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Abstract—Deep learning (DL) has been widely adopted in
many safety-critical scenarios. Deep neural networks (DNNs)
usually play the core part in these DL systems. Existing studies
have shown that DNNs can suffer from various vulnerabilities,
and cause severe consequences. To improve the testing adequacy
of DNNs, researchers have proposed several coverage criteria,
e.g., neuron coverage in DeepXplore. The prediction result of a
DNN is jointly determined by the outputs of neurons and the
connection weights that they connect into next-level neurons.
However, existing coverage criteria use only the output of a
neuron to determine the activation state of the neuron and ignore
the connection weights it emits.

In this paper, we propose DeepCon, a novel contribution
coverage. In DeepCon, we define a term contribution as the
combination of the output of a neuron and the connection weight
it emits, and use the contribution coverage to gauge the testing
adequacy of DNNs. DeepCon can thoroughly cover both neurons
and the connection weights they emit and can scale well to
large DNNs. We further propose a contribution coverage guided
test generation approach, DeepCon-Gen, which can automatically
generate tests and activate inactivated contributions of DNNs.
We evaluate DeepCon and DeepCon-Gen on five different DNNs
over two popular datasets. The experimental results show that
DeepCon can well present the testing adequacy of these DNNs.
DeepCon-Gen can effectively activate the inactivated contribu-
tions, and 62.6% of the generated tests can lead to mispredictions.

Index Terms—Deep learning, deep neural network, coverage
criteria, contribution coverage, adversarial example detection

I. INTRODUCTION

Benefiting from large dataset, deep learning (DL) systems
have achieved great success in various applications in the
last decade, e.g., computer vision [1], [2], speech recognition
[3], natural language processing [4], and autonomous driving
[5]. Deep neural networks (DNNs) play a key part in these
DL systems. However, DNN-based deep learning systems can
sometimes exhibit erroneous behaviors, and cause severe con-
sequences. For example, unexpected driving conditions in the
Google and Uber autonomous vehicles have caused several car
accidents [6], [7].

A DNN consists of a group of interconnected neurons,
which are organized as layers. Typically, a DNN contains the
input layer, one or multiple hidden layers, and the output layer.
Figure 1 shows a four-layer fully-connected DNN example.
In a typical fully-connected DNN, each neuron computes its
output by applying an activation function to its inputs. Each

neuron is fully connected with all neurons in the next layer,
and each edge has a weight, which indicates the strength of
the connection. In this paper, we focus on stateless DNNs, e.g,
CNN [8], [9] and its variants.

A DNN can be considered as a function that transforms an
input to its output by aggregating all neurons with different
connection weights, all of which can contribute to the final
prediction result. This computation logic (i.e., connection
weights) is learned during the training phase and is unclear to
developers. Therefore, different from traditional programs, it
is challenging to thoroughly test a DNN. To systematically and
thoroughly test DNNs, several testing adequacy criteria have
been proposed. DeepXplore [10] proposed a neuron coverage
(DNC) criterion to measure how many unique neurons have
been activated by test inputs. DeepGauge [11] proposed a
group of k-multi-granularity neuron coverage (KMNC), in
which the output of a neuron is partitioned into k sections.
KMNC measures how many unique sections have been cov-
ered by test inputs. DeepCover [12] proposed a MC/DC cov-
erage criterion based on the condition-decision dependencies
between adjacent neurons.

These coverage criteria [10], [11] use only the output of
a neuron to determine its activation state and ignore the
connection weights it emits. As the importance of a neuron to
the next-level neuron is also greatly affected by the connection
weights, DeepCover used the outputs of adjacent neurons to
test the independent influence of the shallower neuron (denoted
as condition neuron) on the deeper neuron (denoted as decision
neuron). However, this combinatorial coverage of neurons fails
to thoroughly cover the connection weights since they still
use only the output of the decision neuron to determine its
activation state and ignore the connection weights it emits.
Moreover, to test the independent influence of a condition
neuron on the decision neuron, DeepCover needs to freeze
the outputs of all other neurons in the same layers as these
two neurons, and cannot easily scale to large and complex
DNNs [11], [13].

Mathematically, the prediction result of a DNN is jointly
decided by the outputs of neurons and the connection weights
they emit. In this paper, we use contribution to denote the
combination (or product) of the output of a neuron and the
connection weight it emits, and use contribution instead of
neuron as the basic logic unit of a DNN to gauge the testing



adequacy of the DNN. We first propose DeepCon, a novel
contribution coverage criterion. DeepCon can naturally and
thoroughly cover both the outputs of neurons and the connec-
tion weights they emit. Since the number of contributions of
a DNN is equal to the number of connection weights of the
DNN, DeepCon can scale well to large and complex DNNs.
Benefiting from the simultaneous coverage of neurons and
connection weights, DeepCon can better present the testing
thoroughness of DNNs and has a better performance in some
closely related tasks such as adversarial example detection
[14], [15]. We then develop a contribution coverage guided
test generation approach, DeepCon-Gen. In DeepCon-Gen, We
transform the test generation into an optimization problem,
and construct a joint-objective optimization function for an
inactivated contribution. For scalability, we solve this function
based on a gradient-ascent approach [16], [17].

We evaluate DeepCon and DeepCon-Gen on three small
DNNs (i.e., LeNet-1, LeNet-4 and LeNet-5 [8]) and two
large DNNs (i.e., VGG-19 [18] and ResNet-50 [19]) over
two popular datasets (i.e., MNIST [20] and ImageNet [21]),
respectively. The experiments show that contribution criterion
can scale well to different sized DNNs and can well present the
testing adequacy of these DNNs. For example, the contribution
coverage of any one of these DNNs grows with the increase
of test inputs and does not reach 100% even on all test
inputs. This indicates that we need more tests to thoroughly
test these DNNs if we use contribution coverage as a testing
criterion. More importantly, when compared with existing
coverage criteria in another closely related application task,
i.e., adversarial example detection, DeepCon can obtain a
higher AUC [22] of 13.00%. Lastly, the experimental results
of DeepCon-Gen shows that DeepCon-Gen can effectively
activate inactivated contributions, and 62.60% of the generated
tests can lead to the mispredictions of DNNs.

