Model Checking Guided Testing for Distributed
Systems

Dong Wang~ Wensheng Dou" Yu Gao Chenao Wu Jun Wei' Tao Huang
State Key Lab of Computer Science, Institute of Software Chinese Academy of Sciences
University of Chinese Academy of Sciences
{wangdong18,wsdou,gaoyu15,wuchenao20,wj,tao}@otcaix.iscas.ac.cn

Abstract

Distributed systems have become the backbone of cloud
computing. Incorrect system designs and implementations
can greatly impair the reliability of distributed systems. Al-
though a distributed system design modelled in the formal
specification can be verified by formal model checking, it
is still challenging to figure out whether its corresponding
implementation conforms to the verified specification. An
incorrect system implementation can violate its verified spec-
ification, and causes intricate bugs.

In this paper, we propose a novel distributed system test-
ing technique, Model checking guided testing (Mocket), to fill
the gap between the specification and its implementation in
a distributed system. Specially, we use the state space gener-
ated by formal model checking to guide the testing for the
system implementation, and unearth bugs in the target dis-
tributed system. To evaluate the feasibility and effectiveness
of Mocket, we apply Mocket on three popular distributed
systems, and find 3 previously unknown bugs in them.

CCS Concepts: » Software and its engineering — Soft-
ware testing and debugging; Model checking.

Keywords: Distributed system, model checking, testing

ACM Reference Format:

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao
Huang. 2023. Model Checking Guided Testing for Distributed Sys-
tems. In Eighteenth European Conference on Computer Systems (Eu-
roSys °23), May 8-12, 2023, Rome, Italy. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3552326.3587442

“Equal contribution. Wensheng Dou is also affiliated with Chonggqing School,
University of Chinese Academy of Sciences.
TWensheng Dou and Jun Wei are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys °23, May 812, 2023, Rome, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9487-1/23/05...$15.00
https://doi.org/10.1145/3552326.3587442

1 Introduction

Nowadays distributed systems have become pervasive, and
play an important role in modern society. Different kinds
of distributed systems, e.g., distributed databases [15, 20],
distributed coordination systems [4, 60], and distributed com-
puting frameworks [3, 11], are widely used in various areas,
e.g., finance, online shopping and transportation.

Distributed systems can provide higher reliability and
availability than traditional standalone software. Distributed
systems usually adopt complex designs, and face diverse non-
determinism caused by network messages, user requests and
external faults. Thus, intricate bugs can exist in distributed
system designs and implementations, and challenge their
reliability and availability. These bugs can cause severe im-
pacts, e.g., service outage, and result in millions of dollars
of damage [17]. However, it is hard to explore all possible
testing scenarios to find these bugs.

Recently, researchers have made significant progress in ap-
plying formal methods to unearth bugs in distributed system
designs [16, 59, 71]. Through building the formal specifica-
tion for a distributed system design, developers can clarify
the expected behaviors of the target system. Further, by au-
tomatically exploring the state space of the specification,
formal methods can verify the correctness of the system
design and help developers gain confidence. For example,
Zave [71] utilizes Alloy [1] to model and verify Chord [65].
Developers in Amazon [59] and Microsoft [16] use TLA+
[45] to model and verify their distributed system designs.

On the other hand, researchers have proposed many ap-
proaches to detect bugs in distributed system implementa-
tions. We classify them into three categories.

e Formal verification frameworks [41, 42, 67] can verify
the properties of distributed system implementations in a
refinement-style way. However, the verification process is
complex and time-consuming. Verifying a system imple-
mentation usually requires multiple person-years’ effort
[58]. Therefore, it is challenging to apply them on real-
world distributed systems.

e Model-based testing [31, 44, 51] utilizes abstract models
to generate test cases to test specific properties or behav-
iors in distributed system implementations. For example,
Modulo [44] models the data consistency property in dis-
tributed storage systems and generates test cases to find
convergence failure bugs.

https://doi.org/10.1145/3552326.3587442
https://doi.org/10.1145/3552326.3587442

EuroSys ’23, May 8-12, 2023, Rome, Italy

e Implementation-level model checkers [47, 57, 64, 68, 69]
are specifically designed for finding bugs in distributed
system implementations. They intercept and reorder non-
deterministic distributed events (e.g., messages and faults)
at run time. They cannot know the target system’s ex-
pected execution results (i.e., test oracles), and rely on
developers to manually write general assertions for spe-
cific system properties or behaviors to reveal bugs.

We can see that there exists a gap between the formal
specification and its corresponding implementation in these
approaches. First, although the formal specification of a dis-
tributed system can be verified as correct, we still do not
know whether the corresponding implementation conforms
to the verified specification, and is free of bugs [33]. Second,
the formal specification has specified the correct behaviors of
a distributed system, but it cannot be used to judge whether
the implementation meets these correct behaviors.

In this paper, we propose a novel testing technique, Model
checking guided testing (Mocket), to fill the gap between the
formal specification and the implementation in a distributed
system. Given the TLA+ [45] specification for a target dis-
tributed system, we analyze the verified states generated
through verifying the specification, and generate test cases
for the system implementation. After mapping the TLA+
specification to the corresponding code in the system im-
plementation, we further deterministically force the system
execution to follow the test cases generated from verifying
the specification. During system testing, we monitor the sys-
tem’s runtime states and compare them with the correspond-
ing verified states in the TLA+ specification. Any divergence
implies an inconsistency between the specification and the
implementation, and raises a potential bug.

We apply Mocket on three open-source distributed sys-
tems, i.e., Xraft [18], Raft-java [13] and ZooKeeper [4]. Fi-
nally, we find 7 bugs, among which 3 bugs are confirmed as
previously unknown bugs, and 4 are known bugs. Besides,
we find that 2 inconsistencies between the specification and
the implementation are caused by specification bugs in the
official Raft specification [9]. We have made Mocket publicly
available at https://github.com/tcse-iscas/Mocket.

In summary, we make the following main contributions.

e We propose a novel approach, Mocket, which utilizes for-
mal model checking to systematically test distributed sys-
tem implementations, and checks whether a distributed
system implementation violates its specification.

e We implement Mocket, and apply it on three popular dis-
tributed systems. Mocket successfully unearths 3 previ-
ously unknown bugs in them.

2 Preliminaries

In recent years, distributed system developers are increas-
ingly using formal languages to model their systems, and
further verify their system designs’ correctness by model

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

.CONSTANTS Max, NotMax, Data, Nil
.VARIABLES msg, cache, stage

a

1

2

3. vars £ <msg, cache, stage>
4. Init & Amsg = Nil

5. Astage = "request"”
6 Acache = {}

7
8

. getMax(S5) = CHOOSE teS: VseES: t=>s

9. Request(data) = Astage = "request"
10. Astage’ = "respond”
11. Amsg' = data
12. ANUNCHANGED « cache >
13. Respond £ Astage = "respond"
14. Astage' = "request”
15. A cache’ = cache U {msg}
16. Amsg' = IFmsg = getMax(cache')
17. THEN Max ELSE NotMax
18. Next £ v 3d € Data : Request(d)
19. V Respond
20. Spec 2 Init AO[Next],

22. Invariant £ Cardinality(cache) < Cardinality(Data)

Figure 1. A TLA+ specification example.

checkers [16, 59, 71]. Among all kinds of formal languages,
TLA+ [45] is popular for modelling distributed systems, and
TLC [5] is the most commonly used TLA+ model checker.

We introduce TLA+ and TLC by a simple example [46]
in Figure 1. The example defines a process, in which, the
server uses a set cache to store data msg from the client, and
responds the client with two values: Max if msg is the largest
in cache so far, or NotMax if it is not.

2.1 TLA+ Specification

Developers use three kinds of elements, i.e., variables, actions
and constants, to define a system’s TLA+ specification, and
utilize properties to express constraints that the system must
satisfy.

Variables. Variables express the system’s states. Variables
are decorated by keyword VARIABLES. For example, there
are three variables msg, cache and stage in Figure 1 (Line
2). Among them, msg stores the request data from the client
and the responding content from the server. cache is a set
on the server that stores all request data. stage marks which
action, i.e., Request or Repond, can act on the current state.

Actions. Actions express the system’s behaviors. They
are functions written in the first-order logic, and are used to
define the modification logic on states, i.e., variables. Note
that not all functions are actions. Only functions invoked
after keyword Next and connected by disjunction operators
are actions. They can interleave with each other to generate
all possible states of the system. For example, Figure 1 shows
two actions Request (Line 18) and Respond (Line 19), but
function getMax is not an action.

Constants. Constants are used to define specific data val-
ues. They are decorated by keyword CONSTANTS, and their
values are assigned before the model checking process and
cannot be changed. Figure 1 defines 4 constants (Line 1). Nil

https://github.com/tcse-iscas/Mocket

Model Checking Guided Testing for Distributed Systems

/\stage="reqeust”
0 /\msg=NotMax
/\cache={}

/\stage="respond”
1 /\msg=1
/\cache={}

Respond

/\stage="respond”
/\msg=2
/\cache={}

Respond

/\stage="request”
3 /\msg=Max
/\cache={1

{1}
Respond

/\stage="respond”
Amsg=1
/\cache={1}

/\stage = “request”
4 /\msg=Max
/\cache={2}

/\stage="respond”
8 /\msg=2
/\cache={2}

Request

/\stage="respond”
6 /\msg=2
/\cache={1}

Respond

/\stage="respond”
7 N\msg=1
/\cache={2}

Respond

/\stage= “request”
10 /\msg=NotMax
/\cache={1,2}

uest

/\stage="respond”
12 N\msg=1
/\cache={1,2}

/\stage= “request”
9 /\msg=Max
/\cache={1,2}

Req
Respond

/\stage="respond”
11 /\msg=2
/\cache={1,2}

Respond

Figure 2. The state space graph generated when verifying
the specification in Figure 1 by TLC. Each state is marked
by a unique number. State 0 is the initial state.

is the default value of msg. Max and NotMax are two alter-
native values of msg. Data restricts what values in Request
can be written into the server.

Properties. TLA+ developers use properties to define
behavior constraints for the target system. In Figure 1, we
define an invariant to restrict that the size of cache must be
smaller than or equal to the size of Data (Line 22). The model
checker can verify whether any state violates the property.
Note that properties have no effect on the construction of
the state space. Thus, they are not considered in our work.

