Characterizing and Detecting Bugs in WeChat Mini-Programs

Tao Wang"
Qingxin Xu"
Xiaoning Chang

State Key Lab of Computer Sciences, Institute of Software,

Chinese Academy of Sciences

University of Chinese Academy of Sciences, Beijing, China
{wangtao19,xuqingxin19,changxiaoning17}@otcaix.iscas.ac.cn

Jinhui Xie
Yuetang Deng
Jianbo Yang
Jiaheng Yang
Tencent, Inc.
Guangzhou, China

Wensheng Dou'*
Jiaxin Zhu¥

State Key Lab of Computer Sciences, Institute of Software,

Chinese Academy of Sciences

University of Chinese Academy of Sciences, Beijing, China

{wsdou,zhujiaxin}@otcaix.iscas.ac.cn

Jun Weil
Tao Huang

State Key Lab of Computer Sciences, Institute of Software,

Chinese Academy of Sciences

University of Chinese Academy of Sciences, Beijing, China

{wj,tao}@otcaix.iscas.ac.cn

{hugoxie,yuetangdeng,xiaotuoyang,jiahengyang}@tencent.com

ABSTRACT

Built on the WeChat social platform, WeChat Mini-Programs are
widely used by more than 400 million users every day. Consequently,
the reliability of Mini-Programs is particularly crucial. However,
WeChat Mini-Programs suffer from various bugs related to execu-
tion environment, lifecycle management, asynchronous mechanism,
etc. These bugs have seriously affected users’ experience and caused
serious impacts.

In this paper, we conduct the first empirical study on 83 WeChat
Mini-Program bugs, and perform an in-depth analysis of their root
causes, impacts and fixes. From this study, we obtain many interest-
ing findings that can open up new research directions for combating
WeChat Mini-Program bugs. Based on the bug patterns found in
our study, we further develop WeDetector to detect WeChat Mini-
Program bugs. Our evaluation on 25 real-world Mini-Programs
has found 11 previously unknown bugs, and 7 of them have been
confirmed by developers.

CCS CONCEPTS

+ General and reference — Empirical studies; » Software and
its engineering — Software testing and debugging.

“Tao Wang and Qingxin Xu contribute equally.

T Wensheng Dou and Jun Wei are the corresponding authors.

iWensheng Dou and Jiaxin Zhu are also affiliated with Nanjing Institute of Software
Technology and University of Chinese Academy of Sciences, Nanjing, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510114

KEYWORDS
WeChat Mini-Programs, empirical study, bug detection

ACM Reference Format:

Tao Wang, Qingxin Xu, Xiaoning Chang, Wensheng Dou, Jiaxin Zhu, Jinhui
Xie, Yuetang Deng, Jianbo Yang, Jiaheng Yang, Jun Wei, and Tao Huang.
2022. Characterizing and Detecting Bugs in WeChat Mini-Programs. In
44th International Conference on Software Engineering (ICSE °22), May 21—
29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3510003.3510114

1 INTRODUCTION

WeChat is one of the most popular social platforms, running on
mobile and desktop operating systems, e.g., Android, i0S, Windows
and macOS. A recent study has reported that WeChat is widely used
in daily life, and there are more than one billion monthly active
users [43].

WeChat Mini-Programs run on the WeChat platform, and can
utilize various functions provided by WeChat, e.g., user manage-
ment, file access, network access, location, camera, and payment.
WeChat Mini-Programs do not have a palpable installation process
as Android and iOS applications, but users can have an experi-
ence as smooth as native Android and iOS applications. WeChat
Mini-Programs have been widely used in many scenarios, e.g., e-
commerce, transaction, and education. Nowadays, there are more
than 5.5 million Mini-Programs running on the WeChat platform,
and there are more than 400 million WeChat users using Mini-
Programs every day [57].

Based on the Mini-Program framework [15], developers can
develop various WeChat Mini-Programs. The Mini-Program frame-
work contains two layers: a render layer and a logic layer. The
render layer is responsible for UI display. For the purpose, WXML
(WeiXin Markup Language) and WXSS (WeiXin Style Sheets) are
used as its description language, which are similar to HTML and
CSS in traditional web applications. The logic layer is responsible
for the program logic written in JavaScript. The two layers run on
two independent threads respectively and communicate with each

https://doi.org/10.1145/3510003.3510114
https://doi.org/10.1145/3510003.3510114
https://doi.org/10.1145/3510003.3510114

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

other through an asynchronous and event-driven mechanism. The
Mini-Program framework also provides rich components and APIs
for developers to implement their own services. Most of these APIs
are asynchronous, thus making the entire Mini-Program response
smoothly.

Unfortunately, developing high-quality WeChat Mini-Programs
is a challenging task. When developing WeChat Mini-Programs,
developers need to properly handle asynchronous mechanism,
platform differences, lifecycle management, etc. Otherwise, var-
ious bugs can occur in WeChat Mini-Programs, e.g., conventional
JavaScript bugs, asynchronous related bugs, and compatibility bugs.
We call WeChat Mini-Program Bugs as WeBugs for short. More
than 70 million of errors caused by WeBugs are reported in the
WeChat internal monitoring system every day. WeBugs can seri-
ously affect users’ experience and lead to serious consequences, e.g.,
economic losses and information leakages. To understand, detect
and fix WeBugs is of great importance to WeChat Mini-Program
developers.

Substantial empirical studies about software bugs have been
conducted to enrich our knowledge on software reliability. Exist-
ing empirical study on mobile applications mainly focus on var-
ious bugs in Java-based Android applications, e.g., compatibility
bugs [67, 88, 90], security-related bugs [68, 79, 106, 108]. Existing
JavaScript-related empirical studies mainly focus on the client-side
JavaScript applications [94, 95, 97] and server-side JavaScript appli-
cations [101-103]. These bugs are usually associated with dynamic
JavaScript features and client-side JavaScript bugs are mostly DOM-
related. However, WeChat Mini-Programs are developed based on
the WeChat Mini-Program framework, which are greatly different
from client/server-side JavaScript applications and Android appli-
cations. Thus, these studies cannot reflect the key characteristics
of WeBugs. Existing works on WeChat Mini-Programs mainly fo-
cus on their development [76, 105], acceptance and usage [63, 86].
Therefore, there is little knowledge about WeBugs in literature. Un-
derstanding WeBugs is of significant interest to our researchers and
practitioner community, and can be helpful in providing guidance
on bug avoidance, detection, testing and fixing, etc.

In this paper, we conduct the first empirical study on WeChat
Mini-Program bugs. We collect 83 WeBugs from three sources,
i.e., open-source WeChat Mini-Programs in GitHub, QAs from the
developer forum and online running Mini-Programs maintained by
a WeChat development Company X. We study WeBugs from the
following three research questions.

¢ RQ1 (Root cause): What are the root causes of WeChat
Mini-Program bugs?

¢ RQ2 (Fix strategy): How do developers fix WeChat Mini-
Program bugs? Are there common fix patterns?

¢ RQ3 (Bug Impact): What impacts do WeChat Mini-Program
bugs have?

Through our in-depth analysis against the above three aspects,
we obtain many interesting findings and useful lessons for further
research and practice. For example, 14.2% WeBugs are caused by
incompatible features across different devices, even though WeChat
Mini-Programs are designed as cross-platform applications. Thus,
developers should pay attention to compatibility-related WeBugs.

Tao Wang, et al.

// index.wxml
<view> Hello {{name}}! </view>
<button bindtap="changeName">

Click I </button>
ick me! </button Hello WeChat!

// index.wxss
button{
background-color: blue;
width: 70%;
margin-top: 70%;
}

\ Click mel \

// index.js
var helloData = {
name: 'WeChat'
}
Page({
data: helloData,
changeName: function (e) {
//sent data change to view
this.setData({
name: 'World'
1

}
1)

Hello World!

‘ Click me! ‘

(a)

Figure 1: A simplified WeChat Mini-Program.

Based on our empirical study, we further design a static anal-
ysis tool, WeDetector, to detect WeBugs under three specific bug
patterns, e.g., incorrect platform-dependent API usage, incomplete
layout adaptation to specific devices, and non-specific handling for
arguments passed to callbacks. We apply WeDetector on 25 pop-
ular WeChat Mini-Programs from GitHub and find 11 previously
unknown WeBugs, in which 7 WeBugs have been confirmed by
developers. We have made our studied WeBugs and WeDetector
publicly available at https://github.com/tao2years/WeBug.

In summary, we make the following main contributions.

e We present the first empirical study on WeChat Mini-Program
bugs from three aspects, i.e., root cause, bug impact and fix
strategy. Our in-depth analysis reveals common vulnerabili-
ties in WeChat Mini-Programs.

o Our empirical study obtains many findings that can open up
new research directions. We hope our study can shed lights
on combating WeChat Mini-Program bugs.

e We design a static WeBug detection tool, WeDetector, and
find 11 new bugs in 25 popular WeChat Mini-Programs.

The rest of this paper is organized as follows. Section 2 presents
an overview of WeChat Mini-Programs and its framework. Section 3
presents our study methods. Section 4 presents our empirical study
results. Section 5 discusses lessons learned from our study. Based on
our study results and lessons, we propose a WeBug detection tool
in Section 6. Section 7 discusses related work and finally Section 8
concludes this paper.

https://github.com/tao2years/WeBug

Characterizing and Detecting Bugs in WeChat Mini-Programs

Render layer Logic layer
- JSCore
WebView
Logic
WXSS process
WXML API
Event l T Data Datal T Event
4)
: User |
Location Management ~ Payment 1 WeChat :
Camera File Network T
J
g I Runtime
[| Iplatf
l'l u (p-attorms
Android i0S/Mac Windows Development tool

Figure 2: The WeChat Mini-Program framework.

2 WECHAT MINI-PROGRAMS

WeChat Mini-Programs run on the social WeChat platform, which
have billions of users. On WeChat platform, users can easily find
Mini-Programs by scanning related QR code or searching the names,
and use them without downloading and installing process like
Android and iOS applications. Benefited from the WeChat social
platform, many Android and iOS applications also propose their cor-
responding WeChat Mini-Program versions, e.g., Amazon, Airbnb
and KFC. Nowadays, WeChat Mini-Programs have been widely
used in our daily life.