In summary, we make the following main contributions.

• We propose a new contribution coverage criteria, Deep-
Con, which first explicitly combines the output of a
neuron and the connection weight it connects to the next-
level neuron.

• We develop a contribution coverage guided test genera-
tion approach, DeepCon-Gen, which adopts the gradient-
ascent approach and transforms the inactivated contribu-
tion activation into an optimization problem.

• We evaluate DeepCon and DeepCon-Gen in real-world
DNNs and datasets. The experimental results show that
DeepCon can well present the testing adequacy of DNNs,
and DeepCon-Gen can effectively activate inactivated
contributions.

II. PRELIMINARIES AND MOTIVATION

In this section, we introduce the deep neuron network
and the limitations of existing coverage criteria, i.e., neuron-
output-based coverage criteria.

Fig. 1. A four-layer fully-connected deep neuron network.

A. Deep Neural Network

Deep Neural Network (DNN) is a typical layer-by-layer
feature extraction machine learning algorithm. In recent years,
due to a large number of dataset available [20], [21], specific
hardware [23], [24] and software [25]–[27], and more efficient
training methods, DNNs have shown much higher generaliza-
tion performance than other machine learning algorithms or
even human beings [10].

A DNN is a complex and high dimensional function with a
large number of neurons and trainable connection weights, it
accepts an input data and output its prediction label. Generally,
a DNN consist of three kinds of layers, i.e., the input layer,
one or multiple hidden layers, and the output layer. Each non-
input layer contains a large number of neurons and trainable
connection weights. A simplified four-layer fully-connected
DNN architecture is shown in Figure 1, which consists of
one input layer, two hidden layers and one output layer. In
this DNN, each non-output neuron is fully connected with all
neurons in the next layer, and each edge has a weight (i.e.,
trainable parameter). We formalize a DNN as follows.

In a DNN, let l be the number of layers in the DNN, si be
the number of neurons in the i-th layer, and ni,j be the j-th
neuron in the i-th layer. We use wi

h,j to denote the connection
weight between ni-1,h and ni,j , and W i={wi

h,j |0 ≤ h <
si-1, 0 ≤ j < si} to denote the weight set in the i-th layer
Li. For example, n1,3 represents the 3-th neuron in the 1-
th layer, and w1

2,3 represents the connection weight between
neuron n0,2 and neuron n1,3. We use a tuple G = (N,W ) to
denote a DNN, where N = {ni,j |0 ≤ i < l, 0 ≤ j < si}, and
W = {W i|1 ≤ i < l}.

A neuron is the basic computing unit in a DNN. Let oi,j
be the output of neuron ni,j . The computation process of oi,j
can be decomposed into Equation (1), (2) and (3).

uih,j = wi
h,j · oi-1,h (1)

U i
j = bi,j +

si-1∑
h=0

uih,j (2)

oi,j = σ(U i
j) (3)

In Equation (1), uih,j denotes an input neuron ni-1,h’s
contribution to neuron ni,j , which is actually the product of the
output oi-1,h of ni-1,h and the connection weight wi

h,j that is
emitted by ni-1,h. In Equation (2) and (3), bi,j denotes the bias
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Fig. 2. Comparison of NOB coverage criteria and DeepCon. The text and
number in each node represent the ID and output of the neuron, respectively.
In Figure 2(a) and Figure 2(b), nodes with gray background represent activated
neurons extracted by NOB coverage criteria (with t > 0.25) and DeepCon
(with t > 0.25), respectively.

parameter for neuron ni,j , and U i
j denotes the contributions

form previous neurons {ni-1,h|0 ≤ h < si-1} to neuron
ni,j . The activation function σ on U i

j greatly increase the
nonlinearity of neuron ni,j . Various activation functions can
be applied, e.g., ReLU [28] for hidden layers, and softmax
[28]–[30] for output layers.

In the training phase, wi
h,j and bi,j in Equation (1) and (2)

are learned by using an efficient optimization algorithm, e.g.,
back-propagation [31] gradient descent or its variants [32]–
[34]. In the prediction phase, wi

h,j and bi,j are used to calculate
the probability of each category. Generally, the category with
the highest probability is used as the prediction result, i.e.,
label = argmaxj ol-1,j , where 0 ≤ j < sl-1.

We can see that a DNN is a typical layer-by-layer network,
which transforms input data into output categories. During
this transformation process, the outputs of neurons and the
connection weights they connect to next-level neurons together
determine the final prediction result. In other words, the impor-
tance of each non-output layer neuron should be determined
by its contribution to the prediction result.

B. Limitations of Neuron-Output-Based Coverage Criteria

To evaluate how thoroughly a DNN has been tested, re-
searchers have proposed several coverage criteria for DNNs.
As a pioneer, DeepXplore [10] proposed neuron coverage, in
which, if the output of a neuron (e.g., oi,j in Equation (3))
is larger than a given threshold, the neuron is considered to
be activated. DeepXplore inspires a group of studies, e.g.,
k-multi-granularity neuron coverage (KMNC) [11], MC/DC
coverage [12], and t-way (t neurons in the same layer)
combinational coverage [35]. Note that, all these coverage
criteria only use the output of a neuron to determine the
neuron’s state. We summary these coverage criteria as neuron-
output-based (NOB) coverage criteria.

