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 Abstract—MapReduce framework has become the state-of-the-
art paradigm for large-scale data processing. In our ongoing 
work, we attempt to solve the three interrelated problems: how 
to build an accurate MapReduce performance model, how to 
use it to automatically detect and optimize slow-running 
MapReduce jobs, and how to use it to help scheduler arrange 
job execution sequence. Currently, we mainly study the job 
execution time model and its training method. We also present 
several policies to optimize the job configuration and scheduler. 

I. INTRODUCTION 
MapReduce [1] is a simple but efficient solution towards 

large-scale data processing and analysis. Apache Hadoop is 
an open-source implementation of GFS [2] and MapReduce. 
Hadoop’s MapReduce framework consists of a job scheduler 
(JobTracker) running on the master node and a task manager 
(TaskTracker) running on each slave node. Each slave node 
is statically configured with fixed number of map slots and 
reduce slots according to CPU core number. Hadoop 
Distributed File System (HDFS) provides user-transparent 
and fault-tolerant data storage for MapReduce jobs. It breaks 
the large dataset into small blocks (typically 64MB) and 
stores them on slave nodes scattered with multiple replicas.  

Although MapReduce framework frees the users from 
the labor of cluster management and job scheduling, its weak 
job profiling makes jobs’ behavior unpredictable. Currently, 
Hadoop’s job scheduler cannot tell the remaining time while 
jobs are running or the total time cost before running the jobs. 
But users need prior time estimation to predict how soon 
they may get the job’s result or further decide when to run 
the job in a busy cluster. Similarly, the job scheduler needs 
time model to detect the slow-running tasks for speculative 
execution [3]. However, prior time estimation not only needs 
to predict time cost (e.g., each task’s duration, overlapping 
time between map stage and reduce stage) but also consider 
a lot of influence factors (e.g., resource contention, data size, 
data locality, failures and heterogeneous clusters). So it is a 
great challenge to tell the accurate time cost for different 
jobs with diverse data under different environments.  

Complex resource configurations also burden users on the 
optimization of job performance and resource utilization. 
Hadoop has more than 190 configuration parameters and one 
tenth of them can affect the job performance dramatically [4]. 
Due to lack of execution time model and automatic 
configuration tools, users have to detect the slow-running 
jobs by experience or run jobs under different configurations 
to find the best parameters. However, the parameter space of 
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configurations is very large and resource utilization has 
bottleneck to detect. Searching for the right configurations is 
actually looking for the balance between job throughput and 
performance. In addition, performance degradation problem 
(in section 3) aggravates the difficulty to choose optimum 
parameters. So it is a complex problem to automatically 
detect and optimize slow-running jobs’ configurations 
with awareness of resource utilization.   

Based on execution time model, we can further optimize 
the job scheduler. Current schedulers do not adjust the job 
execution sequence except the job’s priority is set by users.  
Keeping the original job sequence always incurs waste of 
resources in reduce tasks’ shuffle phase. This problem can be 
solved by adjusting the job execution sequence, but jobs’ 
makespan may be prolonged. So it is necessary to design a 
scheduler assistant to arrange an appropriate job 
execution sequence considering the trade-off problem of 
job performance and resource utilization. 

In this PhD forum paper, we firstly introduce the 
MapReduce timeline and performance-related problems. 
Secondly, we present a primary execution time model and its 
fast training method. Thirdly, we provide the detecting and 
optimization methods for slow-running jobs. Finally, we 
address the optimization method towards job scheduler. 

II. RELATED WORK 
Since execution time model is useful for job scheduler to 

allocate tasks, Zaharia et al. [5] present a simple online 
formula to predict each task’s complete time but not for the 
whole job. Morton et al. [6] propose a heuristic online 
method to predict the progress of parallel queries which can 
be converted into a series of MapReduce jobs. This method 
relies on running the query previously to get the intermediate 
data size and tasks’ execution speed. Also, this method does 
not consider the overlap between map stage and reduce stage. 
Statistical method has been introduced in [7] to learn the 
correlation between SQL-like queries and their performance 
metrics from vast historical logs. But this method does not 
aim to model the single MapReduce job. Verma et al. [8, 9] 
study the single MapReduce job’s progress in detail and 
present a theoretical bound based time model to predict job’s 
minimum and maximum duration. This method works well 
in homogeneous environment without high resource 
contention. They also advocate a deadline scheduler to meet 
time goals through adjusting map and reduce slots.  