A WeChat Mini-Program. Figure 1 shows a simplified WeChat
Mini-Program. Figure 1a shows the code while Figure 1b and Fig-
ure 1c show the display page of the program. This program contains
three files, index.wxml, index.wxss, and index. js. File index.wxml
builds the view of the page. File index.wxss manages the style of
the components in page. File index. js decides the program logic
written in JavaScript. From Figure 1a, we can see that the function
changeName is bound on the button “Click me!” (Line 2-3), and
property name (Line 1) is bound with the name in double curly brace
(Line 10) in index.wxml. When the button in Figure 1b is clicked,
the display turns to that in Figure 1c.

WeChat Mini-Program framework. Figure 2 shows the WeChat
Mini-Program framework, which mainly contains a render layer
and alogic layer. The render layer, e.g., index.wxml and index.wxss
in Figure 1a, runs on the WebView thread, and the logic layer, e.g.,
index. js in Figure 1a, runs on JSCore thread to execute JavaScript
code. Note that, similar to Android applications [2, 100], Mini-
Programs and their pages have complicated lifecycle management,
e.g., application launch, page load, and page show.

The logic layer and render layer communicate with each other
through an asynchronous and event-driven mechanism. When
users click the button “Click me!” on the page in Figure 1b, it will
trigger the binding function changeName (Line 2) in the index . wxml.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 1: WeChat Mini-Program Execution Environments

Platform Logic Layer View Layer

i0S/Mac JavaScriptCore [49] WKWebView [58]
Android V38 [54] Tencent XWeb [53]
Development tool NW.js [9] Chromium Webview [5]
Windows Chrome kernel [7] Chrome kernel

The WebView thread sends the event changeName through WeChat
Mini-Program platform. The JSCore thread then executes the cor-
responding event handler (Line 14). When data changes occur
in the logic layer, the data is passed from the logic layer to the
WeChat Mini-Program platform via the setData method, and then
forwarded to the render layer. When the render layer notices name
has been changed, it then changes the page’s display. The WeChat
Mini-Program framework provides various functions, e.g., user
management, file access, network access, location, camera, and
payment. In order to make Mini-Programs respond smoothly, most
of these APIs work in an asynchronous and event-driven manner.

Runtime platforms. WeChat Mini-Programs can run on dif-
ferent platforms. Mobile and desktop operating systems, including
Android, i0S, Windows, and macOS are supported by the WeChat
Mini-Program framework. These platforms have different imple-
mentations of the Mini-Program framework. Table 1 illustrates the
different execution environments for logic layer and render layer
on different platforms.

Although the WeChat Mini-Program framework intends to pro-
vide a cross-platform development and runtime environment, the
underlying runtime platforms can cause intricate differences to
the execution of Mini-Programs. For example, JavaScriptCore [49]
for i0S9 and i0S10 is not fully compatible with the ECMAScript 6
standard [6], and Tencent XWeb [58] rewrites some components
in Chrome kernel [7], e.g., video. Therefore, Mini-Programs can
behave differently when incompatible features are used.

3 STUDY METHODOLOGY

In this section, we first present how to collect and analyze WeBugs,
and then explain the threats to our empirical study.

3.1 Collecting WeBugs

We select WeBugs from three sources, i.e., open source GitHub
Mini-Programs, official WeChat Mini-Program developer forum
[56] and online running Mini-Programs maintained by a WeChat
development Company X. These sources can provide various di-
mensions for WeBugs. Finally, we obtain 83 WeBugs from these
sources. In the following, we explain how we collect WeBugs from
them.

Open source Mini-Programs. Many open source WeChat Mini-
Programs can be found in GitHub. To collect WeBugs from GitHub,
we first collect GitHub repositories related to Mini-Programs. We
use three keywords, “Mini-Program”, “weapp” , “wxapp” to search
GitHub repositories. We also include all open source reposito-
ries listed by the awesome-wechat-weapp project [45] in our study.
Project awesome-wechat-weapp records most popular WeChat Mini-
programs and development materials on GitHub, with over 35.8k

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 2: Study Subjects from Github Mini-Programs.

Project Category Stars Issues Bugs
ColorUI [23] Style 10.4k 296 3
iview-weapp [26] Component 6k 389 3
wechat-app-mall [20] Shopping 14.4k 189 9
wxParse [14] Text parser 7.6k 327 12
winxin-watch-life [21] Blog 2k 46 2
wx-calendar [22] Calendar 1.9k 293 7
wechat-app-demo [12] DevTool 1.7k 18 4
WeHalo [30] Blog 1.1k 31 1
pinche-xcx [17] Traveling 620 20 1
scuplus-wechat [27] Daily life 554 509 4
Weapp-trending [29] News 259 6 1
threejs-example [33] Graph 106 22 1
CardOnePerson [38] Notebook 27 3 1
Total 49

stars. Through this step, we obtain 13,365 repositories. We remove
invalid repositories that do not have the entry file app.js for
WeChat Mini-Programs, and further remove repositories with less
than one issue, since they cannot contain valid information for
our study. After that, we obtain 255 distinct WeChat Mini-Program
repositories, and they contain more than 4,000 issues. We notice
that most issues are about how to use or improve Mini-Programs.
We ignore this kind of issues in our study and select WeBugs with
these issues through the following steps. (1) We read the description
of each issue report and select the issue if it has a clear description
and available fix. (2) For issue reports having clear descriptions
without fixes, we try to find out a fix solution. If we can find a fix
solution, we also include them in the study. Finally, we obtain 49
WeBugs from 13 open source GitHub Mini-Programs, as shown in
Table 2. These WeChat Mini-Programs cover a wide spectrum of
categories, e.g., style libraries and daily services. We can also see
that most of these WeChat Mini-Programs are popular, because
they obtain many stargazers in GitHub, and contain hundreds of
issues.

QAs in the official WeChat Mini-Program developer fo-
rum. WeChat Mini-Program developer forum [56] is a technical
exchange community maintained by the official WeChat platform.
Any questions related to Mini-Programs can be posted in the forum.
On average, hundreds of questions are posted every day. Some
of these questions can reflect WeBugs encountered by individual
developers.

To extract WeBugs from the developer forum, we go through the
Questions and Answers (QAs) posted from 2021.1.1 to 2021.3.4, and
obtain more than 10,000 QAs. We find that many QAs are not re-
lated to WeBugs, e.g., developers ask how to use new features in the
WeChat Mini-Program. We exclude these QAs from consideration.
We consider a QA as a WeBug if it satisfies the following condi-
tions. (1) The QA describes an issue when developers implement
their WeChat Mini-Programs. (2) The QA contains code snippets
or clearly describes the code related to the QA. Thus, we can re-
produce the issues by ourselves. (3) The QA was solved, and the
related WeBug was fixed. We obtain 16 WeBugs after the screening.

Tao Wang, et al.

Online running Mini-Programs. During the collaboration
with a WeChat development Company X, we have the opportunity
to collect WeBugs from online running Mini-Programs. Online
running Mini-Programs are similar to Android and iOS applications
published on the market, respectively. For the issues provided by
Company X, we compare their original and fixed versions, and
analyze their error stack information. If we can fully understand a
WeBug, we take it into consideration. Finally, we obtain 18 WeBugs
from 16 online running Mini-Programs.

3.2 Analyzing WeBugs

We thoroughly studied these 83 WeChat Mini-Program bugs and
tried to answer the research questions we raised before. All collected
WeBugs were manually analyzed by three authors in this paper. We
performed an in-depth analysis on the 83 WeBugs by investigating
their source code, discussions, fix patterns, etc.

To build the taxonomies, we adopt open card sorting approach.
To reduce bias, WeBugs are grouped and labeled by three authors
independently. Next, we discuss their results to reach a consensus.
We sort WeBugs using the following approaches.

e Root cause. We try to answer the question “what caused
this bug at the code level”. (1) Based on the stack trace and
messages in issue report, we locate the buggy code and figure
out what caused the bug. Take the message result is not
defined as an example, we find the locations where the
result is used, where the result is passed from, and why it is
not defined. (2) If the issue report does not include the stack
trace, we manually reproduce this bug to obtain it. (3) If we
cannot reproduce the bug, we compare the buggy code and
corresponding fix patch.

o Fix strategy. The fix patch is obtained from associated pull
request. If there does not exist associated pull request, we
search and analyze commit log of the project to obtain the
fix code. Finally, we manually extract the common patterns
by abstracting the patches.

e Bug impact. The qualitative impact of most WeBugs can be
inferred by the issue reports straightforwardly. If developers
do not provide enough information, we reproduce the bugs
to check their results.

In our study process, we also referred to some studies which clas-
sified the software bugs [60, 94, 95, 110] for the initial classifications
of root causes. With further analysis, we gradually refined these
root causes, e.g., removed the unmatched and added new ones.

During our study, we also reproduced some WeBugs if related
information are available.

3.3 Threats to Validity

Internal validity. Our empirical study’s design and planning fol-
low the structure suggested by Wohlin [64]. We carefully study
each WeBug’s source code, discussion and fix patch to have a deeper
understanding. When any categories change during the study, all
WeBugs need to be re-analyzed again. All the collected WeBugs
and analysis results have been discussed and confirmed by at least
three authors of this paper. For bugs that we do not agree on, we
turn to developers and Company X for help. If a bug cannot be fully
understood by us, we do not take it into consideration. Thus, we

Characterizing and Detecting Bugs in WeChat Mini-Programs

believe that all studied WeBugs are true positives and have been
thoroughly studied.

External validity. We may miss some known WeBugs in the
selection process, and the selected WeBugs may not cover all kinds
of WeBugs. However, our dataset has covered the investigated space
of the WeChat Mini-Programs and has good representativeness.
From Figure 2, we can observe that bugs can occur in some situa-
tions, i.e., the adaptation of different operating systems, original
WeChat functionalities, regular JavaScript code and asynchronous
mechanism. We have studied more than 4000 issues and 10000 QAs,
covering most of the popular open source projects. Our dataset
does cover these bugs.