The basic intuition behind NOB coverage criteria is that,
the larger a neuron’s output, the stronger its influence on
its following neurons [10]. However, for different neurons in
the same layer, this intuition may not always be true. Since
the connections emitted by different neurons have different

weights, a neuron with a larger output but a smaller weight
may contribute less to the same neuron downstream than
another neuron with a smaller output but a larger weight. If we
only consider the output of a neuron, it is hard to thoroughly
test the behaviors of a DNN. Let us suppose nl-1,j represents
the prediction result’s corresponding neuron in output layer of
DNN for a given input x and o(n, x) represents the output
of neuron n on x. For any two penultimate layer neurons
nl-2,h and nl-2,h+k, let c = o(nl-2,h,x)

o(nl-2,h+k,x)
. If o(nl-2,h, x) >

o(nl-2,h+k, x), we cannot say that ul-1h,j > ul-1h+k,j , i.e., if
we only know that nl-2,h’s output is larger than nl-2,h+k’s,
we cannot say that nl-2,h makes greater contribution to the
prediction result than that of nl-2,h+k. Only when wl-1

h,j >
wl-1

h+k,j

c is also satisfied, can we say that nl-2,h makes greater
contribution to the prediction result than that of nl-2,h+k.

Take the simplified DNN shown in Figure 2 as an example.
The DNN takes x as input and classifies it into two categories,
represented by neuron n2,0 or n2,1, respectively. Suppose n2,0
is the predicated result neuron for a given input x. As shown
in Figure 2(a), if we take the activation threshold as 0.25 in
the NOB coverage criteria, n1,0 and n1,2 will be considered as
activated, n1,1 is considered as inactivated. However, as shown
in Figure 2(b), the contributions (i.e., uih,j in Equation (1))
from n1,0 and n1,1 to n2,0 are 0.2 (i.e., u20,0 = 0.4∗0.5 = 0.2)
and 0.26 (i.e., u21,0 = 0.2 ∗ 1.3 = 0.26) respectively, thus n1,1
is more important than n1,0.

From the above analysis, we can see that the NOB coverage
criteria may introduce some misfitting to the coverage testing
to some degree. Some combinatorial coverage methods such
as [12] proposed to use the outputs of adjacent neurons
(i.e., condition neurons and decision neurons) to cover the
connection weights between them. However, they still use
only the outputs of neurons to determine the activation states
of both decision neurons and decision neurons, thus fails
to eliminate this misfitting and cannot cover the connection
weights emitted by decision neurons. On the other hand, due
to the huge combination space of multiple neurons in large and
complex DNNs, using the combination of multiple neurons to
gauge the testing adequacy may lead to over-high or even
unacceptable computational costs. For example, to test the
independent influence of a condition neuron on its decision
neuron, [12] needs to freeze the outputs of all other neurons
in the same layers of these two adjacent neurons. As we all
know that, for a large DNN, the output of a decision neuron is
jointly determined by the outputs of a large number of previous
neurons and the connection weights that connect into this
neuron, it is difficult for us to test the independent influence
of the conditional neuron on the decision neuron.

In summary, no coverage criterion can simultaneously cover
both the outputs of neurons and the connection weights they
emit, and scale well to large DNNs.

III. CONTRIBUTION COVERAGE CRITERIA

To thoroughly cover both the outputs of neurons and the
connection weights they connect to next layers, we introduce



a term contribution to present the internal logic coverage of
a DNN. In the subsection, we first introduce the concept of
contribution and how to extract activated contributions. Then,
we put forward the definition of contribution coverage criterion
for DNNs.

A. Contribution Extraction

In a DNN, we use cih,j to denote the connection from ni-1,h
to ni,j , and use uih,j = (ni-1,h, cih,j) to denote the contribution
of ni-1,h to ni,j . Thus, for a given input x, uih,j(x) = wi

h,j ·
oi-1,h(x), in which oi-1,h(x) denotes the output of ni-1,h on x,
and wi

h,j denotes the weight of connection cih,j . We use U i
j(x)

= {uih,j(x)|0 ≤ h < si-1} to denote the set of contributions
whose connections end with ni,j .

Note that, the value range of the contributions in different
U i
j(x) may vary largely. Thus, we normalize uih,j(x) into a

value within [0,1]. We use nuih,j(x) to denote the normalized
contribution of uih,j(x), and use Equation (4) to normalize
uih,j(x). In this computation, we exclude the zero contributions
because the zero contribution means that the previous neuron
have no influence on the following neuron.

nuih,j(x) =
uih,j(x)−min(U i

j(x))

max(U i
j(x))−min(U i

j(x))
(4)

Definition 1 (Contribution activation): Given an input x,
if a contribution uih,j’s normalized contribution nuih,j(x) is
greater than a threshold value t, and its output neuron ni,j is
activated by x, then this contribution is activated by input x.
We use isAct(uih,j , t, x) to denote whether a contribution is
activated or not.

We say a neuron ni,j is activated by input x, if there exists a
contribution ui+1

j,· (x) = wi+1
j,· ·oi,j that is activated by input x.

Note that, for the neurons in the output layer, we only consider
the neuron that has the largest output as activated, and all other
neurons in the output layer are considered as inactivated.

Back-propagation Contribution Extract Algorithm. For
a given DNN and input x, the back-propagation contribution
extract algorithm extracts activated contributions back from the
output layer until the input layer. Algorithm 1 shows how it
works. We use Ũ i to represent the set of activated contributions
from the (i− 1)-th layer to the i-th layer (i.e., the i-th layer’s
contribution set) and use Ũ i.InputNeurons to represent the
input neurons of Ũ i.

First, we check the output layer (i.e., the (l − 1)-th layer),
and consider the neuron with the largest output as activated
(Line 1).

Second, for each activated neuron ni,j in the current layer
(Line 2 and 5), we use getActivatedContributions(ni,j , t, x)
to extract the activated contribution set Ũ i

j whose connection
ends with ni,j (Line 2 and 6) and aggregate Ũ i

j to Ũ i (Line
7). In the implementation of getActivatedContributions,
we use isAct (defined in Definition 1) to check the state
of each contribution uih,j . Note that, if uih,j is activated, we
further consider its input neuron ni-1,h and connection cih,j as
activated.