Herodotou et al. [4] propose Hadoop’s resource 
utilization model with numerous parameters and apply it in 
job’s optimum configuration to meet specific performance 
goals. Based on subspace enumeration and optimized search 
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strategy, their configuration method can find the optimum 
parameters in few times. Instead of enumeration, our 
optimization approach is based on time model considering 
job performance and resource utilization simultaneously. 

Different schedulers are proposed recently with different 
goals but the job sequence problem has not been well studied. 
FIFO is Hadoop’s default scheduler aiming to run the 
coming jobs in sequence. Capacity scheduler [10] and Fair 
scheduler [11] make the cluster shareable via building 
multiple separate queues and pools. FLEX [12] provides a 
flexible slot allocation policy towards special performance 
requirement such as job makespan. Adaptive Scheduler [13] 
focuses on dynamically adjusting slots in order to improve 
resource utilization under jobs’ completion time goals.  

III. MAPREDUCE TIMELINE AND RELATED PROBLEMS 
MapReduce framework executes the submitted jobs in 

two separate stages (map and reduce stages). In map stage, 
JobTracker will launch ��  (TotalDataSize/SplitSize) map 
tasks and each of them processes one logical split including 
one or few blocks.  If total map slots number �� is less than ��, map tasks have to run in several waves in pipeline (in 
Fig. 1). When the first map task finishes, JobTracker will 
launch �� reduce tasks on free reduce slots successively. �� 
is a critical parameter for job performance but set statically 
by users. Reduce tasks may run in several waves with small 
reduce slots number �� . Each reduce task will go through 
three (shuffle, sort and reduce) phases. In shuffle phase, 
reduce tasks are waiting for or fetching the corresponding 
<K, V> pairs from finished map tasks via HTTP. Shuffle 
phase finishes after map stage. In sort phase, reduce tasks 
sort and merge the grouped <K, V> pairs into <K, list(V)>. 
In reduce phase, reduce function processes the <K, list(V)> 
records and output final <K’,V’> records onto HDFS. The 

shuffle and sort phases have no apparent boundary in 
Hadoop. So we integrate the two stages in time model. 

The number of map/reduce slots on one slave node 
determines the max number of map/reduce tasks that can run 
simultaneously on this node. To improve the job throughput, 
we can let more tasks run in one wave by increasing slot 
number in multicore environment. However, more slots may 
reduce concurrent tasks’ performance since more contention 
of CPU/Mem/IO/Net will occur. This “performance 
degradation problem” will affect the expansibility and 
stability of time model. Fig. 2 shows contention becomes 
more serious with increasing split size (64 to 256MB). It is 
unnecessary to improve the map slot number when split size 
is 256MB since the corresponding line’s slope is above � 
(this threshold will be studied in future). Fig. 3 shows that 
the wave pattern in map stage becomes messy because of 
high coefficient of variance (0.3) of map tasks’ duration.  
Reduce tasks also suffer this problem. In this case, existing 
time models cannot predict each task’s accurate duration, not 
to say the whole job’s duration when resources are changed.  

Multiple influence factors such as job type, data size, 
tasks’ I/O ratio and slots number result in this degradation 
problem. In our practice, IO cost jobs with large map/reduce 
outputs suffer more degradation than others. We are now 
attempting to model this problem by studying the probability 
distribution of tasks’ duration and resource metrics.  
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Figure 2.  Running TeraSort [14] with different map slots per node. 
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Figure 1.  WordCount [1] on Wikipedia text Figure 3.  ��=400, �� = 36, �� = 9, �� = 9 Figure 4.  ��=71, �� = 36, �� = 9, �� = 18 

IV. PERFORMANCE MODEL AND TRAINING METHOD 
Our final target is building an adaptive time model which 

can predict the accurate job duration both offline and online 
in heterogeneous environment. Currently, we mainly study 
the offline time model and training method in homogeneous 
environment. Due to scheduler’s greedy policy of task 
assignment, first ready slot (when a task finishes on it) will 
receive the next task firstly. Fig. 1 and 3 are drawn based on 

this greedy policy from the view of logical slot. In general, 
the timeline difference between the first and last complete 
slot is at most the task’s maximum duration. This 
observation is valid only if tasks in the first wave start almost 
at the same time. When slots are changing online, the time 
model should be modified dynamically (in future work). 