2.2 Verifying TLA+ Specifications by TLC

TLC [5] is an explicit model checker for TLA+ specifications.
When performing model checking, developers must assign
values for all constants, and optionally specify the property
to check. Then, the checker starts from the Init state in Spec
(Line 20 in Figure 1) and performs actions on the current
state to iteratively enumerate all possible states. This process
ends in two situations, i.e., a state violates the property or
all states are checked. Finally, TLC can produce the whole
state space as a graph. For example, we use TLC to check
the specification in Figure 1 with setting Data as {1, 2}, and
obtain the state space graph shown in Figure 2.

By performing model checking on a TLA+ specification,
developers can find counterexamples that violate the defined
property, or confirm that the system design is correct.

EuroSys ’23, May 8-12, 2023, Rome, Italy

3 Mocket Overview

We propose Mocket to test distributed system implementa-
tions under the guidance of TLA+ specifications. Figure 3
shows the overview of Mocket. Given the target distributed
system and the TLA+ specification that models its system
design, developers first map the variables and actions in the
TLA+ specification to the corresponding code by adding an-
notations in the system implementation (D). Then, based on
the state space graph generated by TLC model checking (),
Mocket generates test cases, in which, each test case con-
sists of an action sequence and the expected states after each
action in the sequence (3). Figure 3 shows several test cases
in Mocket’s testbed, e.g., sy = a1 — s; = a; — s3 = aq in
the current test case box. Here s; is the initial state. Actions
a; and a, act on the previous states, and generate new states
s1 and s3, respectively. Finally, guided by the generated test
cases, Mocket performs the controlled testing on the instru-
mented target system (@). During testing, Mocket forces
the target system to follow the action sequence in each test
case, e.g., a; — dz — ay in Figure 3, and checks whether the
system execution and states are consistent with the test case.
Any discrepancy on a state s or an action a will be reported
as a potential bug.

To make Mocket to work on real-world distributed sys-
tem implementations, we need to tackle the following three
technical challenges.

Challenge 1: How to map a TLA+ specification to
its system implementation? The TLA+ specification only
models the key state variables and actions for the target sys-
tem. That means that some code logic in the implementation
isignored in the TLA+ specification. Thus, it is challenging to
perform a perfect mapping between TLA+ elements and their
corresponding code logic in the implementation. Instead, we
perform the action-level mapping. More specifically, we map
the name and parameters of actions in the TLA+ specification
to the corresponding code in the implementation, and do
not consider the internal logic of actions. Figure 4 shows an
example about our action-level mapping. Figure 4a defines
action BecomeLeader, and its corresponding implementa-
tion is method becomeLeader in Figure 4b. We map action
BecomeLeader by simply annotating the action’s name (Line
6) and collecting the action’s parameters (Line 8), but ignore
the concrete logic within action BecomeLeader.

Challenge 2: How to generate executable test cases
based on the state space generated by TLC model check-
ing? As shown in Figure 2, the state space generated by TLC
model checking is a graph with all possible states of the
target system design. To generate executable test cases in
real-world systems, Mocket traverses the state space graph,
and takes a verified path that starts from the initial state as
a test case.

Besides, although the state space graph is an abstract
model for the target system, it still has large amounts of

EuroSys ’23, May 8-12, 2023, Rome, Italy

Specification Implementation
VARIABLE Class{
ActionA = g D Map :
ActionB = (N — F1e1q;
Next £ v [N @Action(A)
v . Method (){
}
TLC Model }
Checking
@ Generate @

State space graph

Test cases

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

Testin

—— 8,

Deploy Node 1 Node N
= hook hook System
a, a, l Under Test
Enable a, Testbed
Check s, @ Block a,,
Current test case:
a,—s;—>a,—>s;—>a,— ...
Controlled

Tested cases
Sp—>a; —S8;

To-be-tested cases
St) — a3 — 53

Sp—>a; =S, — ... Syg=> Ay —> S, —> ...

Figure 3. The overview of Mocket. The gray box in current test case denotes that the states and actions are already tested.

1. VARIABLE nodeState
2. BecomelLeader(i) ==
3. /\ nodeState' = [nodeState EXCEPT ![i] = Leader]

(a) Variable nodeState and action BecomeLeader in Raft specification.

1. public class RaftNode {

2. + (@variable(“nodeState”)

3. private NodeState state = NodeState.STATE_FOLLOWER;
4. + public static NodeState Mocket$state

5. + = NodeState.STATE_FOLLOWER;

6. + (@Action(“BecomelLeader”)

7 private void becomeLeader() {

8

.+ Action.collectParams(this.NodeId);
9. + Mocket.notifyAndBlock();
10. state = NodeState.STATE_LEADER;
11. + Mocket$state = NodeState.STATE_LEADER;
12.
13. + Mocket.checkAllStates();
14. }
15. }

(b) The corresponding implementation in Raft-java.

Figure 4. Mocket maps variable nodeState and single-node
action BecomeLeader in the Raft specification to the corre-
sponding implementation in Raft-java. The code in the red
color is manually added, and the code in the blue color is
automatically generated by Mocket.

states due to the complexity nature of distributed systems.
Thus, Mocket further adopts two orthogonal strategies, i.e.,
edge coverage guided graph traversal and partial order re-
duction to reduce the number of generated test cases.
Challenge 3: How to perform the controlled testing
for the target distributed system? A test case contains
a sequence of actions in the specification. In the controlled
testing, we force the target system to execute these actions
in the same order as that in a test case. However, real-world
distributed systems are usually executed with various non-
determinism, e.g., message interleaving and external faults.
To tackle this challenge, Mocket performs the action-level
instrumentation according to developers’ annotations, and
then controls the system execution. To be specific, Mocket
first adds a hook before the execution of each action (e.g.,
Line 9 in Figure 4b) through code instrumentation. During

system testing, when the distributed system under test (SUT)
encounters an annotated action, we will block the action,
and send a notification to Mocket’s testbed. We further de-
termine whether the action can be scheduled based on the
action order in the test case. After the action finishes, the
instrumented code collects and reports runtime values of all
state variables (e.g., Line 13 in Figure 4b) in SUT. Mocket
checks whether the current state of SUT conforms to the cor-
responding state in the test case. If we find any divergence
during this controlled testing, we will report a potential bug.

We explain the above process using Figure 3. In Figure 3,
both Node 1 and Node N are blocked, and send two notifi-
cations about actions a; and a, to the testbed. According to
the action order in the current test case, the testbed enables
a;. Further, after the execution of a;, Mocket checks whether
the SUT’s state is the same as its corresponding state s; in
the test case.

4 Mocket Design

In this section, we introduce Mocket’s three stages in detail,
i.e., mapping a specification to its corresponding implemen-
tation (Section 4.1), test case generation (Section 4.2) and
controlled testing (Section 4.3).

4.1 Map a Specification to its Corresponding
Implementation

A TLA+ specification consists of variables, actions and con-
stants. In this section, we present how to map each TLA+
element to its corresponding implementation.

4.1.1 Map TLA+ Variables. According to the purposes of
variables in the TLA+ specification, we divide TLA+ variables
into four categories, i.e., state-related variables, message-
related variables, action counters and auxiliary variables.
State-related variables express the system states, e.g., state
(Line 1) in Figure 4a represents the role of a Raft node.
Message-related variables are message sets that store all
on-the-fly messages transmitted among nodes in the TLA+

Model Checking Guided Testing for Distributed Systems

specification. Action counters are used to restrict the state
space size for TLC model checking, e.g., clientRequests in
Raft specification [9] limits the number of user requests in
model checking. Auxiliary variables are used to ease the
expression and verification of the TLA+ specification, e.g.,
mode in Figure 1 is used to control the execution order of
actions. Variables in different categories have different map-
ping methods to their corresponding implementations.
State-related variables. State-related variables in the
TLA+ specification express the target system’s states. They
are mapped to two different kinds of implementations, i.e.,
class variables (aka class fields) and method variables. For
a TLA+ variable that is mapped to a class variable, we use
Mocket’s annotation @Variable to build its mapping rela-
tionship. For example, in Figure 4a, TLA+ variable nodeState
(Line 1) defines the role of a Raft node. In Raft-java [13]
(Figure 4b), it is mapped to class variable state (Line 3). We
annotate class variable state with @V ariable(“nodeState”)
(Line 2), in which “nodeState” is the name of TLA+ variable
nodeState, to denote that class variable state is the corre-
sponding implementation of TLA+ variable nodeState. For a
TLA+ variable that is mapped to a method variable, we can-
not use annotations to build its mapping relationship. Thus,
Mocket uses a tuple <SpecName, ImpIName, Location> to
store its mapping relationship, in which SpecName is the
TLA+ variable’s name, ImplName is the name of its corre-
sponding method variable, and Location is the line number
in the source code file that declares the method variable.
These mapping tuples are stored in a configuration file.
Mocket utilizes the above mapping relationships to instru-
ment the system implementation, and obtains the runtime
values of TLA+ variables. More details about Mocket’s in-
strumentation are introduced in Section 4.3.1.
Message-related variables. Message-related variables
in the TLA+ specification are used to simulate the message
communication processes in distributed systems. We take
variable messages in Raft specification [9] as an example.
Variable messages is represented as an unordered set, which
is used to temporarily store all on-the-fly messages. When
an action sends a message m, message m is first put into
messages. When another action wants to process message m,
it will retrieve message m from messages. Note that a TLA+
specification can have multiple message-related variables to
define different kinds of message communication processes
in the target system. For example, in ZooKeeper, we use
le_msgs and bc_msgs to model the message communication
in the leader election stage and broadcast stage, respectively.
In a real-world system, we cannot find the correspond-
ing implementation for message-related variables. Thus, we
create a message set in Mocket’s testbed for each message-
related variable. When the system under test encounters
an action that sends a message, it sends a notification to
Mocket’s testbed about the action and the message content.
Then, Mocket puts the message in the message set. When

EuroSys ’23, May 8-12, 2023, Rome, Italy

the system encounters an action that receives a message, it
retrieves the message and sends a notification to Mocket’s
testbed about the action and the message content, and then
Mocket’s testbed removes the notified message from the
message set. More details about message-related actions are
introduced in Section 4.1.2.

Action counters. Action counters are used to impose
restrictions on the state space exploration in TLC model
checking. They must be used with constants. For exam-
ple, variable clientRequests in Raft specification [9] counts
the execution times of action ClientRequest, and constant
ClientRequestLimit sets the maximum execution times for
action ClientRequest. Mocket does not need to restrict the
execution times of actions during testing, since the execution
times of each action are fixed in a test case. Therefore, we
do not build mapping relationships for action counters.