Algorithm 1: Back-propagation contribution extract
algorithm
Input: x (test input), t (threshold)
Output: Ũ(x) (all activated contributions)

1 nl-1,j = F (x)

2 Ũ l-1(x) = getActivatedContributions(nl-1,j , t, x)
/*get activated contribution set whose connection
ends with neuron nl-1,j by using isAct(ul-1·,j , t, x) */

3 aggregate Ũ l-1(x) to Ũ(x)
4 for layer i back from l-2 to 1 do
5 for neuron ni,j in Ũ i+1.InputNeurons do
6 Ũ i

j(x) =
getActivatedContributions(ni,j , t, x)

7 aggregate Ũ i
j(x) to Ũ i(x)

8 aggregate Ũ i(x) to Ũ(x)

9 return Ũ(x)

Third, we aggregate the activated contribution set Ũ i(x) of
the current layer to Ũ(x) (Line 8), and move back from the
current layer to the previous layer and continue to perform the
second and third steps until the input layer (Line 4-8).

Take the simplified DNN in Figure 2(b) as an example.
For a given x, in the output layer, neuron n2,0 has the
largest output, and is considered as activated. If we set the
contribution threshold t as 0.25, the contributions activated by
input x are u21,0 and u22,0, i.e., (n1,1, c

2
1,0) and (n1,2, c

2
2,0).

Since the normalized contribution nu20,0 from n1,0 to n2,0 is
not larger than 0.25, we can know that neuron n1,0 is not
activated. Further, from activated neurons Ũ2.InputNeurons
= {n1,1, n1,2}, we can know that contributions (n0,0, c

1
0,2),

(n0,1, c
1
1,1), (n0,2, c

1
2,1) and (n0,2, c

1
2,2) are activated by x.

We can see that, the contribution computation cost of a DNN
on a given input is approximately equal to the prediction cost
of the DNN on the input, and the corresponding extraction cost
of activated contributions is linear. Therefore, the the back-
propagation contribution extract algorithm can scale well to
large DNNs.

B. Contribution Coverage

Contribution coverage presents the ratio of unique contribu-
tions activated by a group of test inputs and all contributions
in a DNN. Let T = {x1, x2, x3, ...} be the test inputs, and U
be the set for all contributions in a DNN. The contribution
coverage (ConC) of a DNN for all test inputs T can be
described as follows.

ConC(T ) =
|u|∃x ∈ T, u ∈ U, isAct(u, t, x)|

|U |
(5)

Take the DNN in Figure 2(b) as an example, for the input
x and the contribution threshold 0.25, the ConC of the DNN
is 6/15 = 40%.

In a DNN, some layers (e.g., shallower layers that extract
low-dimensional features) can be easily covered, while other



layers (e.g., deeper layers that extract high-dimensional fea-
tures) cannot be easily covered [36], [37]. We further propose
contribution coverage of each layer in a DNN. Let U i be
the set for all contributions the i-th layer of a DNN. The
contribution coverage of the i-th layer can be described as
follows.

ConCi(T ) =
|u|∃x ∈ T, u ∈ U i, isAct(u, t, x)|

|U i|
(6)

Take the DNN in Figure 2(b) as an example, for the input
x and the contribution threshold 0.25, the ConC1 and ConC2

will be 4/9 ≈ 44% and 2/6 ≈ 33%, respectively.

IV. CONTRIBUTION GUIDED TEST GENERATION

To improve the contribution coverage of DNNs and verify
whether DeepCon has the potential to expose DNN defects,
we also develop DeepCon-Gen, which can activate new con-
tributions that are not activated. Given a seed input x and
an inactivated contribution u = (con.in, con), the target of
DeepCon-Gen is to mutate the seed input x to activate the
inactivated contribution u. If we can make both the contribu-
tion (con.in, con) and the output of neuron con.out larger, it
is possible that contribution u can be activated. Thus, we can
transform the test generation into a joint optimization problem.

Algorithm 2 shows how DeepCon-Gen works. The joint
optimization target obj is constructed by stacking u(con, x)
and n(con.out, x), in which, u(con, x) denotes the contri-
bution of con.in to con.out, and n(con.out, x) denotes the
output of con.out (Line 7). For scalability, DeepCon-Gen uses
a gradient ascent-based algorithm (i.e., gradientAscent in
Line 8) to iteratively optimize the joint optimization obj so
that the input seed x mutates towards the direction that can
activate the inactivated contribution u (Line 6−16). In the
implementation of gradientAscent, we simply adopt a variant
of iterative-FGSM [16] to mutate x (and other advanced
gradient algorithms such as Adadelta [33] and Adam [34] are
also applicable). In order to prevent the hopeless optimization
from consistently occupying computing resources, we limit the
iterations of optimizations (e.g., maxIter in Line 6). If both
contribution u and neuron con.out are activated (Line 13), we
successfully generate a test that activates u.

Note that, the gradients of u(con, x) and n(con.out, x) with
respect to x are different. This may lead to obj over-optimize
towards one of them and ignore the other. To overcome this
problem, we adopt a penalty strategy (i.e., adding a soft hinge
loss [38]) and make sure u(con, x) and n(con.out, x) can be
activated simultaneously. Specifically, we put penalties pCon
and pOut on u(con, x) and n(con.out, x), respectively (Line
3−4 and 7). Initially, we set pCon and pOut to a large
number, e.g., initMaxVal. If a part, e.g., n(con.out, x) in obj,
is activated, we ignore the following changes of x towards the
direction of this part (Line 9−12). This strategy can make the
obj be optimized towards the direction of the other part and
make it be activated quickly.

