
A Characteristic Study on Out of Memory Errors in
Distributed Data-Parallel Applications

Lijie Xu†‡, Wensheng Dou†∗, Feng Zhu†‡, Chushu Gao†, Jie Liu†, Hua Zhong†, Jun Wei†
†State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences

‡University of Chinese Academy of Sciences
{xulijie09, wsdou, zhufeng10, gaochushu, ljie, zhongh, wj}@otcaix.iscas.ac.cn

Abstract—Out of memory (OOM) errors occur frequently
in data-intensive applications that run atop distributed data-
parallel frameworks, such as MapReduce and Spark. In these
applications, the memory space is shared by the framework and
user code. Since the framework hides the details of distributed
execution, it is challenging for users to pinpoint the root causes
and fix these OOM errors.

This paper presents a comprehensive characteristic study on
123 real-world OOM errors in Hadoop and Spark applications.
Our major findings include: (1) 12% errors are caused by the
large data buffered/cached in the framework, which indicates
that it is hard for users to configure the right memory quota to
balance the memory usage of the framework and user code. (2)
37% errors are caused by the unexpected large runtime data,
such as large data partition, hotspot key, and large key/value
record. (3) Most errors (64%) are caused by memory-consuming
user code, which carelessly processes unexpected large data or
generates large in-memory computing results. Among them, 13%
errors are also caused by the unexpected large runtime data.
(4) There are three common fix patterns (used in 34% errors),
namely changing the memory/dataflow-related configurations,
dividing runtime data, and optimizing user code logic. Our
findings inspire us to propose potential solutions to avoid the
OOM errors: (1) providing dynamic memory management
mechanisms to balance the memory usage of the framework and
user code at runtime; (2) providing users with memory+disk
data structures, since accumulating large computing results in
in-memory data structures is a common cause (15% errors).

Keywords—MapReduce, out of memory, characteristic study

I. INTRODUCTION

In recent years, MapReduce [1] and MapReduce-like dis-
tributed frameworks, such as Dryad [2] and Spark [3], have
emerged as the representative data-parallel frameworks for
large-scale data processing. Their open-source implementa-
tion, Apache Hadoop and Apache Spark, are now widely
used in academia and industry to develop data-intensive ap-
plications, such as Web indexing, click-log mining, machine
learning, and graph analysis.

These data-parallel frameworks provide users with simple
programming models and hide the details of parallel/dis-
tributed execution. This design helps users focus on the data
processing logic, but complicates the error diagnosis when
users’ data-parallel applications (jobs) generate runtime errors.
Out of memory (OOM) is a serious and common runtime
error in these data-parallel applications. OOM errors can

* Corresponding author

FATAL org.apache.hadoop.mapred.Child: Error running child
: java.lang.OutOfMemoryError: Java heap space

at java.util.Arrays.copyOf(Arrays.java:2882)
at java.lang.AbstractStringBuilder.expandCapacity(

AbstractStringBuilder.java:100)
...
at cloud9.ComputeCooccurrenceMatrixStripes$MyReducer.

reduce(ComputeCooccurrenceMatrixStripes.java:136)
at org.apache.hadoop.mapred.Child.main(Child.java:404)

Listing 1: OOM stack trace in a reduce task in a Hadoop job

directly lead to the job failure, and cannot be tolerated by
frameworks’ fault-tolerant mechanisms, such as re-executing
the failed map/reduce tasks.

Different from other runtime errors like node crashes, OOM
errors are caused by excessive memory usage. While running
a data-parallel application, the framework buffers/caches the
intermediate data in memory for better performance, and user
code (e.g., map()) also stores intermediate computing results
in memory. Once the size of in-memory data and computing
results exceeds the memory limit of the (map/reduce) task, an
OOM error will occur in the task. Fig. 1 shows two OOM
errors in two tasks in a data-parallel application. At the time
of OOM, the framework only throws an OOM stack trace as
Listing 1, which cannot directly reflect the root cause.