4 WEBUG STUDY RESULTS

In this section, we present the detailed results of our empirical study
on 83 WeBugs from three aspects, i.e., root cause, bug fix and bug
impact.

4.1 Root Cause

As shown in Table 3, we identify six types of root causes.

Differences in execution environments. Mini-Programs are
designed to be cross-platform, and it has an internal mechanism to
handle platform differences when interpreting the code of render
layer and logic layer. However, 18 (21.7%) WeBugs are caused by
the discrepancies among platform execution environments. These
bugs are related to platform-dependent API usage, inconsistent
rendering among different devices, and different versions of the
Mini-Program framework.

Platform-dependent APIs. Some APIs in the Mini-Program frame-
work are OS-specific, e.g., they do not support all OS or have dif-
ferent behaviors on different OS. Compatibility bugs occur when
invoking the same API results in inconsistent behavior on differ-
ent device models. For example, wx.onShareTimeline only works
in Android. Date returns different values between Android and
i0S. The issue wechat-app-mall#237 [52] reports that users cannot
access a page on i0S devices. This WeBug is caused by the inconsis-
tent time format between Android and iOS. Developers invoke API
Date to obtain the system time. The return time on Android is split
with “-” (e.g., 2021-1-1), while “/” (e.g., 2021/1/1) on iOS. Developers
do not normalize the value into the same format, and introduce this
bug. Nine WeBugs are related to platform-dependent APIs.

Note that, Android applications also suffer from compatibility is-
sues caused by platform-dependent APIs [106]. However, platform-
dependent APIs in WeChat Mini-Programs have different character-
istics from those in Android. Platform-dependent APIs in WeChat
Mini-Programs are not only related to hardware but also related to
software platforms. We have summarized 13 platform-dependent
APIs in Table 4, in which six APIs are related to hardware, e.g.,
bluetooth, NFC, and video. Four APIs have certain restrictions on
different platforms, e.g., different parameters, different return val-
ues and different data format. For example, the type of return value
of API wx.onCompassChange on i0S device is Number while on
Android device is String. If these APIs are handled properly, similar
compatibility bugs can be avoided.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

- P/

top notch camera

Safe Area Safe Area
bottom bar
d \
- — J

(a) Normal screen (b) Anomalous screen

Figure 3: Safe areas of normal screen and anomalous screen.

Finding 1: Some APIs in the Mini-Program framework are
platform-dependent. If developers do not handle these APIs prop-
erly, compatibility bugs can occur.

Inconsistent rendering among different devices. Although the lay-
out of Mini-Programs is self-adaptive, there are also three abnormal
rendering bugs. These bugs arise in specific devices due to their
anomalous screens. For some devices, e.g., Figure 3a, all their screen
can be used to render applications. However, for some devices, e.g.,
Figure 3b, parts of their screen are occupied by some components,
e.g, camera. Thus, rendering applications on the restricted areas
can cause abnormal displays. The issue colorUI#50 [40] reports that
the height of the side drawer is incorrect on iPhoneX, in which
there is a bottom bar on the screen and the bottom bar occupies
certain position. Developers should adapt the layout settings based
on safeArea of the screen in different devices.

Note that, previous rendering issue studies in Android [81, 106]
observe that rendering issues are mainly caused by different screen
sizes. WeChat Mini-Programs have been able to adjust the UI adap-
tively according to screen sizes. Our study finds that WeChat Mini-
Programs should pay more attention to safeArea in mobile phones.

Finding 2: Although the layout of Mini-Programs is self-adaptive
in rendering, developers still need to adjust them to fit the safe
areas on some devices with anomalous screens.

Inconsistent behaviors due to different versions of the Mini-Program
framework. There have been two major releases of the Mini-Program
framework, and the APIs are changing across different versions. For
example, when the Mini-Program framework was updated from
1.0 to 2.0, the property shape is no longer supported for i-button
[18]. It is difficult for developers to notice the changes in the Mini-
Program framework and to modify their programs accordingly.
Additionally, some features are not correctly supported by certain
framework versions, e.g., some settings in component textarea
[47] and API wx.previewMedia [44] cannot work properly. Six
WeBugs belong to this case.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Tao Wang, et al.

Table 3: Root Causes of 83 WeChat Mini-Program Bugs

Root cause WeBugs | Ratio
APIs have restricted usages on specific OS, e.g., Android and iOS. 9 10.8%
Differences in execution Inconsistent rendering among different devices. 3 3.6%
environments Inconsistent behaviors due to different versions of Mini-Program framework. 6 7.2%
Subtotal 18 21.7%
Using inappropriate APIs. 4 4.8%
API misuse Us%ng %nappropriate API p:?rametelzrs. 2 2.4%
Using improper style priority settings. 4 4.8%
Subtotal 10 12.0%
Spelling mistakes in JavaScript code. 4 4.8
Syntax errors Forgetting to define necessary variables and functions. 11 13.3%
Subtotal 15 18.1%
No verification of data validity | Forgetting to check the validity of return data from external requests. 16 19.3%
Asynchronous errors Concurrency errors caused by asynchronous mechanism and lifecycle events. 3 3.6%
Logic errors Incorrect or incomplete implementation logic. 21 25.3%
Total 83 100%

Finding 3: Different versions of the Mini-Program framework can
introduce discrepancies, and thus cause WeBugs.

API misuse. Developers may misunderstand the APIs / compo-
nents of the Mini-Program framework, and introduce errors due
to incorrect usage. 10 (12%) WeBugs are caused by API misuse, in-
cluding inappropriate API selection, inappropriate API parameters
and incorrect settings of style priority.

Inappropriate API selection. Developers may have wrong under-
standing of the API functionality provided by the Mini-Program
framework. Thus, using inappropriate APIs cannot satisfy devel-
opers’ expectations, and introduces bugs. Four WeBugs belong
to this case. WeBug CardOnePerson#2 [36] is such an example.
In a textarea, developers expect that the page automatically up-
dates after the user modifies the page content. However, they bind
a contentChange function by using bindblur, which is triggered
when the focus of the page changes. Thus, when users click confirm
update directly after their modifications, the focus of the textarea
does not change, and the page does not update accordingly. In this
case, developers should use bindinput instead of bindblur.

Inappropriate API parameters. Developers may have wrong as-
sumptions, and use inappropriate parameters for the APIs provided
by the Mini-Program framework. Two WeBugs belong to this case.
For example, in WeBug wechat-app-mall#203 [39], the developer
invokes the payment API by executing wxapi.payBill ({A, B}),
and only pass one parameter ({A, B}). However, the payment API
wxapi.payBill requires two parameters (A, B) and should be
used as wxapi.payBill (A, B).The developer combines the two
parameters into a single object, and thus makes the payment fail.

Incorrect setting of style priority. Developers may not have a fully
understanding of style priority. Figure 4 explains style priority
with a simplified example. Figure 4a shows the style setting code,
and Figure 4b shows the display. We can see that the global style
setting in index.wxss of button.background-color is blue while
the button color is set green in index.wxml. However, the final
color of the button is green, because inner settings have higher
priority than global settings. Improper style priority settings can

// index.wxml

<button . p—
style= "background-color: "
Click me!

</button>

// index.wxss

button{
background-color: blue;
width: 80%;

})

margin-top: 50%;

(a) (b)

Figure 4: A simplified example of style priority setting.

introduce unexpected rendering bugs, especially when third-party
style libraries are used. Four WeBugs belong to this case.

Finding 4: Developers may not have a fully understanding of style
priority and introduce some non-functional issues like unexpected
rendering performance.

Syntax errors. The Mini-Program framework adopts JavaScript
as its programming language. Due to the dynamic feature of Java-
Script, Mini-Programs can still run when encountering syntax er-
rors. We observe that syntax errors are common in Mini-Programs,
and 15 (18.1%) WeBugs belong to syntax errors. Syntax errors in
Mini-Programs fall into two categories, i.e., spelling mistake (4/15),
and forgetting to define variables and functions (11/15).

Finding 5: Syntax errors are common (18.1%) in Mini-Programs.

No verification of data validity. During the processing of data,
especially dealing with return data from requests, developers often
assume that the data structure meets their expectations. They may
directly access properties or functions on the return data. However,
the return data can be undefined or null due to various reasons,

Characterizing and Detecting Bugs in WeChat Mini-Programs

// index.js
1.getList: function() {
2. var that = this;

3. util.req (url, page, function{

4.+ if(data.list) {

5. var list = data.list

6. list.foreach (function(item)) {

7. i={...

8. } var 11 { ¥ %false.list.for‘each
9.+ }

// util.js

10. function req (url, data, cb) {
11. wx.request({

12. url: rootDocment + url,

13. success: function(res) {

14. return typeof cb== 'function' && cb(res.data)
15. s

16. fail: function() {

17. return typeof cb== 'function' &&|cb(false)
18. }

19.

Figure 5: WeBug pinche#20 [50]. In this WeBug, the developer
assumes that all return data from req() have the property list.

e.g., network failures and server crashes. Thus, they need to verify
the validity of the data before use. Otherwise, a TypeError [72] due
to access property of undefined / null object will occur. In total,
16 (19.3%) WeBugs are caused by no verification of data validity.

Take pinche#20 [50] in Figure 5 as an example. When a user
clicks “mine” at the bottom of the index page, the function getList
(Line 1) is triggered, and an error message “TypeError: Can not read
property ‘foreach’ of undefined” appears. Function getList calls
the function req (Line 3) to send a request. If the request fails, it
triggers the fail callback function (Line 17), and returns a boolean
data false. Since function getList does not check whether it is a
valid value (e.g., Line 4), and operations on a boolean data false
can cause a TypeError.

Finding 6: Developers often assume that return data from requests
have expected properties, and forget to verify their validity, causing
WeBugs.