Algorithm 2: Contribution coverage guided test gen-
eration
Input: seeds (Initial test inputs), coverage (Recorded

activated contributions)
Output: tests

1 for x ∈ seeds do
2 u = Randomly select an inactivated contribution

(con.in, con)
3 pCon = initMaxVal /*Penalty for the contribution

*/
4 pOut = initMaxVal /*Penalty for con’s output

neuron */
5 iter = 0
6 while iter ++ < maxIter do
7 obj = min(u(con, x), pCon) +

min(n(con.out, x), pOut)
8 x = gradientAscent(5xobj, x, ε) /* ε is the

step size */
9 if isAct(con.out, x) and pOut == initMaxVal

then
10 pOut = min(n(con.out, x), pOut)

11 if isAct(u, x) and pCon == initMaxVal then
12 pCon = min(u(con, x), pCon)

13 if isAct(con.out, x) ∧ isAct(u, x) then
14 tests.put(x)
15 update coverage
16 break

17 if desired coverage achieved then
18 return tests

V. EXPERIMENTS

We implement DeepCon and DeepCon-Gen using Keras
2.2.4 [26] with backend TensorFlow 1.14.0 [25]. All our
experiments are run on servers with CentOS 7.6. The hardware
of each server is a 20-core 2.20GHz Xeon CPU with 128G
RAM and 4 NVIDIA TITAN V GPU with 12G Video memory.

A. Experimental Setup

We first select three classic LeNet series models (i.e.,
LeNet-1, LeNet-4 and LeNet-5 [8]) on MNIST dataset [20]
to evaluate DeepCon and DeepCon-Gen. As the scalability is
one of the most important factors for a coverage criterion [11],
we further select two much larger pre-trained DNN models
VGG-19 [18] and ResNet-50 [19] on ImageNet dataset [21]
to evaluate DeepCon and DeepCon-Gen. Note that both VGG-
19 and ResNet-50 models have achieved competitive records
in the competition of ILSVRC [21], [39].

MNIST is a large-scale handwritten digit recognition
database, containing 60,000 training examples and 10,000 test
examples. Each example is a 28 * 28 pixel single-channel
grayscale image, and its category label is any number from
0 to 9. For MNIST dataset, we use the re-trained LeNet-1,



TABLE I
DNNS AND DATASETS USED IN DEEPCON AND DEEPCON-GEN.

Dataset Description DNN # Neurons # Cons

MNIST Digit recog.
LeNet-1 619 5,932
LeNet-4 907 66,798
LeNet-5 1,027 105,102

ImageNet General images VGG-19 40,747 125,857,984
ResNet-50 50,283 15,433,920

LeNet-4, and LeNet-5 models as our evaluation subject. Note
that LeNet-1, LeNet-4, and LeNet-5 contain 7, 8, and 9 layers,
respectively, and their network architectures are very similar.

ImageNet is a super large-scale general image recognition
database with 1,000 categories. It contains more than 1.4 mil-
lion training examples and 100,000 test examples and is one
of the most popular datasets used in various computer vision
competitions [21]. Each ImageNet example is a 224*224*3
pixel image. For ImageNet, we select two state-of-art pre-
trained DNNs VGG-19 and ResNet-50 as our evaluation
subject. The architectures of VGG-19 with 26 layers and
ResNet-50 with 177 layers are much more complex than those
of LeNet models.

For LeNet models on MNIST, we perform the evaluation
on the whole test set, i.e., 10,000 test examples. For VGG-19
and ResNet-50 on ImageNet, considering the simplicity and
effectiveness of experiments, we perform the evaluation on
5000 randomly sampled examples from the test set. The details
of our adopted DNNs and data sets are shown in Table I.

We evaluate DeepCon and DeepCon-Gen by investigating
the following three research questions.

RQ1: How strong is the coverage of DeepCon? Can it scale
well to large DNNs?

RQ2: Compared with existing works, how good does Deep-
Con perform in terms of coverage strength and adversarial
example detection?

RQ3: How effectively can DeepCon-Gen activate inacti-
vated contributions and find unexpected behaviors of DNNs?

We first evaluate the coverage strength of DeepCon to verify
whether it can identify much more different tests. Since a
good coverage criterion should also have a good (potential)
usefulness in other related tasks such as adversarial example
detection [10]–[12], [35] , we directly compare DeepCon with
existing works in terms of coverage strength and adversarial
example detection. Lastly, we evaluate DeepCon-Gen on the
remaining inactivated contributions to verify whether it can
effectively activate these contributions and find defects.

B. Coverage Results

In this subsection, we evaluate the coverage strength of
contribution coverage criterion on entire DNNs and each layer
of DNNs.

1) Contribution Coverage of DNNs: Figure 3 shows the
growth trend of contribution coverage (ConC) on increasing
test inputs. The experimental results show that: (1) Under the
weakest setting of t > 0, the ConC of each DNN has not

reached 100% after all test inputs are fed. The ConC of each
DNN grows as the test input increases, and the growth trend
becomes slower and slower. This means that more different
test inputs can activate more contributions, and the remaining
contributions are more and more difficult to be activated. (2)
A larger t will result in a lower ConC, and as the value of
t becomes larger, the corresponding ConC drops much faster.
For example, for all LeNet models and VGG-19, the growth
trend lines of ConC with t > 0 and t > 0.25 are almost
overlapped, while the growth trend lines of ConC with t > 0.5
is much higher than that with t > 0.75. The experimental
results mean that during the prediction-making of a DNN on
a test input, only a few neurons with large contributions can
influence or even determine the prediction result. (3) DeepCon
can scale well to large DNNs such as VGG-19 and ResNet-50.
This is because the contribution computation cost of a DNN
on a given input is approximately equal to the prediction cost
of the DNN on the input, and the corresponding extraction
cost of activated contributions is linear.