Aucxiliary variables. Auxiliary variables are used to as-
sist TLA+ specifications’ expression and verification. For
example, variable mode in Figure 1 is used to control the ex-
ecution order of action Input and Respond. Since auxiliary
variables are only used for TLC model checking, we do not
build mapping relationships for them.

4.1.2 Map TLA+ Actions. According to how we map
TLA+ actions into system implementations, we divide TLA+
actions into four categories, i.e., single-node actions, message-
related actions, external faults, and user requests.

Among these categories, single-node actions and message-
related actions can spontaneously occur during system run-
ning. For example, action BecomeLeader in Figure 4 can
occur when a node is elected as the leader. These actions can
be mapped to corresponding code in the target system. The
remaining two categories, i.e., external faults and user re-
quests, cannot spontaneously occur during system running.
They should be triggered by external behaviors. For example,
action UserRequest in Raft specification [9] requires that a
user writes data into Raft system. Thus, to map these actions,
we need to design new methods to simulate them.

Single-node actions. Single-node actions are executed
within a single node. They can be mapped to methods or
code snippets in the target system.

For an action that can be mapped to a method, we use
Mocket’s annotation @Action to build its mapping relation-
ship. For example, action BecomeLeader (Line 2 — 3 in Fig-
ure 4a) in Raft specification [9] changes the node’s role
as Leader, and is mapped to method becomeLeader (Line
7 — 14 in Figure 4b). We annotate method becomeLeader
with @Action(“BecomeLeader”) (Line 6), in which “Become-
Leader" is the name of action BecomeLeader, to mark that
the method is the corresponding implementation of action
BecomeLeader.

For an action that cannot be mapped to a method, but has
a corresponding implementation in a code snippet, we use
Mocket’s Action.begin and Action.end APIs to surround the

EuroSys ’23, May 8-12, 2023, Rome, Italy

public Vote lookForLeader() {
Action.begin(“StartElection”);
Action.getParams(self.getMyid());
Mocket.notifyAndBlock();
// Check the initial state
Mocket.checkAllStates();

0NV WN R
+ 4+ o+ o+

sendNotifications();

10. + Mocket.checkAllStates();

11. + Action.end(“StartElection”);

12. while ((self.getPeerState() ==
ServerState.LOOKING) && (!stop)) {

13. + Action.begin(“HandleVote”);

14. + Action.getParams(self.getMyid());

15. + Mocket.notifyAndBlock();

16.

17. Notification n = recvqueue.poll();

18.

19. + Mocket.checkAllStates();

20. + Action.end(“HandleVote”);

21. }

22. }

Figure 5. Mocket maps single-node actions StartElection
and HandleVote to code snippets in ZooKeeper. The code in
the red color are manually added, and the code in the blue
color are automatically generated by Mocket.

mapped code snippet. For example, Figure 5 shows two code
snippets in ZooKeeper (Line 2—11 and Line 13—20), which are
the corresponding implementations for action StartElection
and HandleVote, respectively. Action StartElection’s corre-
sponding implementation launches a new round of leader
election on a node. Action HandleVote’s corresponding im-
plementation is located in a thread loop, which can continu-
ously retrieve voting messages from the local message queue
and handle them. We map these two actions by surrounding
the corresponding code snippets with Action.begin (Line 2
and 13) and Action.end (Line 11 and 20) APIs, which use the
corresponding actions’ names as API parameters. Besides,
we collect the runtime values of corresponding actions’ pa-
rameters by using API Action.getParams (Line 3 and 14).

Message-related actions. Message-related actions define
the processes in which a node sends / receives messages to /
from other nodes. Similar to single-node actions, they can
be mapped to methods or code snippets in the target system.
We first use Mocket’s annotation @Action, or Action.begin
and Action.end APIs to map message-related actions to their
corresponding methods or code snippets. As discussed in
Section 4.1.1, we cannot map message-related variables to
the corresponding code in the target system. However, we
need to check the values of message-related variables dur-
ing system testing. To achieve this, we manually collect the
runtime values of messages in message-related actions by
using Mocket’s API Action.getMsg.

Figure 6a shows a message-sending action RequestVote(i,
Jj), in which node i sends a vote request message to node j. In
action RequestVote, TLA+ function Send puts the message
content (Line 3 — 8), e.g., mtype and mterm, into a message-
related variable messages. In the corresponding implementa-
tion in Figure 6b, we use Mocket’s API Action.getMsg (Line

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

1. RequestVote(i, j) ==
2. /\ state[i] = Candidate
3. /\ Send([mtype | -> RequestVoteRequest,
4. mterm |-> currentTerm[i],
5. mlastLogTerm |-> LastTerm(log[i]),
6. mlastLogIndex |-> Len(log[il),
7. msource |-> i,
8. mdest |->31)
(a) Action RequestVote in Raft specification.
1. +@Action(“RequestVote™)
2. private void requestVote(Peer peer) {
3. + Action.getParams(this.NodeId, peer.NodeId);
4. + Mocket.notifyAndBlock();
5.
6. requestBuilder.setServerId(localServer.getServerId())
7. .setTerm(currentTerm)
8. .setLastLogIndex(getLastLogIndex())
9. .setLastLogTerm(getLastLogTerm());
10. + Action.getMsg(“RequestVoteRequest”,
11. + currentTerm,
12. + getLastLogTerm(),
13. + raftLog.getlLastLogIndex(),
14. + this.Nodeld,
15. + peer.NodeId);
16.
17. peer.getRaftConsensusServiceAsync()
18. .requestVote(requestBuilder.build());
19.
20. + Mocket.checkAllStates();
21. }

(b) Instrumenting method requestVote in raft-java’s class RaftNode.

Figure 6. Mocket performs instrumentation for mapping
message-related action RequestVote in Raft. The code in the
red color are manually added, and the code in the blue color
are automatically generated by Mocket.

10) to get the runtime values of the message content. Note
that Action.getMsg should be added after the program point,
at which we can access all values of the message content
(Line 10). To build the mapping relationship of the message
content between a message-related TLA+ variable and the
corresponding message set in Mocket, the values of the mes-
sage content in Action.getMsg (Line 10 — 15 in Figure 6b)
must be placed in the same order as that in the TLA+ speci-
fication (Line 3 — 8 in Figure 6a).

Similarly, we also need to use API Action.getMsg to get the
runtime values of the received message in message-receiving
actions. But, API Action.getMsg is usually placed at the be-
ginning of a message-receiving action’s corresponding imple-
mentation. For example, action HandleRequestVoteRequest
in Raft receives a vote request message. We map action
HandleRequestVoteRequest to method requestVote(request)
in Raft-java, in which parameter request contains all values
of areceived message’s content, so we can add Action.getMsg
at the first line in method requestVote(request).

External faults. External faults cannot spontaneously
occur during system running. In Mocket, we simulate them
by invoking specific scripts or overriding related actions.
Mocket supports four kinds of external faults, i.e., node crash,
node restart, message drop and message duplicate.

Node crash and node restart faults are simulated by invok-
ing specific scripts. For a node crash fault, we use a script

Model Checking Guided Testing for Distributed Systems

that kills the corresponding node’s process to simulate it.
For a node restart fault, we use a script that kills the corre-
sponding node’s process and relaunches a new node with
the same configuration to simulate it. For example, we use
action Crash(i) to express that node i crashes. The parame-
ter i is mapped to the corresponding node’s process ID that
is collected when the target system is deployed and initiated.
During system testing, when Mocket observes that the next
scheduled action is Crash(i), it will invoke the correspond-
ing script to kill the node immediately.

Message drop and message duplicate faults are simulated
by overriding message-receiving actions. For a message drop
fault, we skip the statements that handle the received mes-
sage in the corresponding message-receiving action. For a
message duplicate fault, we execute these statements in the
corresponding message-receiving action twice. In this way,
message drop and message duplicate faults can reuse the col-
lected information in message-related actions, including pa-
rameter values and the message content in message-related
variables. To make an overridden action to be executed as a
normal message-related action when we do not need to in-
ject a fault, we add a switch for each message-related action.
When Mocket schedules a normal message-related action,
the switch is off. When Mocket schedules a message drop /
duplicate action and encounters a message-receiving action
whose message should be dropped / duplicated, it turns the
switch on and activates the corresponding overriding logic.

User requests. User requests are system-specific actions.
Different distributed systems usually provide multiple scripts
for users to access different services, e.g., reading and writing
data in Raft. Similar to external faults, we need to launch user
requests during system testing by invoking specific scripts.
For example, action ClientRequest in Raft specification [9]
expresses a user request that writes data into Raft system,
and Raft-java provides a script file run_client.sh to write a
pair of key-value into Raft-java.

./run_client.sh $Cluster $Key $Value

Note that TLA+ developers usually do not model the con-
crete data values in user requests, e.g., $Key and $Value.
Instead, they simply use values of action counters, e.g., vari-
able clientRequests, to represent different actions executed
in model checking. Thus, in a test case, we can distinguish
different user requests by the value of clientRequests, e.g.,
1 is the first execution of ClientRequest and 2 is the second
one. However, to launch user requests during system test-
ing, we need concrete values to invoke the above script. To
tackle this problem, we simply use different data for different
user requests. For example, we write (1, 1) into the target
system when scheduling user request ClientRequest at the
first time in the test case, and write (2, 2) when the second
ClientRequest is scheduled.

4.1.3 Map TLA+ Constants. TLA+ constants are used to
express the specific values in a TLA+ specification. They can

EuroSys ’23, May 8-12, 2023, Rome, Italy

be mapped to specific code in the target system. For example,
constant Follower, Candidate and Leader in Raft specifica-
tion [9] express possible roles that a node can have, and can
be assigned to variable nodeState (Line 1 in Figure 4a). In
Raft-java [13], an enumerated type NodeState implements
these three constants as three values, i.e., STATE_ FOLLOWER,
STATE_CANDIDATE and STATE_LEADER.

We use a map to store the mapping relationships between
constants and their corresponding implementation. Dur-
ing system testing, Mocket can utilize the map to query
related values when necessary. For example, when checking
a state in a test case, Mocket finds that the value of vari-
able nodeState is Follower, and the corresponding variable
value collected is STATE_ FOLLOWER during testing. After
querying the map, Mocket can know that the state in the
test case and the collected value during system testing are
consistent. Note that we do not map constants used with
action counters introduced in Section 4.1.1, since the action
execution times are fixed in a test case.