Asynchronous errors. As discussed in Section 2, the Mini-
Program framework provides many asynchronous APIs, and Mini-
Programs have complicated lifecycle management, which is event-
driven. The asynchronous and event-driven mechanism introduces
the risk that the data are processed and accessed in an unexpected
order, thus causing asynchronous errors. Three WeBugs belong to
this case.

Figure 6 shows an asynchronous error caused by lifecycle events
in Mini-Programs [48]. Figure 6a and Figure 6b shows the applica-
tion and page code, respectively. Figure 6c shows the process how
this bug happens. When the Mini-Program starts, the application-
level lifecycle events (app. js) are first triggered, e.g., onLaunch
and onShow. Then the page-level lifecycle events (index. js) are
triggered. The global variable userinfo in app. js is null by de-
fault. The onLaunch() function in app. js asynchronously sends a
request to get user information, which is executed in parallel with
the code in onLoad of index. js.If onLoad of index. js is executed

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

// app.Js // index.js
App({ const app = getApp()
globalData: { page({

userInfo: null data: {
} ~ .
0;1Launch() { userInfo: {},

wx.getUserInfo({
success: res => {
this.globalData.userInfo
= res.userInfo

1
onLoad() {
this.setData({
userInfo: app.globalData

} .userInfo,
1
(a) (b)
Application Page
f_‘_\ .
I 1
{ onLaunch E—):r onShow ':-—)[onLoad]——)[onShow]—)
<
N
\\ wx.getUserInfo this.globalData.userInfo: null
\ WX
k)

-->

1
this.globalData.uscrlnfo
(c) = res.userInfo

Figure 6: WeBug forumQAs [48]. During the initialization
of the Mini-Program, the unexpected data processing orders
result in the user information being set to null.

before the request returns in app. js, userInfo in index. js will
be set as null. This is unexpected.

Finding 7: Asynchronous mechanism and lifecycle management
in Mini-Programs can introduce intricate concurrency errors.

Logic errors. The logic implemented by developers may be
incomplete or incorrect, resulting in some functions or displays
that do not satisfy the requirements. 21 (25.3%) WeBugs fall into
logic errors. For these WeBugs, most of them (19/21) are caused
by incomplete logic. For example, in wxParse#365 [37], the parser
cannot parse strings longer than 255 characters. In wechat-app-
mall#255 [41], the balances less than 0.1 cannot be rounded.

4.2 Fix Strategy

We find that the fixes of WeBugs are highly related to their root
causes. We summarize four common fix patterns for 44.6% of the
studied WeBugs. The rest WeBugs are fixed case by case.

Layout adaptation to anomalous screens. Three WeBugs
related to inconsistent rendering on specific devices can be fixed by
a general approach. Developers can use APT wx.getSystemInfo to
get the safeArea of a user’s device. With the safeArea, they can
set up the layout as normal. However, developers may fix these bugs
case by case. For example, developers set 34px at the screen bottom
if they identify the device type is iPhoneX in WeBug colorUI#50
[40].

Fixing syntax errors. Four WeBugs, caused by spelling mis-
takes, can be directly fixed with a few grammar checkers, e.g., JSLint
[1], and ESLint [4]. The rest 11 WeBugs caused by forgetting to
define variables and functions can be detected by these grammar
checkers. Base on detecting results, developers can easily fix these
bugs.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Adding undefined / null check before use. All 16 WeBugs
caused by no verification of data validity are fixed by adding the
undefined / null check and exception handling before use. The fix
code in Figure 5 is a typical example, in which the developer checks
the validity of data.list before use.

Synchronization. Incorrect timing of asynchronous APIs and
lifecycle events can lead to wrong shared data accessing orders.
To fix asynchronous errors, developers can introduce ad-hoc syn-
chronization for shared data. For example, in Figure 6, developers
need to check whether getUserInfo has returned and userInfo
has been set in onLoad of index. js. Three WeBugs caused by
asynchronous mechanism are fixed under this approach.

Case-by-case fixes. The remaining bugs have diverse character-
istics and require specific fixes. For bugs caused by using deprecated
APIs, they have to be replaced by the new versions. There are some
API changes detection work [91, 93] for other libraries and frame-
works, which can be applied to WeChat Mini-Programs. The API
misuse bugs have to be fixed according to the context and API
specification. The fixes of bugs caused by logic error depends on
the logic itself.

Finding 8: 44.6% WeBugs have common fixing patterns, such as
considering device model before using some platform-dependent
APIs and adding checks before using request data.

4.3 Bug Impact

In our study, we first try to reproduce our studied WeBugs, and
observe their impacts. If we cannot reproduce a WeBug, we infer
its impact from its issue report and related discussion. Finally, we
clearly obtain the impacts of 65 WeBugs. For these 65 WeBugs, their
impacts are described as follows.

Application crash. Mini-Program bugs hardly cause severe
consequences. In our study, we only observe one bug that can crash
its application.

Abnormal display. 30 WeBugs lead to abnormal display, e.g.,
the unexpected style of the view components in Figure 4, some
inconsistent rendering among specific devices [40], and errors in
style settings [19].

Functional error. In 26 WeBugs, the applications do not meet
their requirements. The applications provide the incorrect or flawed
functions. We also find that four WeBugs are sporadic. If the user
re-enters or refreshes the page, these bugs may disappear. These
bugs are usually caused by missing exception handling of network
failures and incorrect asynchronous operations.

Silent error. Eight WeBugs neither affect the display of related
pages nor cause functional errors. They only report related errors
in the console.

Finding 9: WeBugs can cause various consequences, e.g., appli-
cations crashes, abnormal displays, functional errors and salient
errors.

5 LESSONS LEARNED

WeBugs can lead to abnormal display, functional errors and even
application crashes (Finding 9). Thus, resolving WeBugs is of great
significance for the reliability of WeChat Mini-Programs. In this

Tao Wang, et al.

section, we discuss implications to existing practice and opportu-
nities for research in avoiding, detecting and testing WeBugs in
WeChat Mini-Programs.

5.1 Avoiding WeBugs

Syntax errors are common (18.1%) in practice (Finding 5). Develop-
ers can apply some tools to reduce the occurrence of syntax errors.
For example, developers can use syntax checkers in the develop-
ment process, e.g., ESLint [4] and JSLint [1], thus avoiding some
syntax errors.

Although Mini-Programs are designed to run on multiple plat-
forms, many (14.2%) WeBugs are still caused by the discrepancies
among different platforms (Finding 1, 2). During our study, we
also observe that the official document does not clearly state re-
lated APIs’ restrictions. To avoid these WeBugs, these restrictions
should be well documented in the official document. In the same
while, a static checker tool, which can automatically identify related
APIs in Mini-Programs and check whether their restrictions are
satisfied, could be greatly helpful. From another point, the Mini-
Program framework can shield some discrepancies among different
platforms, e.g., inconsistent time format results from Date. Thus,
related WeBugs can be avoided.

5.2 Detecting WeBugs

Existing JavaScript bug detection approaches, e.g., TAJS [78], XSS-
SAFE [101] and SYNODE [102], mainly focus on detecting server-
side and client-side JavaScript bugs. Our empirical study has re-
ported many Mini-Program specific bugs, e.g., compatibility bugs
due to incorrect platform-dependent API usages (Finding 1) and
inconsistent rendering across specific devices (Finding 2), asynchro-
nous errors due to Mini-Program lifecycle and asynchronous mech-
anism (Finding 7) and abnormal rendering results due to improper
style priority settings (Finding 4). Existing approaches cannot work
on these WeBugs properly. Our findings can be used to design new
WeBug detection tools.

Compatibility bug detection. Many (14.2%) WeBugs are caused
by the discrepancies among different platforms (Finding 1, 2). This
is mainly caused by incompatibility APIs provided by the Mini-
Platform framework. By summarizing incompatible APIs in the
Mini-Program framework, we can develop a static analysis tool to
automatically identify these WeBugs.

Return data guided bug detection. Developers often assume
that they can obtain expected data from external requests or asyn-
chronous tasks, and ignore checking the data validity (Finding 6).
However, the return data may be wrong due to various reasons, e.g.,
network failures and asynchronous task failures. Thus, essential
judgments on the return data are required, e.g., whether the return
data can be used without triggering any errors.

Non-deterministic bug detection. The Mini-Program frame-
work provides many asynchronous APIs, and Mini-Programs adopt
event-driven lifecycle management. The asynchronous and event-
driven mechanism introduces WeBugs (Finding 7). Different from
non-deterministic bugs in client-side JavaScript applications and
server-side JavaScript applications, the lifecycle management in

Characterizing and Detecting Bugs in WeChat Mini-Programs

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 4: Four Kinds of Platform-Dependent APIs

Android only iOS only

Inconsistency on Android and iOS | Any OS

wx.makeBluetoothPair,
wx.qy.startNFCReader,
wx.qy.NFCReader,
canvas.toDataURL,
wx.onShareTimeline

VideoContext.showStatusBar,

wx.setBackgroundColor
-a arg.backgroundColorTop
-a arg.backgroundColorBottom

BLEPeripheralServer.onCharateristicSubscribed,

BLEPeripheralServer.onCharasteristicUnsubscribed,

wx.onCompassChange
- r type: Number (i0S)
- 1 type: String (Android),
wx.connectWifi
- v WeChat version >11 (i0S)
- v no limit (Android),
Date
- af split with - (10S)
- af split with / (Android)

console.dir *

* console.dir makes some devices crash [32] and it should not be used in Mini-Programs.
-a The arguments of the function | -r The return data of the function | -v The version of the WeChat | -af The data format of the

argument.d

Mini-Programs makes non-deterministic bug detection more chal-
lenging. To automatically detect non-deterministic bugs in Mini-
Programs, we need to build a clear model about the lifecycle man-
agement and asynchronous APIs in Mini-Programs.

5.3 Testing Mini-Programs

Testing is critical in exposing bugs before software release. Many
testing techniques have been proposed for exposing Android and
JavaScript applications [61, 70, 77, 79, 108?], but no technique is
designed for WeChat Mini-Programs.