Answer to RQ1. Under the setting of t > 0, the con-
tribution coverage of any of these DNNs grows with the
increase of test inputs and does not reach 100% even on all
test inputs. Moreover, contribution coverage criterion can
scale well to large DNNs.

2) Contribution Coverage of Each Layer: DNN extracts
features layer-by-layer. The testing adequacy of each layer
in DNN can be useful for DNN researchers and developers.
Different layers usually have different numbers of neurons and
connections, the layer with more neurons and connections may
has a greater influence on the result of ConC of the entire DNN
than that with fewer neurons and connections. To better reflect
the testing adequacy of DNNs, we evaluate the ConC of each
layer of DNNs.

The experimental results of ConCis are shown in Figure 4.
First, similar to ConC, a larger setting of t leads to a lower
value of ConCi. Second, the ConCi becomes lower as the layer
is deeper, even though this decreasing trend is not strictly
monotonically decreasing. Third, compared with Figure 3,
when ConC is very high, some ConCis are still very lower.
For example, as shown in Figure 3(i) and Figure 4(d), when
the ConC (with t > 0.5) of VGG-19 on 5000 test inputs
is 93.54%, the corresponding ConC24 and ConC25 is only
75.56% and 6.01% respectively. Thus, ConCi may be be able
to evaluate the testing adequacy of DNNs in a more fine-
grained manner.

C. Comparison with Existing Works

Researchers often use the coverage strength of a coverage
criterion to reflect how many different test inputs it can
identify. Thus, we first compare the coverage strength of
contribution coverage with another coverage criterion that can
be fairly compared. Furthermore, a good coverage criterion
should have a potential usefulness in other closely related tasks
such as adversarial example detection [11], [12]. We then con-
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Fig. 3. The growth trend of contribution coverage.
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Fig. 4. Contribution coverage of each layers.

duct a fair comparison between DeepCon and existing works
to verify whether DeepCon can achieve higher performance in
adversarial example detection.

1) Coverage Strength: As we analyzed in Section II-B and
Section III, the activated contribution extraction method in
DeepCon is completely different from the activated neuron ex-
traction method in NOB coverage criteria. The meaning of the
hyper-parameter t in contribution coverage and NOB coverage
criteria is dramatically different. Therefore, we cannot directly
compare them even under the same value of t. The contribution
defined in DeepCon is the combination of a neuron and the
connection weight it connects to the next-level neuron, thus
the neuron coverage in DeepXplore (DNC) may be a potential
object for fair comparison.

A fair setting for the comparison between ConC and DNC
should satisfy that the number of input neurons of activated
contributions in ConC should be approximately equal to the
number of activated neurons in DNC. This means that only
when we consider the non-zero contributions in ConC as
activated contributions and view the neurons with non-zero
outputs in DNC as activated neurons, the comparison of these
two coverage criteria can be relatively fair.

The comparison results are shown in Figure 5. Overall, the

coverage strength of ConC is stronger than that of DNC, and
the change of ConC with increasing test inputs is more obvious
than that of DNC. For example, the DNC of ResNet-50 on 100
test inputs reaches about 98%, while the ConC reaches lower
than 88%. The ConC of Resnet-50 can identify almost all 5000
test inputs.

The reason why ConC is stronger than DNC is that ConC
fully considers the neuron and the connection weights it
connects to next-level neurons. Take the fully connected DNN
as an example. When we neglect the differences caused by
their extraction methods, a neuron ni-1,h will correspond to
si contributions, i.e., |{(ni-1,h, cih,j)}| = si, where 0 6 j < si.
Thus, under this assumption, the coverage strength of ConC
will be si times that of DNC.

2) Adversarial Example Detection: A good coverage cri-
terion should also have good potential usefulness in defect
detection [12]. Existing works [10]–[12], [35] all use adver-
sarial examples to help verify the potential usefulness of their
coverage criteria. In this subsection, we directly conduct an
adversarial example detection task to compare the usefulness
between DeepCon and NOB coverage criteria.

As demonstrated in DeepXplore that test inputs from the
same category tend to share overlapped neurons. We also get
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Fig. 5. Comparison between ConC and DNC.

a similar observation in DeepCon, normal inputs from the
same category tend to cover some of the same neurons, while
adversarial examples tend to cover different neurons. Based on
this observation, we employ DeepCon and NOB coverage cri-
teria to detect adversarial examples. The adversarial example
detection method is described as follows.

Firstly, we use DeepCon to extract activated contributions
{Ũ i(x)|0 < i 6 l-1} of DNN on each correctly predicted
example from training set, and aggregate the activated contri-
butions of each example from the same category to obtain
category-contributions {Ũc

i
|0 < i 6 l-1}. we can further

obtain category-connections {C̃c

i
|0 < i 6 l-1} from {Ũc

i
|0 <

i 6 l-1}. Note that, here, the category-connections represent
the overlapped adjacent neuron pair set activated by training
examples from the same category. Secondly, for a test input
x, if its activated adjacent neuron pairs {C̃i(x)|0 < i 6 l-1}
satisfies {C̃

i(x)}∩{C̃c
i}

{C̃i(x)}
< γ, we consider x is an adversarial

example.

Similar to the above two steps, we also use NOB coverage
criteria to perform adversarial example detection. The differ-
ence is that we use NOB coverage criteria to extract the same
number of activated neurons as that in {Ũ i(x)} and add each
activated adjacent neuron pair to category-connections.

We use targeted-FGSM [40] to generate adversarial exam-
ples, and use DeepCon and NOB coverage criteria to perform
adversarial example detection, respectively. Considering the
high cost of crafting adversarial examples, we only perform
adversarial example detection on LeNet-4 and LeNet-5 over
MNIST. The experimental results are shown in Figure 6.
On average, the Area Under the ROC Curve (AUC) [22] of
DeepCon exceeds that NOB coverage criteria by 13.00% (the
larger the AUC, the better the adversarial example detection).
Specifically, when DeepCon achieves the AUC of 0.88 and
0.92 on LeNet-4 and LeNet-5, respectively, NOB coverage
criteria only achieves 0.82 and 0.72, respectively.