Unfortunately, there is little work that studies OOM errors
in data-parallel applications. Li et al. [4] studied 250 failures
and fixes in SCOPE jobs, which are SQL-like applications
running atop Dryad in Microsoft. They found that most failures
are caused by undefined columns, wrong schemas, incorrect
row format, and illegal arguments. Kavulya et al. [5] analyzed
the performance problems and failures in Hadoop jobs from
the M45 cluster administrated by Yahoo!. They only reported
that the failures are Array indexing errors and IOException
errors, without considering the OOM errors. Gunawi et al.
[6] studied 3655 development and deployment issues in cloud
systems, such as Hadoop and HBase [7]. They focused on the
hardware/software faults in these systems, without analyzing
the OOM errors in data-parallel applications.

To help users understand, fix, and avoid these serious
OOM errors, we conduct a characteristic study on 123 real-
world OOM errors collected from open forums such as
StackOverflow.com and Hadoop/Spark mailing list [8], [9].
These errors occur in Hadoop/Spark applications, including
raw MapReduce/Spark code and code generated by high-level
languages/libraries, such as Apache Pig [10], Hive [11], and
MLlib [12]. For each OOM error, we manually review the

users’ error descriptions (the data, configurations, user code,
etc.) and the experts’ answers (the analysis of the root causes
and fix suggestions). In order to understand the root causes,
verify the fixes, and identify frameworks’ memory manage-
ment weakness, we also reproduced 43 errors. Specifically,
our study intends to answer the following research questions:
• RQ 1: What are the root causes of OOM errors in dis-

tributed data-parallel applications? Are there any common
patterns?

• RQ 2: How do users fix OOM errors? Are there any
common fix patterns?

• RQ 3: Are there any potential solutions to improve the
data-parallel frameworks’ fault tolerance or facilitate the
OOM error diagnosis?

The root causes of 123 OOM errors have been identified
by the experts (66), users themselves (45), or us (12) in our
reproduced errors. We also found that 42 OOM errors have
fix suggestions, and 25 out of them have been fixed by users
based on the fix suggestions. The 123 errors can be found in
our technical report [13]. Our major findings are as follows:
• Although users can configure the buffer size and cache

threshold to limit the framework’s memory usage, there
are still many OOM errors (12%) caused by the large data
stored in the framework. This result implies that it is hard
for users to configure the right memory quota that balances
the runtime memory usage of the framework and user code.

• Abnormal dataflow is another common cause of the OOM
errors (37%), which can lead to the unexpected large
runtime data, such as large data partition, hotspot key,
and large single key/value record. This result suggests that
current data-parallel mechanisms do not properly consider
the runtime data property (e.g., key distribution) and cannot
limit the input data size of user code.

• Most OOM errors (64%) are caused by memory-consuming
user code, which carelessly processes unexpected large data
or generates large computing results in memory. This result
indicates that it is hard for users to design memory-efficient
code and predict its memory usage, without knowing the
runtime data volume.

• The common fix patterns (proposed in 34% OOM er-
rors and 20% OOM errors are fixed) are adjusting
memory/dataflow-related configurations, dividing runtime
data, and optimizing user code logic. We are also surprised
to see that there are tricky fix patterns, such as redesigning
the key and skipping the abnormal data. This result indi-
cates that there is not a unified method to fix the OOM
errors. The general fix guide is to limit the data storage,
the runtime data, or the memory usage of user code.

• Current data-parallel frameworks provide limited support
for OOM error diagnosis and tolerance. There are several
potential solutions to improve frameworks’ fault tolerance
and error diagnosis, such as providing statistical dataflow
information, enabling dynamic memory management, and
providing memory+disk data structures.