WeChat Mini-Programs usually have complicated interfaces and
lifecycle management. It is critical to design a tool to automatically
expose user interactions with Mini-Programs, thus examining their
functionality. Further, Mini-Programs usually depend on various
asynchronous tasks and external environments, and may encounter
many adversarial conditions, e.g., network failures. Improperly han-
dling these conditions can cause WeBugs (Finding 6). Researchers
and developers can intentionally inject adversarial conditions, and
validate whether Mini-Programs can behave correctly [59, 73, 89]
under adversarial conditions.

6 DETECTING WEBUGS

In this section, we summarize three bug patterns from our empir-
ical study on WeBugs, and further propose a static analysis tool
WeDetector to detect WeBugs.

6.1 Bug Patterns

Our empirical study on WeBugs has revealed several potential pat-
terns to detect WeBugs. Among them, we summarize three common
bug patterns, i.e., incorrect invocations platform-dependent APIs,
incomplete layout adaptation to anomalous screens, and improper
handling of return data in invoking asynchronous APIs.

Pattern 1: Incorrect invocations of platform-dependent
APIs. Some APIs in the Mini-Program framework are OS-specific
(Finding 1). Invoking these platform-dependent APIs without con-
sidering different OS can introduce WeBugs. Therefore, develop-
ers should determine target operating system before using these
APIs. We summarize four kinds of platform-dependent APIs in

Table 4, which are collected from our empirical study and offi-
cial Mini-Program development document [8]. The items begin-
ning with - show some additional considerations. For example,
“arg.backgroundColorTop” in column “iOS only” means that the
argument can only be used on iOS devices when invoking function
wx . setBackgroundColor. The column “Inconsistency on Android
and i0S” includes some APIs that behave differently on different
systems. For example, the Date format on Android is split with “/”
while that on iOS is split with “-”.

Pattern 2: Incomplete layout adaptation to anomalous
screens. As discussed in Section 4.2, developers can use the API
wx.getSystemInfo to get the safeArea of the phone model and
avoid layout issues. If a Mini-Program does not apply this to anoma-
lous screens, WeBugs related to abnormal rendering can occur.

Pattern 3: Improper handling of return data in invoking
asynchronous APIs. In the WeChat Mini-Program framework,
most APIs are used in an asynchronous way. The success and fail
callbacks are defined to handle the return data for successful or
failed invocations. However, the type or data structure for the
return data may vary. If developers are unaware of their differences,
WeBugs can occur. Figure 5 shows such an example.

6.2 Detection Approach

Detection of pattern 1. For WeBugs caused by incorrect invoca-
tions of platform-dependent APIs, we need to examine the usage of
specific APIs that are listed in Table 4. In order to identify whether
developers consider the system information, WeDetector checks
the usage of wx.getSystemInfo that can obtain the target operat-
ing system information. If developers use the APIs on the list in
Table 4 but do not consider the corresponding OS restrictions, we
report a compatibility WeBug.

Detection of pattern 2. We examine whether developers have
set up the layout based on safeArea or windowHeight and window-
Width through wx.getSystemInfo APL The windowHeight and
windowWidth can also obtain the available area of the devices.
Therefore, WeDetector checks whether a Mini-Program uses these
properties. If not, we report an abnormal rendering WeBug.

Detection of pattern 3. To detect WeBugs in bug pattern 3, we
check whether the return data from an asynchronous function (e.g,
wx.request) is legally used, i.e., there are no type errors.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

The main idea is as follows. First, we use Esprima [24] to parse all
JavaScript files into abstract syntax trees (AST), and then identify
all asynchronous function (e.g, wx . request) invocations in a Mini-
Program. Second, for each asynchronous function invocation, we
use AST to identify its two callbacks, sucCallback for its success
return, and failCallback for its fail return. Third, for callback
sucCallback and failCallback, we extract their return data from
the asynchronous function, and further analyze their usage based
on TAJS [78]. Fourth, for the return data usages, we check whether
they can trigger TypeErrors. If yes, we report a WeBug.

Take WeBug in Figure 5 as an example. We first parse index. js
and util. js into abstract syntax trees. By traversing ASTs, we
obtain all function definitions (e.g., getList) and function calls
(e.g., util.req). We then examine all function definitions. If we
get an function invocation (e.g., util.req), we continue to ana-
lyze this invoked function. If a function (e.g., util.req) invokes
wx. request, we further obtain its two callbacks, e.g., success call-
back (Line 13-15) and failed callback (Line 16-18). Further, we can
obtain that the return data res. data is passed into success callback
(Line 14) and a constant false is passed into failed callback (Line
17).

In order to determine whether the return data is used legally, we
adopt TAJS [78]! to carry out a data flow analysis on the return
data data (Line 3 in Figure 5). The result of TAJS is an intermediate
representation, e.g., vardecl[‘list’], read-variable [‘data’, v0, v1],
read-property [v0, ‘list’, v2], write-variable [v2, ‘list’] for Line 5.
Based on these intermediate representations, we can build the usage
scenarios of the return data data. We find that data. list. foreach
is the usage sequence on data (Line 5-6). If the failed callback is
triggered, the return data will be false (Line 17), and the execution
of false.list.foreach will throw an error message “TypeError:
Can not read property ‘foreach’ of undefined”. It is because that the
first access returns a undefined object (false.list -> undefined)
and the second access on undefined triggers a TypeError. Note that,
if developers has already used if-condition to guard related accesses,
we do not report a WeBug. For example, in the fixed version in
Figure 5), “if (data.list)” in Line 4 is used to guard Line 5-6. So we
do not report bugs for the fixed version.

6.3 Evaluation

In this section, we evaluate the effectiveness of WeDetector using
GitHub open source projects, and answer the following research
question: Can WeDetector detect new WeBugs in real-world
Mini-Programs?

Experimental subjects. Our experimental subjects contain
25 WeChat Mini-Programs: 13 Mini-Programs are collected from
the latest versions of the Mini-Programs in Table 2, and 12 Mini-
Programs are collected from awesome-wechat-weapp [45] by their
popularity (ordered by GitHub stars) in different categories. The
first 12 rows show these 12 Mini-Programs.

Results. We run WeDetector on these 25 Mini-Programs, and de-
tect 12 WeBugs, and confirm that 11 of them are true. Table 5 shows
the detailed detection results. Note that, for the latest versions of
13 Mini-Programs in our empirical study (Table 2), we only detect

TAJS does not support new features provided by ECMAScript6. Therefore we use
babel [46] to convert Mini-Projects into ECMAScript5.

Tao Wang, et al.

Table 5: Detection Results on 25 Mini-Programs.

Project Category Detection Results | Total

P1 P2 P3 FP | (Conf)
wxchat-mail [35] Email 0 1 0 0 1(1)
HITMers [25] Attendance | 0 1 0 0 1(1)
super9 [42] Video 0 1 0 0 1(1)
leantodo-weapp [16] | Notebook 0 1 0 0 1(1)
taro-music [28] Music 0 1 0 0 1(1)
weapp-ssha [34] News 2 0 0 0 2(2)
weapp-mark [11] Social 0 1 0 1 0 (0)
nideshop [31] Shopping 2 0 0 0 2(0)
Gitter [10] Git 0 1 0 0 1(0)
ShellBox [51] Campus 0 0 0 0 0 (0)
douban [13] Map 0 0 0 0 0 (0)
weapp-artand [55] Art 0 0 0 0 0 (0)
pinche [17] * Travelling 0 0 1 0 1(0)
Total a4 7 1 1| 11(79)

* For 13 Mini-Programs in Table 2, we detect one new bug in pinche

[17].

one new WeBugs in pinche [17]. For Mini-Programs that we have
not detected new WeBugs in Table 2, we do not list them in Table 5.
We further reported all the 11 true WeBugs to their correspond-
ing developers, and attached patches to help developers fix these
WeBugs. For now, 7 of them have been confirmed by developers.
The last column “Total (Conf.)” in Table 5 shows that details about
reported and confirmed bugs.

The column “Detection Results” in Table 5 shows different pat-
terns of bugs found in these 25 Mini-Programs. We can observe
that we can detect new WeBugs for all the three patterns. For bug
pattern 1, two Mini-Programs use platform-dependent APIs with-
out compatibility adaptation, and WeDetector reports four WeBugs.
For bug pattern 2, among 25 Mini-Programs, 6 of them do not adapt
the layout of views across different devices with anomalous screens.
For bug pattern 3, WeDetector detects one WeBug in project pinche
[17]. In this WeBug, when a wx. request fails, the program tries
to invoke function on an undefined variable, which can cause a
TypeError.

False positive. For the detected 12 WeBugs, we report one false
positive, which belongs to bug pattern 2. In this false positive, the
developer processes the adaptation to anomalous screens by using
an uncommon approach, i.e., style setting for all possible devices.
Thus, the Mini-Program does not handle anomalous screens using
the common approach discussed in bug pattern 2. This results in
the false positive.

Based on the above experiment and results, we draw the follow-
ing conclusion: WeDetector can effectively detect WeBugs in real-
world WeChat Mini-Programs.

6.4 Discussion

Comparison with existing bug detection approaches. Existing
linter tools [1, 4, 72] can be used to detect incorrect code based
on specific rules. However, they cannot analyze the bug patterns
in Section 6.1. For the 11 true WeBugs that WeDetector detected,
none of them can be detected by these linter tools. Some API usage
detection approaches [92, 98, 106] can detect API usage, e.g., crypto-
graphic API usage, APIs that perform additional actions. However,

Characterizing and Detecting Bugs in WeChat Mini-Programs

these tools mainly focus on specific domain, e.g., trusted APIs in
JavaScript. Without API specifications for WeBugs, these tools can-
not be used to detect WeBugs. The most similar work is WeJalangi
[83]. WeJalangi aims to detect NullPointException. It cannot be
directly used to detect bug patterns in Section 6.1. In addition to
this, WeJalangi is a dynamic analysis tool, and its effectiveness
heavily depends on the provided test cases. It is challenging to con-
struct test cases that trigger these WeBugs. However, WeDetector
is a static analysis tool, which directly analyzes the code without
running WeChat Mini-Programs.