Suppose a new job J will run with �� map splits and �� 
reduce tasks. In present, there are ��  map slots and �� 
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reduce slots available. To estimate J’s duration, we run our 
fast sample-based training method as follows only once and 
use time model (step 8) to predict J’s actual execution time. 

1. Randomly select ��� sample splits from the �� splits.  
if �� � 	 
 �� then ��� � � 
 ��(�=0.1 or more) 
else ��� � �� 

2. Set the sample job’s reduce number ���. 
if �� � �� then ��� � �� else ��� � �� 

3. Modify partition function to let reduce task  �� �  �
���� receive �� �������  percent of the total <K, V> pairs 
of map outputs.  

4. Run job J with the sample splits and collect metrics. 
CPU/Mem/IO/Net metrics are collected constantly. 
for each map task � 

get its duration ����� and output data size ����� 
for each reduce task� 

get its shuffle&sort duration ����, 
reduce duration ���� and its input data size ����.

5. Use regression to establish the correlation between 
reduce input data size and its duration.  ���� � ������� (received data size from ����� and 
corresponding transmission rate will be studied later) ���� �  ������ 
The real reduce task’s mean input data size �!� is  

�!� � �"
� #��$�%��&'(
��"
�� . 

6. Predict the parameters of time model. �!� � )������� (mean value of �����) �!� � ���!��* �!� �  ��!�� 
Since reduce stage may overlap with map stage, we 
denote reduce tasks’ shuffle&sort duration in the first 
wave as ��� . H is the interval time (2 or 3 seconds) 
between sequence tasks in the same slot. 
if �� � �� then ��� � �!� 

else if �!� + , - � .�"
#/��" 0  then ��� � ���"
#/��" �  
else ��� � 1�"�"2 � .�

"
#/�
�" 0 + �!� + , 3 �4567489:;46< 

7. If job J has high I/O contention (e.g., variance of ����� 
is high) or the sample job’s execution environment is 
highly different from the real one. We use Performance 
Degradation Model to adjust �!�,��!� and �!� later.  

8. Predict the mean duration of map and reduce stages 
(their sum is J’s duration,  formulas are similar to [8]) 

���4567489:;46< = >��
�� ? ���!� + ,� 

�456@<ABC<9:;46< = ��� + D�� 3 �
�� E �!� + >��

�� ? ��!� + ,� 
Without step 7, this training model works well while 

predicting low contention jobs’ duration in our experiments 
(shown in Table 1, 9 salves, 36 map slots, 9 reduce slots). 
But the error is very high towards high contention jobs with 
large map outputs (e.g., TeraSort-100GB). Next, we will 
extend the time model to tolerate this degradation problem. 

TABLE I.  PREDICTED AND ACTUAL TIME  ON TYPICAL JOBS 

JobName��/��
 

Predicted | Real

Wikipedia
WordCoun
t (Fig. 1) 
75 / 18 

BuildInver
tedIndex- 
9.36GB 

150 / 9 

TwitterGr
aphRevers
er-24GB 
390 / 9 

TeraSort
-100GB 
(Fig. 3) 
400 / 9 �!� (s) 35 | 37.8 20 | 19.8 14 | 13.9 23 | 35 

�!� (s)     4 | 4.2 99 | 107 90 | 90.8 190 | 411 
�4567489:;46< (s) 111 | 107 110 | 96 176 | 175 300 | 433 

�456@<ABC<9:;46<(s) 28 | 35 120 | 139 107 | 113 228 |1094
TotalTime (s) 139 |142 230 | 235 283 | 288 528 |1527

V. JOB CONFIGURATION OPTIMIZATION 
Our final goal is developing a tool to automatically detect 

the slow-running jobs and provide right configurations. Here, 
we give two primary solutions to optimize slow-running jobs. 
Since parameters of time model are different among different 
systems, this optimization aims at the particular system. 

A. Map Stage Optimization 
Since map splits are generated regardless of the available 

map slots, map tasks may run in several waves and remain 
one or few straggler tasks in the last wave. Fig. 1 shows only 
3 map tasks run in the last wave so that reduce tasks’ shuffle 
duration is prolonged. Straggler tasks also delay the next 
job’s map stage because less map slots are available.  