In summary, our main contributions are as follows:

 reducer’s memory space

Reduce stage

Map stage

mapper

buffer
size

partition
function

input
split size

partition
number

map()

map()

map()

reducer

reduce()

reduce()

 mapper’s memory space

memory usage of
user code

buffered
data

cached
data

buffered
data

cached
data

input/output/intermediate
data
a partition of the
intermediate data
framework buffer

configuration

OOM
OOM

memory usage of
user code

Fig. 1: Two examples of OOM errors in a Hadoop/Spark job

mapper

mapper

mapper

reducer

reducer

Driver program

collect computing resultsbroadcast data

data.broadcast()

results.collect()

Fig. 2: The driver program in Spark

• We present the first comprehensive study on the OOM
errors in distributed data-parallel applications, which can
help users understand the root causes and is also useful for
further research work.

• We summarize the common fix patterns for most root
causes, which can help users fix the OOM errors in practice.

• We provide potential solutions to improve the frameworks’
fault tolerance and facilitate the OOM error diagnosis.

The rest of the paper is organized as follows. Section II
introduces the basics of data-parallel applications. Section III
describes our study methodology. Section IV presents our
study results on the root causes of OOM errors, which answers
RQ1. Section V presents our study results on fix patterns,
which answers RQ2. Section VI describes the potential solu-
tions to avoid the OOM errors, which answers RQ3. Section
VII discusses the generality of our study. Section VIII lists the
related work and section IX concludes this paper.

II. BACKGROUND

A distributed data-parallel application can be represented as
〈input dataset, configurations, user code〉. The input dataset
is usually split into data blocks (e.g., 3 input splits in Fig. 1),
and stored on the distributed file system. Before submitting
an application to the data-parallel framework, users need to
specify user code and the application’s configurations.

A. Programming model and user code

MapReduce and MapReduce-like data-parallel frameworks,
such as Dryad [2] and Spark [3], share the same programming

model as follows:

Map Stage : map(k1,v1)⇒ list(k2,v2)

Reduce Stage : reduce(k2, list(v2))⇒ list(v3)

In the map stage, map(k,v) reads 〈k,v〉 records one by one
from an input split, processes each record and output new
〈k,v〉 records. In the reduce stage, the framework groups the
〈k,v〉 records into 〈k, list(v)〉 by the key k, and then launches
reduce(k, list(v)) to process each 〈k, list(v)〉 group. Hadoop
natively supports this programming model, while Dryad and
Spark provide general and user-friendly operators, such as
map(), flatMap(), groupByKey(), reduceByKey(), coGroup(),
and join(), which are built on top of map() and reduce().
Users can also write applications using high-level languages
such as SQL-like Pig script [10], which can automatically
generate binary map() and reduce(). For optimization, users
can define a mini reduce() named combine(). We regard
combine() as reduce() since they usually share the same code
for aggregation.

Apart from map() and reduce(), users need to write a driver
program (shown in Fig. 2) to submit an application to Spark.
The driver program can also (1) generate and broadcast data to
each task; (2) collect the tasks’ outputs. So, in this paper, we
regard user code as map(), reduce(), and the driver program.

B. Dataflow

A distributed data-parallel application consists of one or
multiple MapReduce jobs. As shown in Fig. 1, a job will
go through a map stage and a reduce stage (a Dryad/Spark
job can go through multiple map and reduce stages connected
as a directed acyclic graph). Each stage contains multiple
map/reduce tasks (i.e., mappers/reducers). For parallelism, the
mappers’ outputs are partitioned and each partition is shuffled
to a corresponding reducer by the framework. Dataflow refers
to the data that flows among mappers and reducers.

The major difference between MapReduce and Dryad/Spark
is that Dryad/Spark supports pipeline. In the pipeline, map/re-
duce tasks can continuously execute multiple user-defined
functions (e.g., run another map() after a map()) without
storing the intermediate results (e.g., results of the first map())
into the disk. In Spark, users can also explicitly tell the
framework to cache reusable intermediate results in memory
(e.g., outputs of reduce() used for the next job) using cache().

C. Configurations

The application’s configurations consist of two parts: (1)
Memory-related configurations affect the memory usage di-
rectly. For example, memory limit defines the memory space
(heap size) of map/reduce tasks and buffer size defines the
size of framework buffers. (2) Dataflow-related configurations
affect the volume of data that flow among mappers and reduc-
ers. For instance, partition function defines how to partition the
〈k,v〉 records outputted by map(), while the partition number
defines how many partitions will be generated and how many
reducers will be launched.

