[37] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLlib: Machine learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7.

[38] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Demsky, and
Shan Lu. 2018. Skyway: Connecting managed heaps in distributed big data
systems. In Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 56–69.

[39] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat
Alamian, and Onur Mutlu. 2016. Yak: A high-performance big-data-friendly
garbage collector. In Proceedings of USENIX Conference on Operating Systems
Design and Implementation (OSDI). 349–365.

[40] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using
full-sparse value-flow analysis. In Proceedings of International Symposium on
Software Testing and Analysis (ISSTA). 254–264.

[41] Emina Torlak and Satish Chandra. 2010. Effective interprocedural resource
leak detection. In Proceedings of ACM/IEEE International Conference on Software
Engineering (ICSE). 535–544.

[42] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur Mutlu,
Fang Lv, Xiaobing Feng, and Guoqing Xu. 2019. Panthera: Holistic memory
management for big data processing over hybrid memories. In Proceedings of

http://hadoop.apache.org/
https://databricks.com/blog/2014/08/14/mining-graph-data-with-spark-at-alibaba-taobao.html
https://databricks.com/blog/2014/08/14/mining-graph-data-with-spark-at-alibaba-taobao.html
https://issues.apache.org/jira/browse/SPARK-1266
https://issues.apache.org/jira/browse/SPARK-2661
https://issues.apache.org/jira/browse/SPARK-3290
https://issues.apache.org/jira/browse/SPARK-3918
https://github.com/saurfang/spark-tsne/
https://github.com/joandre/MCL_spark/
https://github.com/joandre/MCL_spark/
https://issues.apache.org/jira/browse/SPARK-10182
https://issues.apache.org/jira/browse/SPARK-7100
https://issues.apache.org/jira/browse/SPARK-7116
https://github.com/dmarcous/spark-betweenness/
https://github.com/dmarcous/spark-betweenness/
https://issues.apache.org/jira/browse/SPARK-16697
https://issues.apache.org/jira/browse/SPARK-16880
https://issues.apache.org/jira/browse/SPARK-16880
https://issues.apache.org/jira/browse/SPARK-18356
https://issues.apache.org/jira/browse/SPARK-18608
https://issues.apache.org/jira/browse/SPARK-18608
https://issues.apache.org/jira/browse/SPARK-29878
https://databricks.com/session/tuning-apache-spark-for-large-scale-workloads
https://databricks.com/session/tuning-apache-spark-for-large-scale-workloads
https://databricks.com/session/moving-ebays-data-warehouse-over-to-apache-spark-spark-as-core-etl-platform-at-ebay
https://databricks.com/session/moving-ebays-data-warehouse-over-to-apache-spark-spark-as-core-etl-platform-at-ebay
https://issues.apache.org/jira/browse/SPARK-26006
https://issues.apache.org/jira/browse/SPARK-26006
https://github.com/joandre/MCL_spark/issues/20
https://github.com/joandre/MCL_spark/issues/20
http://spark.apache.org/graphx/
http://spark.apache.org/graphx/
http://spark.apache.org/mllib/
http://spark.apache.org/mllib/
https://issues.apache.org/jira/browse/SPARK-29844
https://issues.apache.org/jira/browse/SPARK-29844
https://github.com/apache/spark/pull/26469
https://issues.apache.org/jira/browse/SPARK-29856
https://issues.apache.org/jira/browse/SPARK-29856
https://github.com/apache/spark/pull/26498
https://issues.apache.org/jira/projects/SPARK
https://issues.apache.org/jira/projects/SPARK
http://spark.apache.org/sql/
http://spark.apache.org/sql/

Detecting Cache-Related Bugs in Spark Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 347–362.

[43] Kun Wang, Ke Zhang, and Chengxue Gao. 2015. A new scheme for cache
optimization based on cluster computing framework Spark. In Proceddings of
International Symposium on Computational Intelligence and Design (ISCID). 114–
117.

[44] Tianyong Wu, Jierui Liu, Zhenbo Xu, Chaorong Guo, Yanli Zhang, Jun Yan, and
Jian Zhang. 2016. Light-weight, inter-procedural and callback-aware resource
leak detection for Android apps. IEEE Transactions on Software Engineering (TSE)
42, 11 (2016), 1054–1076.

[45] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:
Efficient in-memory spatial analytics. In Proceedings of International Conference
on Management of Data (SIGMOD). 1071–1085.

[46] Lijie Xu, Tian Guo, Wensheng Dou, Wei Wang, and Jun Wei. 2019. An experi-
mental evaluation of garbage collectors on big data applications. Proceedings of
the VLDB Endowment (VLDB) 12, 5 (2019), 570–583.

[47] Mohit Xu, Erci andSaxena and Lawrence Chiu. 2016. Neutrino: Revisitingmemory
caching for iterative data analytics. In Proceedings of USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage). 16–20.

[48] Zhengyu Yang, Danlin Jia, Stratis Ioannidis, Ningfang Mi, and Bo Sheng. 2018. In-
termediate data caching optimization for multi-stage and parallel big data frame-
works. In Proceedings of International Conference on Cloud Computing (CLOUD).
277–284.

[49] Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben Letaief. 2017. LRC:
Dependency-aware cache management for data analytics clusters. In Proceedings
of IEEE Conference on Computer Communications (INFOCOM). 1–9.

[50] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of USENIX Conference on Networked Systems Design
and Implementation (NSDI). 2:1–2:14.

[51] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. Proceedings of USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), 10:1–10:7.

[52] Kaihui Zhang, Yusuke Tanimura, Hidemoto Nakada, and Hirotaka Ogawa. 2017.
Understanding and improving disk-based intermediate data caching in Spark. In
Proceedings of IEEE International Conference on Big Data (Big Data). 2508–2517.

	Abstract
	1 Introduction
	2 Background
	2.1 Spark Programming Model
	2.2 Cache Mechanism in Spark
	2.3 Spark Execution Semantics

	3 Cache-Related Bug Patterns
	3.1 Missing Persist
	3.2 Lagging Persist
	3.3 Unnecessary Persist
	3.4 Missing Unpersist
	3.5 Premature Unpersist
	3.6 Lagging Unpersist

	4 Detecting Cache-Related Bugs
	4.1 Execution Trace
	4.2 Correct Caching Decision Generation
	4.3 Bug Detection

	5 Implementation
	6 Evaluation
	6.1 Cache-Related Bug Benchmark
	6.2 Performance Slowdown Caused by Cache-Related Bugs
	6.3 Detecting Known Cache-Related Bugs
	6.4 Detecting Unknown Cache-Related Bugs

	7 Discussion
	8 Related Work
	9 Conclusion
	References