Our detecting and optimization method is as follows: 
1. if �� � ��  or ��FGH��� I ��� � 	JK 


�� GL FGLM� or �!� + , � � .�"
#/��" 0  
then do not optimize and return. 

2. Randomly generate ���  sample splits with increasing 
size and let �;N map split size be ��OM:8P�;��� � �� 
 ��OMQPRCS TU �� � � � ���� 

3. Run the job and get  �;N map task’s duration �����. 
4. Use regression to model  �!�V��OM:8P�;W � ����OM:8P�;� 
5. Use time model to find the optimum ��OM:8P�; (i.e. ��) 

to achieve minimum �4567489:;46<  

subject to ��FGH �� I � and �!� + , - � .�"
#/��" 0 

In step 1, if a job runs in one wave or shuffle speed is 
slower than map tasks’ speed, we do not optimize its map 
stage. Or else, we run the increasing sample splits to model 
the relationship between map split size and map task’s 
duration. So we can find the appropriate split size to avoid 
straggler tasks while decreasing the duration of map stage. In 
addition, we do not let one split become too large to avoid 
too much loss of data locality and network overhead. Fig. 4 
shows job duration has declined and straggler tasks disappear 
when split size is up to 136MB. In future work, more 
advantages and disadvantages of this method will be studied. 

B. Reduce Stage Optimization 
It’s a difficult problem for users to configure the right 

reduce task number �� when facing different jobs. Cluster 
administrators also feel hard to set appropriate �� because it 
is a trade-off problem between jobs’ throughput and 

250225022508



performance. The time model tells us that more reducers lead 
to shorter duration of shuffle and reduce phases for each 
reduce task. However, for some jobs with fast shuffle speed 
(step 1) and small �!�, it is unworthy occupying too many 
reduce slots in order to gain less decline of reduce time. On 
the contrary, some IO cost jobs with large �!� may spend too 
much time in shuffle phase (shown in Fig. 3). The best 
solution is enlarging the concurrent reduce tasks so that time 
cost of shuffle and reduce phases dramatically decline (Fig. 
5). But we should be aware of the network utilization X�<;. 
If network overhead occurs, we may set the reduce number 2 
or 3 times of reduce slots in order to decrease the network 
contention. Step 1 gives a primary optimization framework. 
1. if  ��� I Y 
 �!���Y - Z� and X�<; � [��[ - J\]� then 

����� if��� � �� �then��� � �� �
������else �� � �� � ���^GLMC8B* X�<;* ��OMA4;4* �!���

VI. JOB SEQUENCE OPTIMIZATION 
Our final goal is developing a scheduler assistant towards 

job sequence optimization. Now, we first illustrate this 
problem. When job A and job B with equal priority are 
submitted into the job queue successively, the FIFO 
scheduler runs job A first and then B. Similar situation exists 
in Capacity scheduler’s certain queue and Fair Scheduler’s 
certain pool. Hence, job B has to wait until job A releases the 
available slots, which may lengthen job B’s makespan. If we 
run job B ahead of job A, job B’s makespan will be reduced 
but the two jobs’ completion time may be prolonged. 

This problem is more common and serious when a “small” 
job and a “big” job come together, running the small one first 
may cause low resource utilization but gain less makespan. 
Fig. 6 and 7 show this situation occurs when running the 
BuildInvertedIndex [15] and WordCount on Wikipedia (9.36 
GB). In Fig. 6, although job B’s reduce stage is delayed by 
job A, the duration of the two jobs is shorter than that in Fig 
7. The time-slower reason exists in job B. In Fig. 7, job B’s 
first shuffle phase contains much waiting time so that the 
reduce slots has lower utilization compared with Fig. 6.  

Whether to apply this adjustment depends on the cluster 
administrator and end-users’ goals. If promoting resource 
utilization is more important in current cluster, we may let 
costly jobs’ reduce tasks run as soon as possible. On the 
contrary, if decreasing small jobs’ makespan is more critical, 

we may let small jobs run ahead. Based on time model, we 
will develop a scheduler assistant to optimize the running 
sequence of jobs according to different SLAs.  
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Figure 5.  ��=400, ��=36, ��=36, ��=36 Figure 6.  SplitSize=64MB, �_� � ��̀=150 Figure 7.  ��= 36, �� = 9, �_� = 9,���̀ =18
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