III. METHODOLOGY

A. Subjects

We took real-world data-parallel applications that run atop
Apache Hadoop and Apache Spark as our study subjects.
Since there are not any special bug repositories for OOM
errors (JIRA mainly covers the framework bugs), users usually
post their OOM errors on the open forums (e.g., StackOver-
flow.com and Hadoop/Spark mailing list). We totally found
1151 issues by searching keywords such as “Hadoop out of
memory” and “Spark OOM” in StackOverflow.com, Hadoop
mailing list [8], Spark user/dev mailing list [9], developers’
blogs, and two MapReduce books [14], [15]. We manually re-
viewed each issue and only selected the issues that satisfy: (1)
The issue is a Hadoop/Spark OOM error, since 786 issues are
not OOM errors (e.g., only contain partial keywords “Hadoop
Memory”). (2) The OOM error occurs in the Hadoop/Spark
applications, not other service components (e.g., the scheduler
and resource manager). In total, 276 OOM errors are selected.
These errors occur in diverse Hadoop/Spark applications, such
as raw MapReduce/Spark code, Apache Pig [10], Apache Hive
[11], Apache Mahout [16], Cloud9 [17] (a Hadoop toolkit
for text processing), GraphX [18] and MLlib [12]. Based on
the approach in Section B, we identified the root causes of
123 OOM errors (listed in Table I). The root causes of the
other 153 OOM errors are unknown. Therefore, our study only
performs on these 123 OOM errors (a.k.a. failures).

B. Root cause and fix pattern identification

For each OOM error, we manually reviewed the user’s error
description and the professional answers given by experts (e.g.,
Hadoop/Spark committers from cloudera.com, experienced
developers from ebay.com, and book authors). Out of the
276 OOM errors, the root causes of 123 errors have been
identified in the following three scenarios: (1) The experts
identified the root causes and users have accepted the experts’
professional answers. (2) Users identified the root causes
themselves. They have explained the causes (e.g., abnormal
data, abnormal configurations, and abnormal code logic) in
their error descriptions and just asked how to fix the errors.
(3) We identified the causes by reproducing the errors in our
cluster and manually analyzing the root causes.

Similar to the root causes, we collected the fix patterns from
42 OOM errors, where the experts provided fix methods or
users reported the successful fix methods (25 errors). Then,
we merged the similar fix methods together and got 11 fix
patterns.

C. OOM error reproduction

To fully understand the root causes and fix patterns of OOM
errors, we have reproduced 43 OOM errors (35%), which
have detailed data characteristics, reproducible user code, and
OOM stack traces. Since we did not have the same dataset
as the users’, we used the public dataset (Wikipedia) and
synthetic dataset (random text and a well-known benchmark
[19]) instead. The experiments were conducted on a 11-
node cluster using Hadoop-1.2 and Spark-1.2. Each node has

TABLE I: DISTRIBUTION OF OUR STUDIED OOM ERRORS

Framework Sources Raw code Pig Hive Mahout Cloud9 GraphX MLlib Total Reproduced
Hadoop StackOverflow.com 20 4 2 4 0 0 0 30 16

Hadoop mailing list 5 5 1 0 1 0 0 12 6
Developers’ blogs 2 1 0 0 0 0 0 3 2
MapReduce books 8 3 0 0 0 0 0 11 2

Spark Spark mailing list 16 0 0 0 0 1 2 19 3
StackOverflow.com 42 0 0 0 0 1 5 48 14

Total 93 13 3 4 1 2 7 123 43

16GB RAM, and the memory limit of each mapper/reducer is
configured to 1GB. We made sure that the thrown stack trace
of each OOM error is the same as that reported by the users.