4.2 Test Case Generation

TLC model checker [5] can generate a state space graph
(as shown in Figure 2) in a GraphViz [21] DOT file after
checking a TLA+ specification. In the state space graph, each
edge denotes an action, and each node denotes a verified state.
We traverse the state space graph to generate executable test
cases in a real-world distributed system. A test case is a path
in the state space graph, which starts from the initial state
(e.g., state 0 in Figure 2), and ends in a certain state (e.g., state
9 in Figure 2). In a test case, an edge represents an action that
is scheduled during system testing, and each node represents
a program point to check system states. Note that we do not
treat a path that does not start from the initial state as a test
case, since it is challenging to make a real-world distributed
system execute from an arbitrary intermediate state.

The state space graph usually contains large amounts of
states and edges, e.g., TLC can generate over 10° states and
10° edges when checking ZooKeeper’s TLA+ specification. If
we traverse such a state space graph without any reduction
strategies, we can generate numerous test cases. For example,
by iteratively traversing the cycle existing in the state space
graph in Figure 2, we can theoretically generate infinite test
cases for such a simple state space graph. To test a real-world
distributed system within in the limited time, we apply two
strategies, i.e., edge coverage guided graph traversal and
partial order reduction, to generate representative test cases
in real-world distributed systems.

4.2.1 Edge Coverage Guided Graph Traversal. There
are many graph traversal strategies for generating executable
test cases based on the state space graph, e.g., node coverage
guided traversal and edge coverage guided traversal. The
former aims to cover more states, and the latter aims to
cover more actions. To test as many actions as possible in a

EuroSys ’23, May 8-12, 2023, Rome, Italy

Algorithm 1: Edge coverage guided graph traversal

Input: The graph g and the root node initState
Output: The set of paths paths

1 paths « 0

2 initPath < new Path()

3 traverse(initState, initPath, g)

4 Function traverse(state, path, graph) do

5 if isEndState(state) V allOutEdgeVisited(state)
then

6 paths.add(path)

7 return

8 foreach succ € state.successors do

9 edge «— graph.edge(state, succ)

10 if edge.visited = TRUE then

11 L continue

12 else

13 edge.visited < TRUE

14 path.add(succ)

15 traverse(succ, path, graph)

real-world distributed system, we utilize a depth first search
algorithm with the edge coverage guided traversal strategy
to traverse the state space graph.

As Algorithm 1 shows, we start the traversal from the
initial state (Line 3), and iteratively traverse its successors
(Line 4 — 15). The traversal for a path ends in two conditions,
i.e., all edges from the state to its successors are visited before,
or the current state is an end state (Line 5). End states are
specified by developers. For example, if developers want
to test leader election in Raft, they can set the state that
is generated by a BecomeLeader action as an end state, i.e.,
a leader has been elected. If either condition is satisfied,
we add the path in paths (Line 6). Otherwise, we continue
the traversal. For each edge from the current state to its
successor, if it is visited before, we directly skip it (Line
10 — 11). Otherwise, we set it as visited (Line 13), add the
successor to path (Line 14), and continue the traversal on
the successor (Line 15).

After the graph traversal, we get a series of paths. Based
on these paths, we further generate a group of test cases,
which are sequences of actions and states. In a test case, an
action contains the information of the action’s name and
parameter values, and a state contains the values of all the
variables defined in the TLA+ specification.

4.2.2 Partial Order Reduction. Although our edge cov-
erage guided graph traversal can generate representative
test cases, it can still generate large amounts of test cases.
Thus, we further use partial order reduction (POR) [32, 38] to
remove some test cases that are less interesting to be tested.

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

If two actions a; and a, acting on the same state s, can
result in the same state s3 regardless of their schedule order,
i.e.,So —>d] — §1 — dy — S3 al’ldSo —> dy — S —> a1 — S3,
a; and a; are commutative, and there is no need to schedule
both a; — ay and a; — a;. In this case, we randomly choose
one action schedule (e.g., a; — a,), but omit the other one
(e.g., az — a;). We can analyze the state space graph, and
identify commutative actions. Then, we do not treat the
action schedules (i.e., related edges), which are not chosen,
as our coverage target during our graph traversal.

4.3 Controlled Testing

Mocket performs system testing based on the mapped TLA+
elements and the generated test cases. To control the order
of actions and check states during system testing, Mocket
first performs automatic instrumentation for mapped TLA+
variables and actions. Then, Mocket performs a round of test-
ing for each single test case. During system testing, Mocket
reports inconsistencies between the TLA+ specification and
its corresponding implementation. We further investigate
each reported inconsistency and identify potential bugs.

4.3.1 Automatic Instrumentation. For each TLA+ vari-
able that is mapped to a class variable / method variable
in the target system, Mocket automatically adds a shadow
field / variable in the implementation. Further, whenever a
variable in the implementation is initialized or reassigned,
Mocket assigns the same value to its corresponding shadow
field / variable. For example, in Figure 4b, Mocket adds
shadow field Mocket$state (Line 4) for the annotated class
field state (Line 3) in the implementation, and when state is
initialized as STATE_FOLLOWER (Line 3) and reassigned to
STATE_LEADER (Line 10), Mocket$state is set as the same
value (Line 5 and 11)!. In this way, when checking states
during system testing, Mocket can access the runtime value
of every mapped variable in the implementation without
affecting the target system’s execution.

For each TLA+ action that is mapped to a method / code
snippet, Mocket automatically adds a hook at the begin-
ning of the method / code snippet to notify Mocket’s testbed
about the action information, i.e., action name and parameter
values, and block the corresponding thread to wait for sched-
uling. If the action is a message-receiving action, the hook
also sends the message content collected by Action.getMsg
in the action to Mocket’s testbed. Based on the message
content, Mocket can judge whether to turn the fault injec-
tion switch on. At the end of the method / code snippet,
Mocket adds a statement to collect variable values, including
the message content collected by Action.getMsg, and sends
them to Mocket’s testbed to check states. For example, in Fig-
ure 4b, Mocket adds Mocket.notifyAndBlock (Line 9) and

We use ASM to duplicate the value of the target variable in the JVM stack,
and assign the duplicated value to the corresponding shadow variable.

Model Checking Guided Testing for Distributed Systems

‘ Node 1 ‘ Node 2 ‘
s; A
notifyAndBlock ActionA et
i M i ctionA
H Action notifyAndBlock
ActionA(NT1) -
Scheduler Reply

Execute

§j @ -mmmmmmeees checkAllStates {‘}ActionA

Test case Mocket components System under test

Figure 7. Mocket’s testing process.

Mocket.checkAllStates (Line 13) for the annotated method
becomeLeader.

Note that for the first action scheduled during system
testing, we need to check the initial state before execut-
ing its corresponding code. For example, in Figure 5, action
StartElection is the first scheduled action in ZooKeeper’s
leader election. When StartElection’s corresponding code is
executed at the first time, Mocket adds checkAllStates (Line
6) after notifyAndBlock (Line 4) to check the initial state.

4.3.2 System Testing. Figure 7 illustrates Mocket’s sys-
tem testing process for a single test case. Mocket deploys a
new cluster for each test case. When a cluster node encoun-
ters an action, the instrumented notifyAndBlock statement
blocks the corresponding thread, and notifies Mocket’s ac-
tion scheduler about the action’s name and parameter values.
In Figure 7, both Node 1 and Node 2 notify the action sched-
uler that they encounter action ActionA. When the action
scheduler receives a notification, it compares the action in-
formation in the notification with the scheduled action in
the test case, and replies the node whose action matches the
scheduled action. Meanwhile, Mocket moves forward and
waits to check the next state following the action. In Figure 7,
the scheduled action is ActionA(N1), which means that ac-
tion ActionA on Node 1 should be executed now. Thus, the
action scheduler replies Node 1 and resumes its blocked
thread. For other notified actions that have not been sched-
uled, e.g., action ActionA from Node 2, the action scheduler
puts them in a set until they match their corresponding
scheduled actions in the test case.

When a node, e.g., Node 1, finishes executing an action,
the instrumented checkAllStates statement sends the run-
time values of all variables to Mocket’s state checker. The
state checker compares the received runtime values with the
state in the test case. If they are consistent, Mocket moves
forward and schedules the next action. Otherwise, we find
an inconsistency.

4.3.3 Bug Detection. Mocket reports an inconsistency
between a TLA+ specification and its corresponding imple-
mentation when any situation below occurs.

e Inconsistent state. The state checker finds that the col-
lected runtime values are different from the corresponding
state in the test case.

EuroSys ’23, May 8-12, 2023, Rome, Italy

e Missing action. The action scheduler waits until timeout,
and does not receive any action notification that matches
the scheduled action in the test case.

e Unexpected action. When a test case finishes, there still
exist some action notifications in the action scheduler’s
waiting set.

When Mocket finds an inconsistency, it generates a bug
report, which contains the test case and the inconsistency
caused by related states or actions.

Note that Mocket cannot distinguish whether a reported
inconsistency is caused by an incorrect implementation or
an incorrect specification. For each bug report, we further
investigate it and figure out what causes the inconsistency.
If the inconsistency is caused by the incorrect system imple-
mentation, we treat it as an implementation bug. Otherwise,
if the distributed system implementation is correct, but its
corresponding TLA+ specification is incorrectly written, we
treat the inconsistency as a specification bug. Specification
bugs can make TLC generate unexpected states and actions
which do not happen during system testing. For example,
we use Raft’s official TLA+ specification [9] to test Raft-java
[13], and find that Raft’s official specification contains bugs
that have been correctly fixed in Raft-java’s implementation.

5 Applying Mocket on Real-World Systems

In this section, we first present the implementation of Mocket.
Then we introduce two practices of applying Mocket, i.e.,
testing two Raft [61] implementations and ZooKeeper [4].
Last, we discuss the lessons learned in our practices.

5.1 Mocket Implementation

Mocket is implemented in Java and Python, and consists of
around 5K lines of code (LOC), including annotations, run-
time instrumentation, test case generation, action scheduler
and state checker. The annotations for mapping variables
and actions are implemented based on java.lang.annotation
package. The runtime instrumentation is performed based
on ASM [2] library. The test case generation is implemented
based on Python’s networkx [8] package.

5.2 Applying Mocket on Raft

Raft [60] is a classical distributed consensus protocol. Re-
searchers have already modelled [9] and verified [12] its de-
sign. Many popular distributed systems, e.g., CockroachDB
[20] and TiDB [15], adopt Raft as their underlying consensus
protocol to maintain data consistency.

We select two open-source Java-based implementations,
i.e., Xraft [18] and Raft-java [13] as our target systems. Raft-
java is a popular Raft implementation with more than 1K
GitHub stars. Xraft is less popular (around 200 GitHub stars),
but it is used as the code example in a published book [29]
that introduces Raft. These two Raft implementations are
claimed to be compliant to the official Raft specification.