Automated platform-dependent API extraction. In this pa-
per, we manually investigate our collected WeBugs and extract
platform-dependent APIs for bug detection. This is a labor-intensive
process. It would be interesting to automatically extract these APIs
and their API context from highly popular Mini-Programs. As dis-
cussed earlier, the most common pattern of fixing these WeBugs is
to check device information before invoking certain APIs. There-
fore, it is possible for us to mine the usage rules of these APIs. We
will explore this in the future work.

7 RELATED WORK

In this section, we discuss related works that are close to our work.
WeChat Mini-Program studies. The WeChat Mini-Program
framework is proposed in 2016, and has been widely used in prac-
tice. However, only few research works have been done for WeChat
Mini-Programs. Hao et al. [76] analyze the development of WeChat
Mini-Program and regard it as the next generation of mobile Inter-
net platform. Some works investigate Mini-Programs from usage
[63], acceptance [85]. Liu et al. [83] modify Jalangi [99] and use
it for dynamic analysis on WeChat Mini-Programs. In our work,
we conduct the first empirical study on WeChat Mini-Program
bugs, and obtain a better understanding of these bugs. Based on our
findings, we also propose a static analysis tool, WeDetector, and
detect more bugs in the Mini-Programs. Our study should be able to
promote new research in improving the quality of Mini-Programs.
Empirical bug studies. Empirical studies have played an im-
portant role in understanding a field, especially for the aspect of
software reliability. These studies can often help to characterize
problems and provide guidance for following research. Lu et al.
[84] conduct the first empirical study on real world concurrency
bugs. Their work provides precious information to help improve
software reliability, such as concurrency bug detection [66, 107],
bug fixing [80], crash recovery [71], etc. Ocariza et al. [94] conduct
an empirical study on the client-side JavaScript bugs and find that
bugs are usually DOM-related. This promotes some research on
DOM [97, 104]. Wang et al. [103] conduct an empirical study on
concurrency bugs in Node.js applications. This study reveals that
most concurrency bugs in Node.js applications contend against
shared memory and external resource. These findings enlighten
subsequent works in Node.js bug detection as well. However, no
empirical studies are performed on Mini-Program bugs.
Platform fragmentation studies. Different vendors produce
a variety of Android phones and make the Android ecosystem suf-
fer from fragmentation problems [3]. Han et at. [75] carry out a
topic analysis of vendor-specific bugs to understand the Android
fragmentation. They reveal that hardware-based fragmentation in

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Android is evident. Wei et at. [106] first characterize and detect
compatibility issues induced by Android fragmentation (FIC is-
sues). They observe that device-specific FIC issues are caused by
problematic driver implementation, OS customization, and pecu-
liar hardware composition and the non-device-specific FIC issues
are caused by API evolution and original Android system bugs.
The high-frequency fragmentation bugs on Android devices are
hardware-related, and they do not have much in-depth analysis for
some non-functional requirements (such as inconsistent rendering).

Bug detection in JavaScript applications. The approaches
used in bug detection are decided by the target systems and bugs.
There are various methods for bug detection, e.g., static analysis,
dynamic analysis or combination of both. Guarnieri et al. [74]
conduct one of the first pointer analyses for JavaScript. They first
manage to model some features on JavaScript. TAJS [78] is a type
analyzer for JavaScript applications. Our work utilizes the data flow
analysis provided by TA]JS. There are a group of work to detect
concurrency issues in Node.js applications, e.g, NodeAV [61], NRace
[62], NodeRacer [69], Node.fz [65], and Madsen et al. [87]. There
are also some client-side JavaScript analysis work, e.g., RClassify
[109], AutoFLox [96], and Sym]S [82]. However, these works cannot
detect some kinds of WeBugs in Mini-Programs, e.g., compatibility
issues.

8 CONCLUSION

Millions of WeChat Mini-Programs are running on the WeChat
social platform, and more than 400 million WeChat users are us-
ing Mini-Programs every day. However, WeChat Mini-Programs
still suffer from various quality issues related to execution envi-
ronment, lifecycle management, asynchronous mechanism, etc. A
comprehensive understanding of these issues is required to improve
WeChat Mini-Programs.

In this paper, we propose the first empirical study on the bugs in
Mini-Programs. We collect 83 bugs from real-world Mini-Programs,
and perform an in-depth empirical study on Mini-Program bugs
from root causes, fix strategies and impacts. We further propose
WeDetector to detect WeBugs of three bug patterns. The evaluation
on real-world Mini-Programs indicates that WeDetector is effective.
We hope our study can inspire more researchers and practitioners
to combat Mini-Program bugs.

ACKNOWLEDGEMENTS

This work was partially supported by National Natural Science
Foundation of China (61732019, U20A6003, 62072444, 61802378),
Frontier Science Project of Chinese Academy of Sciences (QYZDJ-
SSW-JSC036), and Youth Innovation Promotion Association at Chi-
nese Academy of Sciences (2018142).

REFERENCES

[1] 2002. JSLint: The JavaScript Code Quality Tool. Retrieved Apr 5, 2021 from
http://www.jslint.com/

[2] 2008. Android Document: Understand the Activity Lifecycle. Retrieved Apr 43,
2021 from https://developer.android.com/guide/components/activities/activity-
lifecycle

[3] 2012. An Analysis Of Android Fragmentation. Retrieved Aug
10, 2021 from http://www.tech-thoughts.net/2012/03/analysis- of-android-
fragmentation.html#YRoA64gzZPY

[4] 2013. ESLint: Find and fix problems in your JavaScript code. Retrieved Apr 5,
2021 from https://eslint.org/

http://www.jslint.com/
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
http://www.tech-thoughts.net/2012/03/analysis-of-android-fragmentation.html#.YRoA64gzZPY
http://www.tech-thoughts.net/2012/03/analysis-of-android-fragmentation.html#.YRoA64gzZPY
https://eslint.org/

ICSE

=
S

oy
&

™
20,

W W w
Rt

& '
2 B

@
&,

=
22

’22, May 21-29, 2022, Pittsburgh, PA, USA

2014. Getting Started: WebView-based Applications for Web Developers. Retrieved
Apr 21, 2021 from https://developer.chrome.com/docs/multidevice/webview/
gettingstarted/

2015. ECMAScript 2015 Language Specification. Retrieved Apr 5, 2021 from
https://262.ecma-international.org/6.0/

2015. Kernel Design. Retrieved Apr 21, 2021 from https://www.chromium.org/
chromium-os/chromiumos-design-docs/chromium-os-kernel

2015. Mini-Program development document. Retrieved Apr 10, 2021 from
https://developers.weixin.qq.com/miniprogram/en/dev/api/

2015. NWjjs. Retrieved Apr 21, 2021 from https://nwjs.io/

2016. Gitter. Retrieved Apr 23, 2021 from https://github.com/kokohuang/Gitter
2016. weapp-mark. Retrieved Apr 23, 2021 from https://github.com/Honye/
weapp-mark

2016. wechat-app-demo. Retrieved Apr 23, 2021 from https://github.com/xwartz/
wechat-app-demo

2016. wechat-webapp-douban-location. Retrieved Apr 23, 2021 from https:
//github.com/bruintong/wechat-webapp-douban-location

2016. wxParse. Retrieved Apr 23, 2021 from https://github.com/icindy/wxParse
2017. The framework of WeChat Mini-Programs. Retrieved Apr 18, 2021
from https://developers.weixin.qq.com/miniprogram/en/dev/framework/MINA.
html

2017. leantodo-weapp.
leancloud/leantodo-weapp
2017. pinche-xcx. Retrieved Apr 23, 2021 from https://github.com/vincenth520/
pinche_xcx

2017. Shape of i-button our of wrok. Retrieved Apr 23, 2021 from https://github.
com/TalkingData/iview-weapp/issues/398

2017. Syntax Errors lead to abnormal display. Retrieved Apr 23, 2021 from
https://github.com/EastWorld/wechat-app-mall/issues/126

2017. Wechat-app-mall. Retrieved Apr 23, 2021 from https://github.com/
EastWorld/wechat-app-mall

2017. winxin-watch-life. Retrieved Apr 23, 2021 from https://github.com/iamx;jb/
winxin-app-watch-life.net

2017. wx-calendar. Retrieved Apr 23, 2021 from https://github.com/treadpit/
wx_calendar

2018. ColorUL Retrieved Apr 23, 2021 from https://github.com/weilanwl/ColorUl
2018. Esprima. Retrieved Apr 23, 2021 from https://www.npmjs.com/package/
esprima

2018. HITMers. Retrieved Apr 23, 2021 from https://github.com/upupming/
HITMers

2018. iview-weapp. Retrieved Apr 23, 2021 from https://github.com/TalkingData/
iview-weappl

2018. scuplus-wechat. Retrieved Apr 23, 2021 from https://github.com/
mohuishou/scuplus-wechat

2018. taro-music. Retrieved Apr 23, 2021 from https://github.com/lsqy/taro-
music

2018. Weapp trending. Retrieved Apr 23, 2021 from https://github.com/jae-
jae/weapp-github-trending

2018. WeHalo. Retrieved Apr 23, 2021 from https://github.com/aquanlerou/
WeHalo

2019. nideshop-mini-program. Retrieved Apr 23, 2021 from https://github.com/
tumobi/nideshop-mini-program

2019. Problems in using console.dir. Retrieved Apr 20, 2021 from https://github.
com/icindy/wxParse/issues/250

2019. threejs-example. Retrieved Apr 23, 2021 from https://github.com/yannliao/
threejs- example-for-miniprogram

2019. weapp-ssha. Retrieved Apr 23, 2021 from https://github.com/yaoshanliang/
weapp-ssha

2019. wxchat-mail. Retrieved Apr 23, 2021 from https://github.com/wk989898/
wxchat-mail