D. Threats to validity

1) Representativeness of applications: Our study only cov-
ers the applications that run atop open-source frameworks
(i.e., Hadoop and Spark). Although many companies (e.g.,
Facebook and Yahoo!) use these two frameworks, some other
companies have built their own (e.g., Dryad in Microsoft). We
have not studied the applications on these private frameworks.

2) Pattern completeness: Since the root causes of 153
OOM errors are unknown, there may be some new OOM cause
patterns or fix patterns. Moreover, the users’ error descriptions
and the experts’ professional answers may only cover the
major root cause when an OOM error has multiple root causes.

3) Bias in our judgment: Although we tried our best to
understand, identify, and classify the root causes, there may
be still inaccurate identification or classification. For example,
if there are multiple professional answers, we only select the
ones that are accepted by users. However, the other answers
may also be right in some cases.

IV. CAUSE PATTERNS OF OOM ERRORS

Although the root causes of the 123 OOM errors are diverse,
we can classify them into 3 categories and 10 cause patterns
according to their relationship with the data storage, runtime
dataflow, and user code. Table II illustrates the concrete cause
patterns and the corresponding number of errors in Hadoop
and Spark applications. Most OOM errors (64%) are caused
by memory-consuming user code. The second largest cause
is abnormal dataflow (37% errors). Note that 13% errors are
caused by both memory-consuming user code and abnormal
dataflow. The left 12% errors are caused by the large data
stored in the framework. We next go through each OOM cause
pattern and interpret how they lead to OOM errors.

A. Large data stored in the framework

This category has two data storage related cause patterns.
In the first pattern, the framework buffers large intermediate
data in memory. In the second pattern, users purposely cache
large data in the framework for reuse.

1) Large data buffered by the framework: To lower disk
I/O, data-parallel frameworks usually allocate in-memory
buffers to temporarily store the intermediate data (the outputs
of map() or input data of reduce() in Fig. 1). There are two
types of buffers: (1) fixed buffer. The buffer itself occupies

a large memory space such as Hadoop’s map buffer (a large
byte[]). (2) virtual buffer. This is a threshold that limits how
much memory space can be used to buffer the intermediate
data. Both Hadoop and Spark have a virtual buffer named
shuffle buffer. When users configure large buffer size, large
data will be stored in memory and OOM errors may occur.

This pattern has 8 OOM errors (6%). Four errors are caused
by the large map buffer (i.e., io.sort.mb) in Hadoop. For
example, a user configures a 300MB fixed buffer, but the
mapper’s memory is only 200MB (e01)1. Four errors are
caused by the large virtual buffer in Hadoop and Spark. For
example, a user sets the virtual buffer to be 70% of the
reducer’s memory, which is too large (should be 30% in this
case) and leads to the OOM error (e02).

2) Large data cached in the framework for reuse: Different
from the buffered data, cached data refers to the data that are
purposely cached in the framework by users for reuse. In some
applications, especially iterative machine learning and graph
applications, such as PageRank and K-means clustering, the
input data (e.g., the graph and training data) and the inter-
mediate data (e.g., weight parameters) will be reused across
multiple jobs. Hadoop reuses data between MapReduce jobs
through writing/reading distributed file system, while Spark
provides users with an interface cache() to cache the data in
memory. Large cached data can directly cause OOM errors or
reduce the available memory space for data processing.

This pattern has 7 OOM errors (6%). Three errors are
caused by caching large reusable data (RDD in Spark). For
example, the application throws an OOM error, while trying
to cache the eventual large RDD (e03). Three errors are caused
by continuously caching data into memory. For example, as
the iteration goes on in a machine learning application named
SVDPlusPlus, more and more graphs are cached and the OOM
error eventually happens (e04). The last error is caused by
caching the large data broadcasted from the driver (e05).

Finding 1: Although users can configure the buffer size
and cache threshold to limit the framework’s memory
usage, there are still many OOM errors (12%) caused by
the large data stored in the framework.
Implication: It is not easy for users to configure the right
memory quota that balances the runtime memory usage
of the framework and user code.

1(eXX) denotes the OOM error with ID=eXX in Table IV in the Appendix.