EuroSys ’23, May 8-12, 2023, Rome, Italy

Table 1. Development Effort on Real-World Systems

Impl. Spec. Mappin,
System (LoPC) LOC #\I;ar. #Act. (ng)c)g
Xraft 16,530 | 841 15 17 151
Raft-java 15,017 | 809 15 15 152
ZooKeeper | 15,895 | 1,053 25 20 134

However, they are independently developed, and have differ-
ent implementation choices. For example, Xraft uses asyn-
chronous communication, but Raft-java uses synchronous
communication. To make the official Raft specification to-
tally compliant to a Raft implementation, we have to make
some minor modifications on the official Raft specification
[9] to support their implementation choices.

One author took about one week to modify the official
TLA+ specification according to their corresponding imple-
mentations, and map the modified specification to its corre-
sponding Raft implementation. We further took about two
weeks to perform multi-round testing on these two systems.
Table 1 shows the effort we devoted to apply Mocket on
Xraft and Raft-java®. The modified specifications for Xraft
and Raft-java contain 841 and 809 LOC, respectively. Both
systems’ specifications contain 15 variables. Xraft’s specifica-
tion contains 17 actions, among which, 12 actions come from
the official specification [9], and 5 new actions were added
by us. Raft-java’s specification contains 15 actions. Since
Raft-java uses synchronous communication, we remove two
external faults DropMessage and DuplicateMessage, com-
pared with Xraft’s specification.

Xraft and Raft-java contain 16,530 and 15,017 LOC, respec-
tively. We use 151 and 152 LOC to map actions and variables
in the specifications to Xraft and Raft-java, respectively. Most
actions are mapped in less than 5 LOC. Mapping message-
related actions requires more effort (10 LOC for each action)
than other types of actions, because we need additional code
to collect the runtime values of message content.

5.3 Applying Mocket on ZooKeeper

ZooKeeper [4] is a popular and mature distributed coordi-
nation system. It has been developed for years, but not ever
checked by formal methods. To apply Mocket on ZooKeeper,
we developed a TLA+ specification for its core protocol ZAB
[43] after reading its code and related design documents.
One author took about three weeks to develop ZAB’s
TLA+ specification, and map the specification to its corre-
sponding ZooKeeper implementation. We further took about
two weeks to perform multi-round testing on ZooKeeper.
Table 1 also shows the effort we devoted to apply Mocket
on ZooKeeper. The ZooKeeper ZAB’s specification contains
1,053 LOC, including 25 variables and 20 actions. Among 25

ZSince we are not the developers of these target systems, we may spend
more time than these systems’ developers.

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

variables, 20 variables are state-related variables, 2 variables
are message-related variables, and the remaining 3 variables
are action counters. We design 2 different message-related
variables because ZAB has two different message commu-
nication mechanisms in its leader election stage and syn-
chronization stage. Among the 20 actions, 6 are single-node
actions, 12 are message-related actions, and 2 are external
faults. Note that we do not model message duplicate and mes-
sage drop faults, because ZAB’s designers never mentioned
that ZAB could handle them.

In ZooKeeper, the ZAB-related implementation is mainly
located in package org.apache.zookeeper.server, and con-
tains 15,895 LOC. We use 134 LOC to annotate TLA+ vari-
ables and actions in the ZAB-related implementation. Among
them, we use 20 LOC to map TLA+ variables, including 17
LOC for mapping 17 class-type TLA+ variables, and 3 lines
of configuration file code for mapping 3 method-type TLA+
variables. We use 114 LOC to map TLA+ actions, and each
action is mapped with no more than 10 LOC.

5.4 Lessons Learned

Testing oriented TLA+ specification development pro-
cess. It is generally recommended that the TLA+ specifi-
cation should be developed prior to the corresponding im-
plementation [39]. However, to test an existing and mature
distributed system, e.g., ZooKeeper, we have to develop the
TLA+ specification referring to its implementation. The spec-
ification development process for applying Mocket is differ-
ent from the traditional development workflow. The TLA+
specification only for model checking is property oriented.
Developers usually first consider what properties to check,
and then define property-related variables and actions. In
our testing oriented development process, we first extract ac-
tions from the implementation, and then consider variables
related to these actions.

Potential errors introduced by developers when ap-
plying Mocket. Applying Mocket to test a real-world dis-
tributed system requires some manual effort, e.g., developing
TLA+ specification for the target system, and mapping TLA+
elements to their corresponding implementations. Develop-
ers (e.g., the authors) may introduce errors in this manual
process, which can cause Mocket to report false inconsisten-
cies, i.e., false positives. Based on our experience, we sum-
marize two types of errors that developers may introduce
and explain how we handle them.

First, when developing the TLA+ specification for an exist-
ing implementation, developers can possibly write incorrect
action logic that violates the target system’s design. For ex-
ample, if a real-world concurrent system includes certain
synchronization in its implementation, but TLA+ developers
do not model the synchronization in the TLA+ specification,
Mocket will report a missing action during system testing.

Second, when mapping the TLA+ elements to their cor-
responding implementations, developers can possibly build

Model Checking Guided Testing for Distributed Systems

EuroSys ’23, May 8-12, 2023, Rome, Italy

Table 2. Bugs Found by Mocket

ID Type Reported Inconsistency Elapsed Time # Actions
Xraft Bug #1 (New) [23] Impl Bug Inconsistent state for variable votesGranted 1 min 6
Xraft Bug #2 (New) [22] Impl. Bug Inconsistent state for variable votedFor 7 min 9
Xraft Bug #3 (New) [24] Impl. Bug Unexpected action HandleRequestVoteResponse 39 min 19
Raft-java Bug #1 [14] Impl. Bug Missing action HandleRequestVoteResponse 6 min 18
Raft-java Bug #2 [19] Impl. Bug Inconsistent state for variable log 5 hours 31
ZooKeeper Bug #2 [6] Impl. Bug Unexpected action ReceiveMessage 13 hours 39
ZooKeeper Bug #2 [7] Impl. Bug Missing action StartElection 29 hours 51
Raft-spec issue #1 (New) Spec. Bug Inconsistent state for variable messages < 1 min 8
Raft-spec issue #2 (New) Spec. Bug Missing action UpdateTerm < 1min 5

wrong mapping relationships. For example, if developers mis- Node 1 ‘ ‘ Node 2 ‘ ‘ Node 3 ‘ ‘ Node 4

write the action’s name when annotating a method, Mocket Candidate Follower Follower Candidate

will report a missing action, since Mocket cannot receive the L Requestiote | pequestyote

notification of the required action with the correct name. votedFor=N1
These errors introduced by developers (i.e., Mocket’s users) %

can only be discovered during system testing. Therefore, we votedroroul | pequestvote |

perform multi-round testing to eliminate these errors. If —]

we find that an inconsistency is caused by these developer-
introduced errors, we fix these errors, regenerate test cases
and perform system testing again. Fortunately, these errors
are usually easy to fix. However, the multi-round testing
could waste testing resources. In the future, we can design
better strategies to avoid these errors.

6 Evaluation

We present Mocket’s experimental results on three distributed
systems, i.e., Xraft [18], Raft-java [13] and ZooKeeper [4].
Table 2 shows the detected bugs. For each bug, we record the
elapsed time to reveal it and the number of involved actions
in its bug-revealing test case. In this section, we first discuss
the detected bugs in detail, and then evaluate the testing
effort. Last, we compare Mocket with existing approaches.

6.1 Detected Bugs

As shown in Table 2, Mocket finds 9 bugs in total, includ-
ing 3 previously unknown implementation bugs, 4 known
implementation bugs, and 2 new specification bugs in the
official Raft specification [9]. All 3 new implementation bugs
have been confirmed by developers. Due to the space lim-
itation, we only introduce new implementation bugs and
specification bugs here.

New implementation bugs. In the first Xraft bug [23],
Xraft developers oversimplify the implementation of vari-
able votesGranted in the Raft specification. In Raft, variable
votesGranted is used to record the nodes that have granted
the vote request from a candidate node. Xraft implements
votesGranted as an integer value. When the candidate node
receives a vote from another node, it increases votesGranted
by 1. In this bug, Node 1 becomes Candidate and votes for

votedFor=N4
— | Vote Node 4
——oded |

Vote Node 1

Becomeleader

Figure 8. Xraft bug #2 [22]. Node 1 becomes Leader when
Node 2 changes its vote due to a node restart fault. The
reported inconsistency is shown in the red font.

itself, and votesGranted becomes 1. Then, Node 1 sends a
RequestVote message to Node 2, and receives a message of
granting the vote request from Node 2. Thus, votesGranted
becomes 2. However, a duplicate message fault makes Node 1
receive two repeated messages from Node 2, and causes that
votesGranted becomes 3. Finally, Node 1 becomes Leader
although it does not receive the granted votes from the ma-
jority nodes. Mocket finds this bug by observing the incon-
sistent values of variable votesGranted.

Figure 8 shows the second Xraft bug [22]. In this bug, both
Node 1 and Node 4 are Candidate. Node 1 sends RequestVote
message to Node 2 and 3. Node 2 grants the vote request,
and sets the value of variable votedFor as N1. Then, a node
restart fault occurs on Node 2, which makes votedFor be-
come null. Thus, when the RequestVote message from Node
4 arrives, Node 2 thinks that it has not voted for any node,
and grants the vote request from Node 4. After receiving the
vote from Node 3, Node 1 thinks that it has received votes
from the majority nodes, i.e., Node 1, 2 and 3, and becomes
Leader. But in fact, Node 2 has changed its vote and Node 1
is unaware of that. Mocket finds this bug by observing the
inconsistent value of variable votedFor.