The in-depth reason behind the experiments may be that
DeepCon fully considers the importance of the output of a
neuron and the connection weights it connects to next-level
neurons and can extract more true decision-logics of DNNs,
while NOB coverage criteria only considers the output of a
neuron and ignores the connection weights emitted by the
neuron.
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Fig. 6. The comparison in adversarial example detection.

Answer to RQ2. From the perspective of coverage
strength, since one neuron corresponds to multiple con-
tributions, the coverage strength of contribution coverage
criterion is stronger than that of DNC. From the perspective
of usefulness in the adversarial example detection, Deep-
Con can achieve significantly better performance than NOB
coverage criteria.

D. Results of DeepCon-Gen

We evaluate DeepCon-Gen to verify whether it can activate
inactivated contributions. It is known that adversarial examples
are pervasive and often regarded as DNN defects. Following
previous works [10], [12], [35], we also utilize the proportion
of adversarial examples in the generated examples to investi-
gate whether contribution coverage criterion has the potential
usefulness of exposing DNN defects. Note that, the main
purpose of DeepCon-Gen does not include crafting adversarial
examples, but utilizing the generated adversarial examples
as DNN defects to prove that contribution coverage has the
potential to expose defects.

Based on the experiments of Section V-B1, we try to activate
the remaining inactivated contributions of all models except
VGG-19. There are a large number of inactivated contributions
in VGG-19. For simplicity, we only try to activate 100,000
contributions with larger connection weights in the deepest
few layers of VGG-19. (1) These remaining inactivated con-
tributions are more difficult to activate than those contributions
that have been activated by original test inputs. (2) The number
of these inactivated contributions is limited and they can be
activated in parallel. For easy comparison, we also perform
DNC guided test generation. The experimental results are



shown in Table II, in which un-cs/ns represents inactivated
contributions / neurons, Alg2. cs/ns represents the activated
contributions / neurons by Algorithm 2, and Advs represents
adversarial examples.

First, DeepCon-Gen can effectively activate the remaining
inactivated contributions. Except for LeNet1, DeepCon-Gen
can activate more than 95% of the remaining inactivated
contributions. Second, when the DNC fails to generate any
adversarial examples, DeepCon-Gen can still generate a large
number of adversarial examples, which means that DeepCon
can bring more chances to expose defects than DNC. For
LeNet-1, LeNet-4 and LeNet-5, 84.21%, 11.44% and 20.28%
of the tests generated by DeepCon-Gen are adversarial exam-
ples, respectively. For VGG-19 and ResNet-50, 84.21% and
99.84% of the tests generated by DeepCon-Gen are adversarial
examples, respectively. The reason for the high proportion of
adversarial examples in the generated tests for VGG-19 and
ResNet-50 is that almost all of these inactivated contributions
come from the deepest few layers.

We also evaluate DeepCon-Gen with other settings of t.
When t > 0.25, the experimental results are very close to
the results of t > 0. However, when t > 0.5 and t > 0.75,
DeepCon-Gen can only activate 20%-30% and less than 10%
of the remaining contributions of LeNet models and VGG-
19, respectively. This can be explained as follows. Each
hidden layer of LeNet models and VGG-19 is followed by
a ReLu function, which makes the output of these layers non-
negative. When some connection weights between these layers
are negative, their corresponding contributions will hardly be
greater than a given larger t. Therefore, the setting of including
ReLu in each hidden layer may restrict the representation
capacity or expression power of DNNs. This may also be why
ResNet-v1 [19] directly abandons the use of ReLu in each
shortcut connection branch, and why ResNet-v2 [41] tends to
place ReLu before the linear layer in the residual block and
remove it between two sequential residual blocks.

Answer to RQ3. On average, DeepCon-Gen can effectively
activate 93.63% of the remaining inactivated contributions,
and 62.60% of the generated tests can lead to the mis-
predictions of DNNs. The high proportion of adversarial
examples in the generated examples indicates that contri-
bution coverage has higher potential usefulness in exposing
DNN defects.

VI. DISCUSSION

In this section, we discuss the potential threats and limita-
tions of our work.

Threats to Validity. To comprehensively and thoroughly
evaluate DeepCon and DeepCon-Gen, we select five different-
sized DNNs and two publicly accessible large-scale datasets.
For the large-sized DNNs VGG-19 and ResNet-50 on Ima-
geNet dataset, we randomly sampled 5,000 test inputs to eval-
uate the coverage strength of contribution coverage criterion.
Since the selected test inputs are not the whole ImageNet test

TABLE II
TESTING RESULTS OF DEEPCON-GEN ON DIFFERENT DNNS

Coverage DNN # un-cs/ns % Alg2. cs/ns % Advs

ConC

LeNet-1 47 80.85% 84.21%
LeNet-4 474 97.68% 11.44%
LeNet-5 223 97.31% 20.28%
VGG-19 1,875,097 96.47% 99.88%
ResNet-50 40,579 95.88% 97.24%

DNC

LeNet-1 1 100.00% 0.00%
LeNet-4 0 0.00% 0.00%
LeNet-5 0 0.00% 0.00%
VGG-19 22 40.90% 0.00%
ResNet-50 14 57.14% 0.00%

set, our experimental results may not fully reflect the testing
adequacy of VGG-19 and ResNet-50 on ImageNet. Besides,
some advanced models mainly used in the text field, such as
Transformer [42] and BERT [43], are not be investigated in the
experiments. Fortunately, the experimental subjects we used
are enough to prove that DeepCon can not only completely
cover neurons and connection weights of DNNs, but also can
scale well to large-size DNN models.