TABLE II: CAUSE PATTERNS OF THE OOM ERRORS

Category Cause patterns Pattern description Hadoop Spark Total Ratio

Large data
stored in the
framework

Large data buffered by the framework Large intermediate data are temporarily
stored in the framework buffers 6 2 8 6%

Large data cached in the framework
for reuse

Users explicitly cache large data in the
framework for reuse 0 7 7 6%

Subtotal 6 9 15 12%

Abnormal
dataflow

Improper data partition Some partitions are extremely large 3 13 16 13%
Hotspot key Large 〈k, list(v)〉 15 8 23 18%
Large single key/value record Large 〈k,v〉 6 1 7 6%
Subtotal 24 22 46 37%

Memory-
consuming
user code

Large external data loaded in the code User code loads large external data 8 0 8 6%

Large intermediate results User code generates large computing
results while processing a single record 4(3) 2 6(3) 5%

Large accumulated results User code accumulates large interme-
diate computing results in memory 30[13] 10[1] 40[14] 33%

Large data generated in the driver The driver generates large data 0 9 9 7%
Large results collected by the driver The driver collects tasks’ large outputs 0 16 16 13%
Subtotal 42 37 79 64%

Total 72 68 123+17 113%
Notations: 4(3) means that 3 out of the 4 OOM errors are also caused by large single key/value record. 30[13] means that 13 out
of the 30 OOM errors are also caused by hotspot key. 113% means that 13% errors have two OOM cause patterns.

K2 K5 K3 K6 K2 K2 K3 K6 K1 K1 K4 K4 K4 K2 K6 K6

V V V V V V V V V

K1 K4 K4 K4

V V

P1 P2 P3 P2 P3 P1 P2 P3

K1 K4 K4 K4

V V

P1

V V VV

K1

V V V V V V V V V

K4

Aggregated partition 1 (P1)

map(k,v) map(k,v) map(k,v)

reduce(k,list(v))

V V V V V V V V V V V

P2 P3

reduce(k,list(v)) reduce(k,list(v))

shuffle

Fig. 3: An example of large data partition and hotspot key

B. Abnormal dataflow

Since the data is processed in a distributed fashion and data
volume (e.g., key/value size and distribution) in each process-
ing step is determined at runtime, the framework cannot avoid
generating abnormal dataflow, such as large data partition,
hotspot key, and large single record. The abnormal dataflow
can directly cause OOM errors.

1) Improper data partition: Partition is a common tech-
nique used in data-parallel frameworks to achieve parallelism.
In Hadoop/Spark, map() outputs its 〈k,v〉 records into different
data partitions according to the k’s partition id. For example
in Fig. 3, k1 and k4 have the same partition id (suppose id =
hash(key) % partitionNumber). Records in the same partition
will be further processed by the same user code (reduce() or
combine()). Two cases can cause improper data partition: (1)
When the partition number is small, all the partitions would
be large. (2) An unbalanced partition function makes some
partitions become extremely larger than the others. Commonly
used partition functions, such as hash and range partition,
cannot avoid generating unbalanced partitions. Improper data
partition can lead to large in-memory data. For example in

Fig. 3, if P1 is much larger than P2 and P3, the reducer that
processes P1 will need to shuffle and buffer more data in
memory. More aggressively, P1 will be completely buffered
in memory in Spark, if the spill configuration is set to be false.
Improper data partition can also lead to large input data for
the following user code to process. Since the memory usage
of user code is usually related to the volume of input data,
large input data can lead to excessive memory usage of user
code. For example in Fig. 3, reduce() may run out of memory
while processing the large partition P1 .

This pattern has 16 OOM errors (13%). Seven errors are
caused by small partition number. For example, after increas-
ing the partition number to 1000, the user reports each partition
holds far less data and the OOM error is solved (e06). Four
errors are caused by the unbalanced partitions. For example,
a user reports most data is skew to only 2 reducers and one
of them gets more than half of the data (e07). In the left 5
errors, users report the data partition is very large without
detailed descriptions about the partition number and function.