Figure 9 shows a deep bug [24] in Xraft. In this bug, Node
1, 2 and 3 become Candidate at first. Node 1 becomes the

EuroSys ’23, May 8-12, 2023, Rome, Italy

| Node 1 || Node 2 || Node 3 || Node 4 || Node 5
Candidate Candidate Candidate Follower Follower
votedFor=N1 votedFor=N2 votedFor=N3 votedFor=N1 votedFor=N1
VoteNodel |
[VoteNodel |
Becomeleader
Leader
AppendEntry AppendEntry
—— | AppendEntry
s
Follower Follower log.lastTerm=1
votedFor=null votedFor=nun
log.lastTerm=1 log.lastTerm=1
Candidate
votedFor=N4
log.lastTerm=1

Beq\.\&%ote

RequestVot

| lloglsNewer(rgst.lo Vote Node 4 | \ote Node 4

Becomeleader

Figure 9. Xraft bug #3 [24]. Both Node 1 and 4 become
Leader. The reported inconsistency is shown in the red font.

leader after receiving votes from Node 4 and 5, and informs
other nodes by AppendEntry messages. The nodes receiving
message AppendEntry will write a log without any data, i.e.,
NoOp log, which represents that they have voted for others.
After writing NoOp logs, Node 2 and 3 become followers and
update their states, i.e., changing variable votedFor from
itself to null and setting log.lastTerm as 1. Then, a node
restart fault occurs on Node 4. Node 4 becomes Candidate,
and updates its state, i.e., setting variable votedFor as itself,
but variable log.lastTerm is still 1 since the written NoOp
log is persisted. After that, Node 4 sends RequestVote mes-
sages to Node 2 and 3, and the message contains the infor-
mation of persisted NoOp log. In Xraft, to make a Follower
node grant a vote request from a Candidate node, the data
log on the Candidate node must not be staler than that
on the Follower node. Node 2 and 3 should not grant the
vote for Node 4, because the log in RequestVote is not the
data log. However, the wrong implementation makes Node
2 and 3 wrongly grant the vote requests from Node 4. Fi-
nally, Node 4 becomes Leader while Node 1 has already been
Leader. Mocket finds this bug by observing unexpected ac-
tion HandleRequestVoteResponse.

Specification bugs. We reveal two inconsistencies that
are caused by the bugs in the official Raft specification. Note
that specification bugs have no impact on the specification
verification process, but can cause the specification to gener-
ate some actions or states that the corresponding implemen-
tation cannot turn into during system testing.

Figure 10 shows the first specification bug. Function Up-
dateTerm, HandleRequestVoteRequest and HandleRequestVoteRe-
sponse, are connected by a disjunction operator. This denotes
UpdateTerm can be performed as an independent action as
HandleRequestVoteRequest and HandleRequestVoteResponse.
However, UpdateTerm can only be performed within the
other two actions in practical system implementations. We
need to move UpdateTerm into them to fix this bug.

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

1. Receive(m) ==

2 LET i == m.mdest

3. j ==_m.msource

. w \Dpsstetern(s, 7,)]

5. \/ /\ m.mtype = RequestVoteRequest

6 /\ [Hand1leRequestVoteRequest (i, j, m) |
7 \/ /\ m.mtype = RequestVoteResponse

8 /\ |HandleRequestVoteResponse(i, j, m)|

Figure 10. Specification bug #1 in Raft. UpdateTerm
wrongly interleaves with HandleRequestVoteRequest and
HandleRequestVoteResponse.

1. HandleAppendEntriesRequest(i, j, m)

2 \/ Reply(..) * reject request

3 \/ * return to follower state

4. /\ state’ = [state EXCEPT ![i] = Follower]
5

6

7

\/ * accept request when it is a follower
/\ state[i] = Follower
/\ Reply(..)

Figure 11. Specification bug #2 in Raft. The second branch
does not invoke Reply.

Figure 11 shows the second specification bug. Action Han-
dleAppendEntriesRequest uses three branches to handle re-
quests under different conditions, i.e., rejecting the request
(Line 2), changing the candidate’s role into Follower (Line
3 — 4), and accepting the request (Line 5 — 7). However, the
second branch does not invoke function Reply. When Han-
dleAppendEntriesRequest executes its second branch, it does
not directly reply the message, but requires the second Han-
dleAppendEntriesRequest to execute the third branch to in-
voke Reply. We add a Reply function in the second branch
to fix this bug.

6.2 Testing Effort

The experiments were performed on a machine with a 3.1
GHz Intel Core i9 CPU, 64 GB memory. All target distributed
systems were deployed in the form of pseudo-distributed
cluster, i.e., each node runs as a process on the same host
machine. In a single test case, a cluster has 5 nodes at most.
We inject external faults no more than 5 times, launch user
requests no more than 3 times.

Table 3 shows the testing effort for each target distributed
system. Column State shows the numbers of states in the
state space graph generated by TLC. Column Pathgc and
Pathgc.por show the numbers of paths generated by travers-
ing the state graph when applying only edge coverage (EC)
strategy and both edge coverage and partial order reduction
(POR) strategies, respectively. We can see that EC can still
generate a large amount of paths, while combining EC and
POR can generate much fewer paths, e.g., 87% of paths can
be reduced in ZooKeeper. This shows that our state space
reduction strategies are effective.

Column Time in Table 3 shows the time of executing test
cases generated applying both EC and POR. On average,
a ZooKeeper test case takes about 10 seconds. Xraft and
Raft-java take 7 seconds and 5 seconds to execute a test

Model Checking Guided Testing for Distributed Systems

Table 3. Testing Effort

System State Pathgc Pathgc.por Time
Xraft 91,532 296,154 39,047 75 h
Raft-java 23911 85,976 9,829 13h
ZooKeeper 105,054 342,770 44,361 123 h

case, respectively. It is reasonable since ZooKeeper is more
complex than the other two distributed systems.

6.3 Comparison with Existing Approaches

Mocket closely relates to some existing bug detection ap-
proaches for distributed systems, e.g., formal verification
frameworks [41, 42, 67], model-based testing [31, 44, 51],
and implementation-level model checkers [47, 57, 64, 68, 69].
However, we have encountered difficulties in directly com-
paring Mocket with these approaches, e.g., lacking available
tools. Therefore, we qualitatively discuss the advantages of
Mocket over these existing approaches.

Formal verification frameworks. Formal verification
frameworks [41, 42, 67] can build a verified distributed sys-
tem from an abstract specification in a refinement-style way.
First, unlike Mocket, formal verification frameworks cannot
be used to verify an existing distributed system’s implemen-
tation. Second, applying formal verification frameworks re-
quires much larger manual effort than Mocket. For example,
IronFleet [42] requires a specification with 1,400 lines of code
(LOC) and a proof with 39,253 LOC to verify the correctness
of an implementation with 5,114 LOC. In comparison, we use
1,187 LOC to apply Mocket on ZooKeeper ZAB protocol’s
implementation with 15,895 LOC.

Model-based testing. Model-based testing [31, 44, 51]
models the specific distributed system properties or behav-
iors, and generate test cases based on the model.

First, most model-based testing approaches [44, 51] can
only define specific properties or behaviors. They cannot
perform a systematic testing for distributed systems. For ex-
ample, Li et al. [51] only models network delay, and Modulo
[44] only models the data consistency property in distributed
systems. In comparison, Mocket utilizes TLA+ to model all
kinds of behaviors and properties in distributed systems.

Second, although MBTCG [31] also uses TLA+ to model
the algorithm in MongoDB and generate test inputs, it is
designed for a simple program, e.g., operations on a single
array, and cannot support common non-deterministic fea-
tures in distributed systems, e.g., message communication
and external faults. Therefore, the bugs in Table 2 cannot be
detected by MBTCG theoretically.

Implementation-level model checkers. Implementation-
level model checkers [47, 57, 64, 68, 69] intercept and inter-
leave non-deterministic behaviors of distributed systems at
runtime, and enforce the target system into different states.

EuroSys ’23, May 8-12, 2023, Rome, Italy

First, implementation-level model checkers test a distributed
system under a specified workload, e.g., writing a key-value
pair (1, 1) into a Raft system. To perform a systematic testing,
developers have to manually design and execute many differ-
ent workloads. In comparison, Mocket can test all possible
workloads modelled in the TLA+ specification, e.g., possible
inputs written into a Raft system.

Second, implementation-level model checkers cannot know
all expected execution results of distributed systems, e.g., the
return result when a crash occurs on a specific execution
point, and rely on developers to manually write general as-
sertions related to specific system properties to reveal bugs,
e.g., error information in system logs. Other system states
beyond the written assertions cannot be checked. In compar-
ison, Mocket can obtain the expected states for each action
based on the state space graph, and uses them as test or-
acles. Furthermore, implementation-level model checkers
need more effort to write assertions than Mocket. For exam-
ple, SAMC [47] uses ZKVerifier.java [10] (59 LOC) to express
two properties in ZooKeeper, while we only need to add 2
lines of TLA+ code to define these two properties.

7 Discussion
7.1 Threats to Validity

In our experiment, we evaluate Mocket on two Raft systems
and ZooKeeper. Therefore, our experimental results may not
reflect the situation in other distributed systems. However,
both Raft and ZooKeeper are popular and representative
distributed systems. Moreover, our practices in Section 5
on these two kinds of distributed systems also present how
to apply Mocket under two different scenarios, i.e., how to
apply Mocket on a distributed system with and without its
corresponding TLA+ specification, respectively.

Our practices are dependent on the involved developers
(e.g., the authors of this paper). This may introduce implicit
bias towards the individual developers’ expertise. In future,
more user studies with other developers (e.g., a distributed
system’s developer who is familiar with TLA+) could further
validate or challenge our approach.

7.2 Limitations

Mocket requires some manual effort from developers.
Mocket requires a TLA+ specification, which may be not
available for some distributed systems, and involves some
effort to develop it. Mocket also requires some manual effort
to annotate the target distributed system. Thus, developers
should have a certain depth of understanding about the target
distributed system. Fortunately, developers only need to un-
derstand the protocol design in the target system’s implemen-
tation rather than all implementation details. For example,
we (who are not ZooKeeper developers) can test ZooKeeper
with limited understanding of ZooKeeper’s implementation,
and it took us three weeks to write the TLA+ specification

EuroSys ’23, May 8-12, 2023, Rome, Italy

and annotate ZooKeeper’s implementation. Therefore, the
required manual effort should be acceptable in practice.

Mocket requires that the TLA+ specification should
be close to the corresponding implementation. The ab-
stract level of a TLA+ specification can affect Mocket’s bug
detection capability. Developers can build a very high-level
specification, which may miss some important details, e.g.,
external faults. Such a high-level specification is easy to
build, but can cause Mocket to miss implementation bugs.
Developers can also build a very detailed TLA+ specification
that is extremely close to its corresponding implementation.
Such a detailed specification can help Mocket to unearth
more implementation bugs, but is hard to build. Therefore,
it is critical to find the balance about how specific the TLA+
specification should be close to the implementation. We can-
not provide a clear answer to this balance. In our practice,
modelling all user requests, message communication and
external faults in the target distributed system should be a
proper choice.