In the comparison with the existing work, we only chose
the fundamental coverage criterion DNC. This is because
the extraction method of activated neurons of DeepCon is
dramatically different from NOB coverage criteria, which
makes the comparison with other advanced NOB coverage
criteria inconvenient and unfair. As compensation, we poten-
tially compared DeepCon with paired-neurons coverage in the
experiments of Section V-C2. The experimental results show
that DeepCon has a better performance in detecting adversarial
examples.

Limitations. In DeepCon, we use contribution coverage to
reflect the internal logic coverage of DNNs, which makes
DeepCon can thoroughly cover both the outputs of neurons
and the connection weights they emit. However, similar to
NOB coverage criteria [10]–[12], [35], contribution coverage
cannot be directly generalized to stateful DNNs, such as
RNN and LSTM [44], either. Fortunately, we can expand the
calculation process of a stateful DNN into a stateless sequence,
and then use contribution coverage criterion to measure the
testing adequacy of DNNs.

VII. RELATED WORK

A. Testing of DNNs

Traditionally, developers and researchers often use the accu-
racy of a DNN on the test set to reflect the quality of the DNN.
This black box testing method may not be able to effectively
detect various unexpected predictions of DNNs [11].

To thoroughly test DNNs, Pei et al. [10] first proposed a
neuron coverage criterion to reflect the internal logic coverage
of DNNs. They take a neuron as the basic internal logic of
DNN and use the output of the neuron on a test input to
determine its activation state. If the output of a neuron is
greater than a given threshold, the neuron is considered as
activated. DeepTest [45] proposed a gray-box approach to use



neuron coverage to guide test generation. They performed a
finite number of affine transformations (eg., rotation, trans-
lation, scaling ) on seeds to systematically generate tests.
The generated tests successfully expose various erroneous
behaviors of autonomous driving systems.

Ma et al. [11] argued that the range of output values
of neurons in different layers may vary largely, and it is
inappropriate to set the same threshold for these neurons to
indicate their activation states. They proposed a k-multisection
neuron coverage (KMNC) to overcome this problem. Besides,
they also proposed other two neuron-level and two layer-level
coverage criteria. DeepHunter [46] proposed a fuzz testing
framework to generate sematic-preserved tests to hunt the
defects of DNNs. They use the coverage criteria proposed
in [10], [11] as feedback and perform mutations (a limited
number of affine transformations) on input seeds to craft tests.
Similarly, Odena et al. [47] proposed Tensorfuzz to debug
DNNs with coverage-guided fuzzing.

DeepXplore [10] and DeepGauge [11] ignored the influence
between neurons. To test the independent influence between
two adjacent neurons / features, Sun et al. [12] proposed a
set of adapted MC/DC coverage criteria for DNNs. Their
experiments on small DNNs show that their coverage criteria
have higher bug detection capabilities than random testing.
However, their covering method needs to freeze the outputs
of all other neurons in the same layers with the adjacent
neurons under test. This makes their coverage criteria cannot
easily scale to large DNNs [11], [13]. With the guidance
of coverage criteria proposed in [10]–[12], Sun et al. [48]
proposed DeepConcolic to perform concolic testing for DNNs.
Due to the limitation of the constraint solver, this work can
hardly scale well to large DNNs either.

Inspired by traditional combinatorial testing, Ma et al.
[35] proposed a set of t-way (t neurons in the same layer)
combination coverage criteria to detect the local robustness
of DNNs. Their experiments on two small DNNs shown that
DeepCT is effective in testing DNNs. However, due to the
huge combination space of different neurons, whether their
coverage criteria can scale well to large and complex DNNs
also remains to be verified in practice.

B. Attack and Defense of DNNs

The accuracy of a DNN on the test set has been the most
important or even the only indicator to evaluate the quality of
DNNs. However, adversarial attacks against DNNs in recent
years shown that DNNs with high accuracy can be easily
broken by some attack algorithms. The robustness of DNNs is
seriously threatened. Adversarial attack refers to adding some
carefully designed slight perturbations to the original example,
causing the DNN to make misprediction with high confidence.

Szegedy et al. [49] first turned on DNN’s adversarial attack
and defense. They employed the L-BFGS method to solve
the attack objective to craft adversarial examples. Goodfellow
et al. [40] proposed the hypothesis that the features of the
DNN high-dimensional feature space are linear, and proposed
an FGSM attack method to generate adversarial examples.

Following this research direction, more attacks methods such
as JSMA [50], BIM&ILCM [16], One-pixel [51], C&W [38]
and DeepFool [52]–[55], were proposed.

The research of adversarial attack further promoted the
research of adversarial defense. The adversarial defense can
be classified into proactive defense and passive defense [56]–
[58]. For more information about adversarial defense, we
recommend readers to read [1], [59].

VIII. CONCLUSION

Deep learning systems have been widely adopted in various
safety-critical domains, which put forward higher requirements
on the robustness of DL systems. Existing coverage criteria
in DL systems all use the output of a neuron to determine
the activation state of the neuron and ignore the connection
weights it emits.

In this paper, we propose DeepCon, a novel contribution
coverage criterion. DeepCon can simultaneously cover the
output of a neuron and the connection weights it connects
to other neurons and can scale well to large-sized DNNs. The
experiments on different DNNs and datasets show that Deep-
Con can well present the testing adequacy of DNNs and has
higher usefulness in other application tasks such as adversarial
example detection. We further propose DeepCon-Gen, which
can effectively activate the inactivated contributions, and most
of the generated tests can lead to mispredictions.

In the future, we plan to investigate advanced coverage
criteria based on contribution coverage, e.g., paired contri-
bution coverage criterion. We also plan to explore more
complex contribution coverage-based defense methodologies
for adversarial example detection and input validation.
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