2) Hotspot key: A data partition is a coarse-grained record
collection, in which the records still have different keys.
Although these records will be processed by the same user
code, they are first aggregated into different 〈k, list(v)〉 groups
by the key. Then, user code (reduce() or combine()) will
process the groups one by one. Hotspot key means that
some groups contain much more records than the others. The
partition number can affect the size of each partition, but it
cannot affect the size of each group because the group size
depends on how many records have the same key at runtime.
For example in P1 in Fig. 3, if 〈k4, list(v)〉 is much larger than
〈k1, list(v)〉, the framework may run OOM while aggregating
the 〈k4, list(v)〉. Furthermore, the following reduce() may run
OOM while processing the large 〈k4, list(v)〉.

This pattern has 23 OOM errors (18%), all of which are
caused by the huge values associated with one key. For

example, a user reports some keys only return 1 or 2 items
but some other keys return 100,000 items (e08). Another user
reports the key 〈custid, domain, level, device〉 is significantly
skewed, and about 42% of the records have the same key (e09).
Another 6 errors are caused by the hotspot key in Spark’s
aggregation operators such as groupByKey(), reduceByKey(),
and cogroup(). For example, a user reports there are too many
values for a specific key and these values cannot fit into mem-
ory (e10). The experts interpret that current groupByKey()
requires all of the values for one key can fit in memory (e11).

3) Large single key/value record: Large key/value record
means that a single 〈k,v〉 record is too large. Since user code
needs to read the whole record into memory to process it, the
large record itself can cause the OOM error. Large record can
also cause user code to generate large intermediate results,
which will be detailed in Section C. Since the record size is
determined at runtime, dataflow-related configurations cannot
control its size.

This pattern has 7 OOM errors (6%), all of which have the
information that a single record is too large. For example, a
user reports that the memory is 200MB, but the application
generates a 350MB record (a single line full of character a)
(e12). Another user reports that some records are 1MB but
some are 100MB non-splittable blob (e13). More surprisingly,
a user reports that the application is trying to send all 100GB
data into memory for one key because the changed data format
makes the terminating tokens/strings do not work (e14).

Finding 2: Abnormal dataflow is another common cause
of the OOM errors (37%), which can lead to the unex-
pected large runtime data, such as large data partition,
hotspot key, and large single key/value record.
Implication: Current data-parallel mechanisms do not
properly consider the runtime data property (e.g., key
distribution) and cannot limit input data size of user code.

C. Memory-consuming user code

Different from traditional programs, user code in data-
parallel applications has an important streaming-style feature.
In the streaming style, the 〈k,v〉 records are read, processed
and outputted one by one. So, once an input record is
processed, this record and its associated computing results
will become useless and reclaimed, unless they are purposely
cached in memory for future use. Based on this feature, we
summarized two cause patterns: large intermediate computing
results (generated for a single record) and large accumulated
results. Another pattern is that user code loads large external
data in memory. In addition, the driver program can trigger
OOM errors while generating large data in memory or col-
lecting large outputs of the tasks.

1) Large external data loaded in the user code: Different
from the buffered/cached data managed by the framework,
external data refers to the data that is directly loaded in user
code. In some applications, user code needs to load external
data from local file system, distributed file system, database,

etc. For example, in order to look up whether the key of
each input record exists in a dictionary, user code will load
the whole dictionary into a HashMap before processing the
records. Large external data can directly cause OOM errors.

This pattern has 8 OOM errors (6%). Three errors occur in
Mahout applications, whose mappers try to load large trained
models for classification (e15) and clustering (e16). One error
occurs in a Hive application that tries to load a large external
table (e17). One error occurs in a Pig script, whose UDF (User
Defined Function) tries to load a big file (e18).

2) Large intermediate results: Intermediate results refer to
the in-memory computing results that are generated while
user code is processing a 〈k,v〉 record. This pattern has two
sub-patterns: (1) the input record itself is very large, so the
intermediate results may become large too. For example, if
a record contains a 64MB sentence, its split words are also
about 64MB. (2) Even a small input record may generate large
intermediate results. For example, if the value of a record has
two sets, Cartesian product of them is orders of magnitude
larger than this input record.