2020. A bug caused by API misunderstanding. Retrieved Apr 12, 2021 from
https://github.com/DoFind/CardOnePerson/issues/2

2020. Can not handle too long attribute. Retrieved Apr 5, 2021 from https:
//github.com/icindy/wxParse/issues/356

2020. CardOnePerson. Retrieved Apr 12, 2021 from https://github.com/DoFind/
CardOnePerson

2020. Inappropriate parameters. Retrieved Jan 5, 2021 from https://github.com/
EastWorld/wechat-app-mall/issues/203

2020. iPhoneXvirtual. Retrieved Feb 20, 2021 from https://github.com/weilanwl/
ColorUl/issues/50

2020. Money is not rounded. Retrieved Apr 5, 2021 from https://github.com/
EastWorld/wechat-app-mall/issues/255

2020. super9. Retrieved Apr 23, 2021 from https://github.com/terryso/super9
2020. WeChat revenue and usage statistics in 2020. Retrieved Apr 12, 2021 from
https://www.businessofapps.com/data/wechat-statistics/

2021. API wx.previewMedia fails. Retrieved Apr 5, 2021 from https://developers.
weixin.qq.com/community/develop/doc/000aec872908d80896cb6£0335b400

Retrieved Apr 23, 2021 from https://github.com/

[45]

[46
[47]

[48]
[49]
[50]

[51

[52]
[53]

[54
[55]

[56]
[57]
[58]

[59

[60]

(61

[62

[63

[64

[65]

[66

[67]

[68

[69

[70

[71]

[72

[73

Tao Wang, et al.

2021. awesome-wechat-weapp. Retrieved Feb 19, 2021 from https://github.com/
justjavac/awesome-wechat-weapp

2021. Babel documents. Retrieved Apr 10, 2021 from https://babeljs.io/docs/en/
2021. Component textarea fails. Retrieved Apr 5, 2021 from https://developers.
weixin.qq.com/community/develop/doc/00060e8c5340e0742acbeede951000
2021. Error in render layers. Retrieved Apr 5, 2021 from https://developers.
weixin.qq.com/community/develop/doc/00046460eb4bf81380cbfb9ab56800
2021. JavaScriptCore Tutorial for iOS. Retrieved Apr 21, 2021 from https://www.
raywenderlich.com/1227-javascriptcore- tutorial-for-ios- getting- started

2021. No verification of data validity. Retrieved Apr 21, 2021 from https:
//github.com/vincenth520/pinche_xcx/issues/20

2021. ShellBox. Retrieved Apr 23, 2021 from https://github.com/Airmole/
ShellBox

2021. System-specific API usage. Retrieved Feb 21, 2021 from https://github.
com/EastWorld/wechat-app-mall/issues/237

2021. Tencent X5 Webview APL Retrieved Apr 21, 2021 from https://x5.tencent.
com/docs/tbsapi/reference/com/tencent/smtt/sdk/WebView.html

2021. V8. Retrieved Apr 21, 2021 from https://v8.dev/

2021. weapp-artand. Retrieved Apr 23, 2021 from https://github.com/
SuperKieran/weapp-artand

2021. WeChat developer forum. Retrieved Apr 17, 2021 from https://developers.
weixin.qq.com/community/develop/question

2021. WeChat Mini-Program daily active users. Retrieved Apr 10, 2021 from
https://www.chinaz.com/news/1218295.shtml

2021. WKWebView. Retrieved Apr 21, 2021 from https://developer.apple.com/
documentation/webkit/wkwebview

Cyrille Artho, Armin Biere, and Shinichi Honiden. 2006. Enforcer — Efficient
Failure Injection. In Proceedings of International Conference on Formal Methods
(FM). 412-427.

Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.
Not All Bugs are the Same: Understanding, Characterizing, and Classifying Bug
Types. Journal of Systems and Software 152 (2019), 165-181.

Xiaoning Chang, Wensheng Dou, Yu Gao, Jie Wang, Jun Wei, and Tao Huang.
2019. Detecting Atomicity Violations for Event-Driven Node.js Applications. In
Proceedings of International Conference on Software Engineering (ICSE). 631-642.
Xiaoning Chang, Wensheng Dou, Jun Wei, Tao Huang, Jinhui Xie, Yuetang
Deng, Jianbo Yang, and Jiaheng Yang. 2021. Race Detection for Event-Driven
Node.js Applications. In Proceedings of International Conference on Automated
Software Engineering (ASE). 480-491.

Ao Cheng, Gang Ren, Taeho Hong, Kichan Nam, and Chulmo Koo. 2019. An
Exploratory Analysis of Travel-Related WeChat Mini Program Usage: Affor-
dance Theory Perspective. In Proceedings of Information and Communication
Technologies. 333-343.

Wohlin Claes, Per Runeson, Martin Host, Ohlsson Bjérn Regnell, and Anders
Wesslén. 2012. Experimentation in Software Engineering. Springer Science &
Business Media.

James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.fz: Fuzzing
the Server-Side Event-Driven Architecture. In Proceedings of European Confer-
ence on Computer Systems (EuroSys). 145-160.

Dongdong Deng, Wei Zhang, and Shan Lu. 2013. Efficient Concurrency Bug
Detection across Inputs. Acm Sigplan Notices 48, 10 (2013), 785-802.

Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep Me Updated: An Empirical Study of Third-Party Library Updatability on
Android. In Proceedings of ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). 2187-2200.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In Proceedings of USENIX Conference
on Security (Security). 1-21.

André Takeshi Endo and Anders Moller. 2020. NodeRacer: Event Race Detection
for Node.js Applications. In Proceedings of International Conference on Software
Testing, Validation and Verification (ICST). IEEE, 120-130.

Aurore Fass, Robert P Krawczyk, Michael Backes, and Ben Stock. 2018. Jast:
Fully Syntactic Detection of Malicious (Obfuscated) JavaScript. In Proceedings of
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. 303-325.

Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and Yongming Wu. 2018. An Empirical Study on Crash Re-
covery Bugs in Large-Scale Distributed Systems. In Proceedings of ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 539-550.

Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In Proceedings of
International Symposium on Software Testing and Analysis (ISSTA). 94-105.
Francisco Gortazar, Micael Gallego, Boni Garcia, Giuseppe Antonio Carella,
Michael Pauls, and Ilie-Daniel Gheorghe-Pop. 2017. Elastest — An Open Source
Project for Testing Distributed Applications with Failure Injection. In Proceedings
of IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). 1-2.

https://developer.chrome.com/docs/multidevice/webview/gettingstarted/
https://developer.chrome.com/docs/multidevice/webview/gettingstarted/
https://262.ecma-international.org/6.0/
https://www.chromium.org/chromium-os/chromiumos-design-docs/chromium-os-kernel
https://www.chromium.org/chromium-os/chromiumos-design-docs/chromium-os-kernel
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://nwjs.io/
https://github.com/kokohuang/Gitter
https://github.com/Honye/weapp-mark
https://github.com/Honye/weapp-mark
https://github.com/xwartz/wechat-app-demo
https://github.com/xwartz/wechat-app-demo
https://github.com/bruintong/wechat-webapp-douban-location
https://github.com/bruintong/wechat-webapp-douban-location
https://github.com/icindy/wxParse
https://developers.weixin.qq.com/miniprogram/en/dev/framework/MINA.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/MINA.html
https://github.com/leancloud/leantodo-weapp
https://github.com/leancloud/leantodo-weapp
https://github.com/vincenth520/pinche_xcx
https://github.com/vincenth520/pinche_xcx
https://github.com/TalkingData/iview-weapp/issues/398
https://github.com/TalkingData/iview-weapp/issues/398
https://github.com/EastWorld/wechat-app-mall/issues/126
https://github.com/EastWorld/wechat-app-mall
https://github.com/EastWorld/wechat-app-mall
https://github.com/iamxjb/winxin-app-watch-life.net
https://github.com/iamxjb/winxin-app-watch-life.net
https://github.com/treadpit/wx_calendar
https://github.com/treadpit/wx_calendar
https://github.com/weilanwl/ColorUI
https://www.npmjs.com/package/esprima
https://www.npmjs.com/package/esprima
https://github.com/upupming/HITMers
https://github.com/upupming/HITMers
https://github.com/TalkingData/iview-weappI
https://github.com/TalkingData/iview-weappI
https://github.com/mohuishou/scuplus-wechat
https://github.com/mohuishou/scuplus-wechat
https://github.com/lsqy/taro-music
https://github.com/lsqy/taro-music
https://github.com/jae-jae/weapp-github-trending
https://github.com/jae-jae/weapp-github-trending
https://github.com/aquanlerou/WeHalo
https://github.com/aquanlerou/WeHalo
https://github.com/tumobi/nideshop-mini-program
https://github.com/tumobi/nideshop-mini-program
https://github.com/icindy/wxParse/issues/250
https://github.com/icindy/wxParse/issues/250
https://github.com/yannliao/threejs-example-for-miniprogram
https://github.com/yannliao/threejs-example-for-miniprogram
https://github.com/yaoshanliang/weapp-ssha
https://github.com/yaoshanliang/weapp-ssha
https://github.com/wk989898/wxchat-mail
https://github.com/wk989898/wxchat-mail
https://github.com/DoFind/CardOnePerson/issues/2
https://github.com/icindy/wxParse/issues/356
https://github.com/icindy/wxParse/issues/356
https://github.com/DoFind/CardOnePerson
https://github.com/DoFind/CardOnePerson
https://github.com/EastWorld/wechat-app-mall/issues/203
https://github.com/EastWorld/wechat-app-mall/issues/203
https://github.com/weilanwl/ColorUI/issues/50
https://github.com/weilanwl/ColorUI/issues/50
https://github.com/EastWorld/wechat-app-mall/issues/255
https://github.com/EastWorld/wechat-app-mall/issues/255
https://github.com/terryso/super9
https://www.businessofapps.com/data/wechat-statistics/
https://developers.weixin.qq.com/community/develop/doc/000aec872908d80896cb6f0335b400
https://developers.weixin.qq.com/community/develop/doc/000aec872908d80896cb6f0335b400
https://github.com/justjavac/awesome-wechat-weapp
https://github.com/justjavac/awesome-wechat-weapp
https://babeljs.io/docs/en/
https://developers.weixin.qq.com/community/develop/doc/00060e8c5340e0742acbeede951000
https://developers.weixin.qq.com/community/develop/doc/00060e8c5340e0742acbeede951000
https://developers.weixin.qq.com/community/develop/doc/00046460eb4bf81380cbfb9ab56800
https://developers.weixin.qq.com/community/develop/doc/00046460eb4bf81380cbfb9ab56800
https://www.raywenderlich.com/1227-javascriptcore-tutorial-for-ios-getting-started
https://www.raywenderlich.com/1227-javascriptcore-tutorial-for-ios-getting-started
https://github.com/vincenth520/pinche_xcx/issues/20
https://github.com/vincenth520/pinche_xcx/issues/20
https://github.com/Airmole/ShellBox
https://github.com/Airmole/ShellBox
https://github.com/EastWorld/wechat-app-mall/issues/237
https://github.com/EastWorld/wechat-app-mall/issues/237
https://x5.tencent.com/docs/tbsapi/reference/com/tencent/smtt/sdk/WebView.html
https://x5.tencent.com/docs/tbsapi/reference/com/tencent/smtt/sdk/WebView.html
https://v8.dev/
https://github.com/SuperKieran/weapp-artand
https://github.com/SuperKieran/weapp-artand
https://developers.weixin.qq.com/community/develop/question
https://developers.weixin.qq.com/community/develop/question
https://www.chinaz.com/news/1218295.shtml
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/documentation/webkit/wkwebview