Mocket can miss some implementation bugs in the
target system under some scenarios. We describe these
scenarios as follows.

o Developers might give a TLA+ specification that does not
cover all implementation details of a distributed system.
If some states and actions in a distributed system are not
modelled by its corresponding specification, Mocket will
miss implementation bugs in the unmodelled implemen-
tations. For example, we only model ZooKeeper’s ZAB
protocol in our experiment. Thus, we cannot detect imple-
mentation bugs in ZooKeeper’s authentication module.

e If some concurrency in the system implementation is not
properly modelled in the TLA+ specification, we can miss
related implementation bugs. Assume that action a; must
happen before a; in the TLA+ specification, while a; and
a; can be concurrently scheduled in the system imple-
mentation. In such case, Mocket cannot test the schedule
a; — a;, and hence misses related implementation bugs
hidden in this schedule.

o Although Mocket’s edge coverage guided test case gener-
ation can cover all actions in a state space graph, it omits
some paths that may trigger implementation bugs in the
target system. Besides, in our partial order reduction strat-
egy, commutative actions in the state space graph do not
always imply that they are commutative in the target sys-
tem implementation. Thus, our test case generation and
reduction strategy can potentially cause Mocket to miss
some implementation bugs.

Mocket can only work on Java-based distributed sys-
tems. To apply Mocket on a distributed system that is not
implemented in Java, we need to reimplement Mocket’s an-
notation and instrumentation mechanisms. However, the
remaining parts of Mocket, e.g., test case generation, action
scheduler and state checker, can be reused.

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

8 Related Works

In this section, we discuss related works that are not dis-
cussed earlier.

Random testing for distributed systems. Researchers
have proposed some approaches for randomly testing dis-
tributed systems. PCTCP [62] provides a guarantee of the
possibility hitting a potential bug when randomly testing
distributed systems. taPCT [63] combines random testing
with partial order reduction. Morpheus [70] utilizes con-
flict analysis among events to make random testing more
efficient. Similar to implementation-level model checkers,
these approaches also suffer from the test oracle problem.
In comparison, Mocket can perform systematic testing for
distributed systems, and solves the test oracle problem.

Bug detection in distributed systems. There has been
significant progress in understanding and detecting bugs in
distributed systems. Researchers have conducted several em-
pirical bug studies to understand different kinds of bugs in
distributed systems, e.g., cloud bugs [40], concurrency bugs
[48], crash recovery bugs [35], timeout bugs [30], exception-
related bugs [27], network partition-related bugs [25, 26] and
partial failures [54]. Researchers further propose various ap-
proaches to detect bugs in distributed systems. CrashTuner
[56], Deminer [37] and CrashFuzz [36] detect crash recov-
ery bugs. CoFi [28] detects network partition-related bugs.
DCatch [52], FCatch [53] and PCatch [49, 50] detect concur-
rency bugs, time-of-fault bugs and performance bugs, respec-
tively. DUPChecker [72] detects software upgrade failures
in distributed systems. DIET [27] detects exception-related
bugs in distributed systems. MPChecker [55], FlowDist [34]
and DisTA [66] detect missing-permission-check bugs and
information flow vulnerabilities in distributed systems, re-
spectively. These works use specific patterns to detect differ-
ent kinds of bugs in distributed systems. Mocket is general,
and is orthogonal to these approaches.

9 Conclusion

We propose a novel testing approach, Mocket, to fill the
gap between the formal specification and the correspond-
ing implementation of a distributed system. Given a TLA+
specification, Mocket can systematically check whether its
corresponding system implementation conforms to the spec-
ification. We apply Mocket on three widely-used distributed
systems, and unearth 3 previously unknown bugs.

10 Acknowledgments

We thank the anonymous reviewers for their constructive
comments, and Marko Vukoli¢ for shepherding this work.
This work was partially supported by National Natural Sci-
ence Foundation of China (62072444, U20A6003, 61732019),
Frontier Science Project of Chinese Academy of Sciences
(QYZDJ-SSW-JSC036), and Youth Innovation Promotion As-
sociation at Chinese Academy of Sciences.

Model Checking Guided Testing for Distributed Systems

References

[1] 1997. Alloy. Retrieved May 6, 2022 from https://alloytools.org/
[2] 2002. ASM. Retrieved April 22, 2021 from https://asm.ow2.io/

[3] 2008.

(11
[12
[13
(14
[15

[16

—

]
]
]

—_

]

[24]

[25

[26

[27

=

—

—

Apache Hadoop MapReduce. Retrieved March 29, 2021
from https://hadoop.apache.org/docs/current/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/MapReduceTutorial.html
2010. Apache ZooKeeper. Retrieved June 14, 2020 from https:
//zookeeper.apache.org/

2010. The TLA+ Toolbox. Retrieved May 6, 2022 from http://lamport.
azurewebsites.net/tla/toolbox.html

2012. Leader election never settles for a 5-node cluster. Retrieved Oct 2,
2022 from https://issues.apache.org/jira/browse/ZOOKEEPER-1419
2013. Zookeeper fails to start because of inconsistent epoch. Retrieved
Oct 2, 2022 from https://issues.apache.org/jira/browse/ZOOKEEPER-
1653

2014. Python NetworkX. Retrieved May 6, 2022 from https://networkx.
org/

2014. TLA+ specification for the Raft consensus algorithm. Retrieved
May 6, 2022 from https://github.com/ongardie/raft.tla

2014. ZK Verifierjava in SAMC. Retrieved Feb 25, 2023
from https://github.com/wangsnowyin/samc/blob/master/src/edu/
uchicago/cs/ucare/samc/zookeeper/ZK Verifier.java

2015. Apache Spark. Retrieved April 12, 2021 from https://spark.
apache.org/

2016. Revise TLA+ spec. Retrieved May 6, 2022 from https://github.
com/ongardie/raft.tla/pull/4/

2017. Raft-java. Retrieved April 11, 2022 from https://github.com/
wenweihu86/raft-java

2017. Raft-java issue#3. Retrieved April 25, 2022 from https://github.
com/wenweihu86/raft-java/issues/3

2017. TiDB. Retrieved April 13, 2022 from https://github.com/pingcap/
tidb

2018. Foundations of Azure Cosmos DB (Multi-Master) with Dr. Leslie
Lamport. Retrieved May 6, 2022 from https://www.youtube.com/
watch?v=kYX6UrY_ooA

2018. Lloyd’s Estimates the Impact of a U.S. Cloud Outage at $19 Billion.
Retrieved May 6, 2022 from https://www.eweek.com/cloud/lloyd-s-
estimates-the-impact-of-a-u.s.-cloud-outage-at- 19-billion

2018. xraft. Retrieved April 11, 2022 from https://github.com/xnnyygn/
xraft

2019. Raft-java issue#19. Retrieved April 25, 2022 from https://github.
com/wenweihu86/raft-java/issues/19

2020. CockroachDB. Retrieved April 13, 2022 from https://github.com/
cockroachdb/cockroach

2021. GraphViz. Retrieved Feb 17, 2023 from https://graphviz.org/
2022. xraft commit: Handle with canceled votes. Retrieved April
24, 2022 from https://github.com/xnnyygn/xraft/pull/28/commits/
a48000080b6590402fbf45dd 1a06af001d558830

2022. xraft issue: Duplicate vote response can make illegal leader without
a quorum. Retrieved April 24, 2022 from https://github.com/xnnyygn/
xraft/issues/27

2022. xraft issue: VotedFor is not stored when a node is candidate and
receives an AppendEntriesRpc. Retrieved May 6, 2022 from https:
//github.com/xnnyygn/xraft/issues/29

Basil Alkhatib, Sreeharsha Udayashankar, Sara Qunaibi, Ahmed
Alquraan, Mohammed Alfatafta, Wael Al-Manasrah, Alex De-
poutovitch, and Samer Al-Kiswany. 2022. Partial Network Partitioning.
ACM Transactions on Computer Systems (2022).

Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer
Al-Kiswany. 2018. An Analysis of Network-Partitioning Failures in
Cloud Systems. In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 51-68.

Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. 2019.
Understanding Exception-Related Bugs in Large-Scale Cloud Systems.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

EuroSys ’23, May 8-12, 2023, Rome, Italy

In Proceedings of IEEE/ACM SIGSOFT International Conference on Auto-
mated Software Engineering (ASE). 339-351.

Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin. 2020. CoFL:
Consistency-Guided Fault Injection for Cloud Systems. In Proceedings
of IEEE/ACM SIGSOFT International Conference on Automated Software
Engineering (ASE). 536-547.

Zhao Chen. 2020. The Practice on Developing the Distributed Consensus
Algorithm. Peking University Press.

Ting Dai, Jingzhu He, Xiaohui Gu, and Shan Lu. 2018. Understanding
Real-World Timeout Problems in Cloud Server Systems. In Proceedings
of IEEE International Conference on Cloud Engineering (IC2E). 1-11.

A Jesse Jiryu Davis, Max Hirschhorn, and Judah Schvimer. 2020. eX-
treme Modelling in Practice. Proceedings of International Conference
on Very Large Data Bases (VLDB) 13, 9 (2020), 1346—-1358.

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-
Order Reduction for Model Checking Software. In Proceedings of ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). 110-121.

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy.
2017. An Empirical Study on the Correctness of Formally Verified Dis-
tributed Systems. In Proceedings of European Conference on Computer
Systems (EuroSys). 328-343.

Xiaoqin Fu and Haipeng Cai. 2021. FlowDist: Multi-Staged Refinement-
Based Dynamic Information Flow Analysis for Distributed Software
Systems. In Proceedings of USENIX Security Symposium (USENIX Secu-
rity). 2093-2110.

Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun
Wei, Ruirui Huang, Li Zhou, and Yongming Wu. 2018. An Empirical
Study on Crash Recovery Bugs in Large-Scale Distributed Systems.
In Proceedings of ACM SIGSOFT Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESCE/FSE). 539-550.

Yu Gao, Wensheng Dou, Dong Wang, Wenhan Feng, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Coverage Guided Fault Injection for
Cloud Systems. In Proceedings of IEEE/ACM SIGSOFT International
Conference on Software Engineering (ICSE).

Yu Gao, Dong Wang, Qianwang Dai, Wensheng Dou, and Jun Wei.
2022. Common Data Guided Crash Injection for Cloud Systems. In
Proceedings of ACM/IEEE SIGSOFT International Conference on Software
Engineering: Companion Proceedings (ICSE Companion). 36-40.
Patrice Godefroid. 1994. Partial-Order Methods for the Verification
of Concurrent Systems-An Approach to the State-Explosion Problem.
University de Liege, Faculte des Sciences Appliquees.

A Gravell, Yvonne Howard, Juan C Augusto, Carla Ferreira, and Stefan
Gruner. 2011. Concurrent Development of Model and Implementation.
arXiv preprint arXiv:1111.2826 (2011).

Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J Eliazar,
Agung Laksono, Jeffrey F Lukman, Vincentius Martin, et al. 2014. What
Bugs Live in the Cloud? A Study of 3000+ Issues in Cloud Systems. In
Proceedings of ACM Symposium on Cloud Computing (SOCC). 1-14.
Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan
Beschastnikh. 2023. Compiling Distributed System Models with PGo.
In Proceedings of ACM SIGARCH-SIGPLAN-SIGOPS International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS). 159-175.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Proceedings of ACM
SIGOPS Symposium on Operating Systems Principles (SOSP). 1-17.
Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. 2011. Zab:
High-Performance Broadcast for Primary-Backup Systems. In Proceed-
ings of IEEE/IFIP International Conference on Dependable Systems &
Networks (DSN). 245-256.

https://alloytools.org/
https://asm.ow2.io/
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://zookeeper.apache.org/
https://zookeeper.apache.org/
http://lamport.azurewebsites.net/tla/toolbox.html
http://lamport.azurewebsites.net/tla/toolbox.html
https://issues.apache.org/jira/browse/ZOOKEEPER-1419
https://issues.apache.org/jira/browse/ZOOKEEPER-1653
https://issues.apache.org/jira/browse/ZOOKEEPER-1653
https://networkx.org/
https://networkx.org/
https://github.com/ongardie/raft.tla
https://github.com/wangsnowyin/samc/blob/master/src/edu/uchicago/cs/ucare/samc/zookeeper/ZKVerifier.java
https://github.com/wangsnowyin/samc/blob/master/src/edu/uchicago/cs/ucare/samc/zookeeper/ZKVerifier.java
https://spark.apache.org/
https://spark.apache.org/
https://github.com/ongardie/raft.tla/pull/4/
https://github.com/ongardie/raft.tla/pull/4/
https://github.com/wenweihu86/raft-java
https://github.com/wenweihu86/raft-java
https://github.com/wenweihu86/raft-java/issues/3
https://github.com/wenweihu86/raft-java/issues/3
https://github.com/pingcap/tidb
https://github.com/pingcap/tidb
https://www.youtube.com/watch?v=kYX6UrY_ooA
https://www.youtube.com/watch?v=kYX6UrY_ooA
https://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion
https://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion
https://github.com/xnnyygn/xraft
https://github.com/xnnyygn/xraft
https://github.com/wenweihu86/raft-java/issues/19
https://github.com/wenweihu86/raft-java/issues/19
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach
https://graphviz.org/
https://github.com/xnnyygn/xraft/pull/28/commits/a48000080b6590402fbf45dd1a06af001d558830
https://github.com/xnnyygn/xraft/pull/28/commits/a48000080b6590402fbf45dd1a06af001d558830
https://github.com/xnnyygn/xraft/issues/27
https://github.com/xnnyygn/xraft/issues/27
https://github.com/xnnyygn/xraft/issues/29
https://github.com/xnnyygn/xraft/issues/29

EuroSys ’23, May 8-12, 2023, Rome, Italy

[44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(57]

Beom Heyn Kim, Taesoo Kim, and David Lie. 2022. Modulo: Finding
Convergence Failure Bugs in Distributed Systems with Divergence
Resync Models. In Proceedings of USENIX Annual Technical Conference
(ATC). 383-398.

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley.

Leslie Lamport and Stephan Merz. 2017. Auxiliary Variables in TLA+.
arXiv preprint arXiv:1703.05121 (2017).

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F
Lukman, and Haryadi S Gunawi. 2014. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems. In Pro-
ceedings of USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI). 399-414.

Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and
Haryadi S Gunawi. 2016. TaxDC: A Taxonomy of Non-deterministic
Concurrency Bugs in Datacenter Distributed Systems. In Proceedings
of ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). 517-530.

Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S
Gunawi, Xiaohui Gu, Xicheng Lu, and Dongsheng Li. 2018. PCatch: Au-
tomatically Detecting Performance Cascading Bugs in Cloud Systems.
In Proceedings of European Conference on Computer Systems (EuroSys).
1-14.

Jiaxin Li, Yiming Zhang, Shan Lu, Haryadi S Gunawi, Xiaohui Gu,
Feng Huang, and Dongsheng Li. 2023. Performance Bug Analysis
and Detection for Distributed Storage and Computing Systems. ACM
Transactions on Storage (TOS) (2023), 1-31.

Yishuai Li, Benjamin C Pierce, and Steve Zdancewic. 2021. Model-
Based Testing of Networked Applications. In Proceedings of ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA).
529-539.

Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu,
Haryadi S Gunawi, and Chen Tian. 2017. DCatch: Automatically
Detecting Distributed Concurrency Bugs in Cloud Systems. In Pro-
ceedings of ACM SIGARCH-SIGPLAN-SIGOPS International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 677-691.

Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen
Tian. 2018. FCatch: Automatically Detecting Time-of-Fault Bugs in
Cloud Systems. In Proceedings of ACM SIGARCH-SIGPLAN-SIGOPS
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 419-431.

Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, De-
tecting and Localizing Partial Failures in Large System Software. In
Proceedings of USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 559-574.

Jie Lu, Haofeng Li, Chen Liu, Lian Li, and Kun Cheng. 2022. Detect-
ing Missing-Permission-Check Vulnerabilities in Distributed Cloud
Systems. In Proceedings of ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2145-2158.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and
Liang You. 2019. CrashTuner: Detecting Crash-Recovery Bugs in
Cloud Systems via Meta-Info Analysis. In Proceedings of ACM SIGOPS
Symposium on Operating Systems Principles (SOSP). 114-130.

Jeffrey F Lukman, Huan Ke, Cesar A Stuardo, Riza O Suminto, Da-
niar H Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian,
Feng Ye, Tanakorn Leesatapornwongsa, et al. 2019. FlyMC: Highly
Scalable Testing of Complex Interleavings in Distributed Systems. In

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao Huang

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Proceedings of European Conference on Computer Systems (EuroSys).
1-16.

Ellis Michael, Doug Woos, Thomas Anderson, Michael D Ernst, and
Zachary Tatlock. 2019. Teaching Rigorous Distributed Systems with
Efficient Model Checking. In Proceedings of European Conference on

Computer Systems (EuroSys). 1-15.
Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc

Brooker, and Michael Deardeuff. 2015. How Amazon Web Services
Uses Formal Methods. Commun. ACM 58, 4 (2015), 66-73.

Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Stanford
University.

Diego Ongaro and John Ousterhout. 2014. In Search of an Understand-
able Consensus Algorithm. In Proceedings of USENIX Annual Technical
Conference (ATC). 305-319.

Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei
Befrouei, and Georg Weissenbacher. 2018. Randomized Testing of Dis-
tributed Systems with Probabilistic Guarantees. In Proceedings of ACM
SIGPLAN International Conference on Object-Oriented Programming
Systems Languages Applications (OOPSLA). 1-28.

Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. 2019.
Trace Aware Random testing for Distributed Systems. In Proceedings
of ACM SIGPLAN International Conference on Object-Oriented Program-
ming Systems Languages Applications (OOPSLA). 1-28.

Jiri Simsa, Randy Bryant, and Garth Gibson. 2010. dBug: System-
atic Evaluation of Distributed Systems. In International Workshop on
Systems Software Verification (SSV).

Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari
Balakrishnan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications. ACM SIGCOMM Computer Communication
Review (CCR) 31, 4 (2001), 149-160.

Dong Wang, Yu Gao, Wensheng Dou, and Jun Wei. 2022. DisTA:
Generic Dynamic Taint Tracking for Java-Based Distributed Systems.
In Proceedings of IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 547-558.

James R Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D Ernst, and Thomas Anderson. 2015. Verdi: A Frame-
work for Implementing and Formally Verifying Distributed Systems.
In Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 357-368.

Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kun-
cak. 2009. CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems. In Proceedings of USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 229-244.
Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haox-
iang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009.
MODIST: Transparent Model Checking of Unmodified Distributed
Systems. In Proceedings of USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 213-228.

Xinhao Yuan and Junfeng Yang. 2020. Effective Concurrency Testing
for Distributed Systems. In Proceedings of ACM SIGARCH-SIGPLAN-
SIGOPS International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). 1141-1156.
Pamela Zave. 2012. Using Lightweight Modelling to Understand Chord.
ACM SIGCOMM Computer Communication Review (CCR) 42, 2 (2012),
49-57.

Yongle Zhang, Junwen Yang, Zhugqi Jin, Utsav Sethi, Kirk Rodrigues,
Shan Lu, and Ding Yuan. 2021. Understanding and Detecting Software
Upgrade Failures in Distributed Systems. In Proceedings of ACM SIGOPS
Symposium on Operating Systems Principles (SOSP). 116-131.

Model Checking Guided Testing for Distributed Systems

A Artifact Appendix

This artifact provides the source code of Mocket for Eu-
roSys 2023 paper - “Model Checking Guided Testing for Dis-
tributed Systems”. Mocket is designed to perform systematic
testing for distributed systems guided by model checking
TLA+ specifications. Mocket assumes that the TLA+ speci-
fication is the correct design for a distributed system, and
finds bugs existing in the distributed system implementation

EuroSys ’23, May 8-12, 2023, Rome, Italy

that violates the TLA+ specification. Our artifact obtained
the “Artifacts Available” badge from the Artifact Evalua-
tion process of EuroSys 2023. The DOI of our artifact is
https://doi.org/10.5281/zenodo.7654817.

Artifact repository. All the project source code including
the instructions on how to build and run Mocket on dis-
tributed systems is available in the following git repository:
https://github.com/tcse-iscas/Mocket.

https://doi.org/10.5281/zenodo.7654817
https://github.com/tcse-iscas/Mocket

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 TLA+ Specification
	2.2 Verifying TLA+ Specifications by TLC

	3 Mocket Overview
	4 Mocket Design
	4.1 Map a Specification to its Corresponding Implementation
	4.2 Test Case Generation
	4.3 Controlled Testing

	5 Applying Mocket on Real-World Systems
	5.1 Mocket Implementation
	5.2 Applying Mocket on Raft
	5.3 Applying Mocket on ZooKeeper
	5.4 Lessons Learned

	6 Evaluation
	6.1 Detected Bugs
	6.2 Testing Effort
	6.3 Comparison with Existing Approaches

	7 Discussion
	7.1 Threats to Validity
	7.2 Limitations

	8 Related Works
	9 Conclusion
	10 Acknowledgments
	References
	A Artifact Appendix