Characterizing and Detecting Bugs in WeChat Mini-Programs

(74]

[75]

(78

[79

(80

[81

o0
&,

(83

(84

(85

%
2

(87

(88

(89]

)
=

[91

[92

Salvatore Guarnieri and Benjamin Livshits. 2009. Gatekeeper: Mostly Static En-
forcement of Security and Reliability Policies for JavaScript Code. In Proceedings
of Conference on USENIX Security Symposium (Security). 151-168.

Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and
Eleni Stroulia. 2012. Understanding Android Fragmentation with Topic Anal-
ysis of Vendor-Specific Bugs. In Proceedings of Working Conference on Reverse
Engineering (WCRE). 83-92.

Lei Hao, Fucheng Wan, Ning Ma, and Yicheng Wang. 2018. Analysis of the
Development of WeChat Mini Program. 1087, 6 (2018), 062040.

Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Under-
standing and Detecting Callback Compatibility Issues for Android Applications.
In Proceedings of IEEE/ACM International Conference on Automated Software
Engineering (ASE). 532-542.

Simon Holm Jensen, Anders Meller, and Peter Thiemann. 2009. Type Analysis
for JavaScript. In Proceedings of International Symposium on Static Analysis (SAS).
238-255.

Hao Jiang, Hongli Yang, Shengchao Qin, Zhendong Su, Jian Zhang, and Jun
Yan. 2017. Detecting Energy Bugs in Android Apps using Static Analysis. In
Proceedings of International Conference on Formal Engineering Methods. 192-208.
Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. 2012. Auto-
mated Concurrency-Bug Fixing. In Proceedings of USENIX Conference on Operat-
ing Systems Design and Implementation (OSDI). 221-236.

Hammad Khalid, Meiyappan Nagappan, Emad Shihab, and Ahmed E. Hassan.
2014. Prioritizing the Devices to Test Your App on: A Case Study of Android
Game Apps. In Proceedings of ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE). 610-620.

Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. SymJS: Automatic
Symbolic Testing of JavaScript Web Applications. In Proceedings of ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). 449-459.
Yi Liu, Jinhui Xie, Jianbo Yang, Shiyu Guo, Yuetang Deng, Shuqing Li, Yechang
Whu, and Yepang Liu. 2020. Industry Practice of JavaScript Dynamic Analysis on
WeChat Mini-Programs. In Proceedings of International Conference on Automated
Software Engineering (ASE). 1189-1193.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Charac-
teristics. In Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 329-339.

Lijun Ma, Lan Wang, and Entao Jiang. 2018. Empirical Study on the WeChat
Mini Program Acceptance based on UTA UT Model Take the Pearl River Delta
as An Example. In Proceedings of International Conference on Service Systems
and Service Management (ICSSSM). 1-6.

Xiaojuan Ma. 2019. App Store Killer? The Storm of WeChat Mini Programs
Swept over the Mobile App Ecosystem. Masters of Media 15 (2019).

Magnus Madsen, Frank Tip, and Ondfej Lhotak. 2015. Static Analysis of Event-
Driven Node.Js JavaScript Applications. In Proceedings of ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 505-519.

Mehran Mahmoudi and Sarah Nadi. 2018. The Android Update Problem: An
Empirical Study. In Proceedings of International Conference on Mining Software
Repositories (MSR). 220-230.

Paul D. Marinescu and George Candea. 2011. Efficient Testing of Recovery
Code Using Fault Injection. ACM Transactions on Computer System (TOCS) 29, 4
(2011), 1-38.

Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study
of API Stability and Adoption in the Android Ecosystem. In Proceedings of IEEE
International Conference on Software Maintenance (ICSM). 70-79.

Gianluca Mezzetti, Anders Mpller, and Martin Toldam Torp. 2018. Type Regres-
sion Testing to Detect Breaking Changes in Node.js Libraries. In Proceedings of
European Conference on Object-Oriented Programming (ECOOP). 1-24.

Duncan Mitchell and Johannes Kinder. 2019. A Formal Model for Checking
Cryptographic API Usage in JavaScript. In Proceedings of European Symposium
on Research in Computer Security. 341-360.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

[93] Anders Moller and Martin Toldam Torp. 2019. Model-Based Testing of Breaking

[94

[95

[96

[97

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107

[108

[109

[110

]

Changes in Node.js Libraries. In Proceedings of ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 409-419.

Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013. An
Empirical Study of Client-Side JavaScript Bugs. In Proceedings of ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). 55-64.

Frolin S Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2016.
A Study of Causes and Consequences of Client-Side JavaScript Bugs. IEEE
Transactions on Software Engineering (TSE) 43, 2 (2016), 128-144.

Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. 2012. AutoFLox:
An Automatic Fault Localizer for Client-Side JavaScript. In Proceedings of the
International Conference on Software Testing, Verification and Validation (ICST).
31-40.

Jinkun Pan and Xiaoguang Mao. 2017. Detecting DOM-Sourced Cross-Site
Scripting in Browser Extensions. In Proceedings of IEEE International Conference
on Software Maintenance and Evolution (ICSME). 24-34.

Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. 2020. Hiding in
Plain Site: Detecting JavaScript Obfuscation through Concealed Browser API
Usage. In Proceedings of ACM Internet Measurement Conference (IMC). 648—661.
Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 488-498.

Yuru Shao, Ruowen Wang, Xun Chen, Ahemd M. Azab, and Z. Morley Mao. 2019.
A Lightweight Framework for Fine-Grained Lifecycle Control of Android Appli-
cations. In Proceedings of European Conference on Computer Systems (EuroSys).
14-31.

Gupta Shashank and Brij Bhooshan Gupta. 2016. XSS-SAFE: A Server-Side
Approach to Detect and Mitigate Cross-Site Scripting (XSS) Attacks in JavaScript
Code. Arabian Journal for Science and Engineering (ARAB) 41, 3 (2016), 897-920.
Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. Synode:
Understanding and Automatically Preventing Injection Attacks on Node.js. In
Proceedings of Network and Distributed System Security Symposium (NDSS).

Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin, and Jun
Wei. 2017. A Comprehensive Study on Real World Concurrency Bugs in Node.js.
In Proceedings of International Conference on Automated Software Engineering
(ASE). 520-531.

Ran Wang, Guangquan Xu, Xianjiao Zeng, Xiaohong Li, and Zhiyong Feng.
2018. TT-XSS: A Novel Taint Tracking based Dynamic Detection Framework for
DOM Cross-Site Scripting. 7. Parallel and Distrib. Comput. 118 (2018), 100-106.
Xijie Wang, Minyong Shi, and Chunfang Li. 2019. Implementation of Elemen-
tary Chinese Language Learning Application in WeChat Mini Programs. In
Proceedings of IEEE International Conference on Big Data Analytics. 394-398.
Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmen-
tation: Characterizing and Detecting Compatibility Issues for Android Apps.
In Proceedings of International Conference on Automated Software Engineering
(ASE). 226-231.

Zhendong Wu, Kai Lu, Xiaoping Wang, and Xu Zhou. 2015. Collaborative
Technique for Concurrency Bug Detection. International Journal of Parallel
Programming 43, 2 (2015), 260-285.

Zhemin Yang and Min Yang. 2012. LeakMiner: Detect Information Leakage on
Android with Static Taint Analysis. In Proceedings of World Congress on Software
Engineering (WCSE). 101-104.

Lu Zhang and Chao Wang. 2017. RClassify: Classifying Race Conditions in Web
Applications via Deterministic Replay. In Proceedings of International Conference
on Software Engineering (ICSE). 278-288.

Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An Empirical Study on Program Failures of Deep Learning Jobs. In Pro-
ceedings of International Conference on Software Engineering (ICSE). 1159-1170.

	Abstract
	1 Introduction
	2 WeChat Mini-Programs
	3 Study Methodology
	3.1 Collecting WeBugs
	3.2 Analyzing WeBugs
	3.3 Threats to Validity

	4 WeBug Study Results
	4.1 Root Cause
	4.2 Fix Strategy
	4.3 Bug Impact

	5 Lessons Learned
	5.1 Avoiding WeBugs
	5.2 Detecting WeBugs
	5.3 Testing Mini-Programs

	6 Detecting WeBugs
	6.1 Bug Patterns
	6.2 Detection Approach
	6.3 Evaluation
	6.4 Discussion

	7 Related Work
	8 Conclusion
	References