This pattern has 6 OOM errors (5%). In 3 errors, user
code generates large intermediate results due to the extremely
large input record. In 1 error, reduce() generates very long
output record in memory (e19). In 1 error, a machine learning
application constructs large models in memory for matrix
factorization (e20). The last error occurs in a text processing
application (e21), which aims to lemmatize the words in a
large document using a third-party library StanfordLemmatizer
as follows. During processing each line of the document,
lematize() allocates large dynamic programming data struc-
tures, which might be 3 times larger than the line (interpreted
by the library author). The OOM error occurs in lematize()
because the line under processing is extremely large.
public class Mapper {
StanfordLemmatizer slem = new StanfordLemmatizer();
public void map(Long key, Text value) {
String line = value.toString();
for(String word: slem.lemmatize(line))
emit(word, 1);

}
}

3) Large accumulated results: If the intermediate comput-
ing results generated at current input record are cached in
memory for future use, they become accumulated computing
results. So, more records are processed, more intermediate
results may accumulate in memory. For example, to dedupli-
cate the input records, map() may allocate a Set to keep each
unique input record. If there are many distinct input records,
the Set will become large too. For reduce(), it can generate
large accumulated results during processing a large 〈k, list(v)〉
group, which could be a result of hotspot key.

This pattern has 40 OOM errors (33%). In 11 errors, users
allocate in-memory data structures to accumulate the input
records. For example, a user allocates an ArrayList to keep all
the values for a key, which might contain 100 million values
(e22). In other errors, users try to accumulate the intermediate
results, such as the word’s frequency of occurrence (e23)
and the training weights (e24). User code accumulates the

intermediate results to find distinct tuples (e25), perform in-
memory sort, compute median value, or take a cross product
(e26). The following error occurs in a reducer, which is
computing the word co-occurrence matrix of a large document
(e27). In this error, reduce() allocates a HashMap-like data
structure HMapStIW to keep each word’s neighboring words.
Since there are many words in the document and each word
has many neighboring words, the accumulative operator plus()
puts too many words into map and causes the OOM error (its
OOM stack trace is Listing 1).
public class Reducer {

void reduce(Text key, Iterable<HMapStIW> values) {
Iterator<HMapStIW> iter = values.iterator();
HMapStIW map = new HMapStIW();
while (iter.hasNext()) {

map.plus(iter.next());
}
emit(key, map);

}
}

4) Large data generated/collected by the driver: Although
the driver program does not directly process the 〈k,v〉 records,
there are two OOM cause patterns in it: (1) The driver
generates large data in memory. (2) The driver collects large
computing results from the tasks to compute the final results.

The first pattern has 9 OOM errors (7%). The generated
large data is used for broadcasting or local computation.
For broadcasting, a driver generates a 1GB array (e28), and
another one generates a 0.15GB variable (e29). For local
computation, a driver generates an 8000×8000 dense matrix
about 256MB (e30). Another driver generates 400 million
doubles for computing the conditional probabilities (e31).

The second pattern has 16 OOM errors (13%). For example,
a driver uses graph.edges.collect() to collect all the edges of
a 4.5GB graph into memory (e32). Another driver collects
the large computing results of reduceByKey(), which have
200 million words (e33). More interestingly, in an iterative
application, the driver collects the tasks’ outputs in each
iteration, which causes the memory usage to increase gradually
and finally triggers the OOM error (e34).

Finding 3: Most OOM errors (64%) are caused by
memory-consuming user code, which carelessly processes
unexpected large data or generates large computing results.
Implication: It is hard for users to design memory-efficient
code and predict the memory usage of user code, without
knowing the runtime data volume.

V. COMMON FIX PATTERNS FOR OOM ERRORS

It is not easy to fix the OOM errors, since the causes may
be related to data storage, runtime dataflow, and user code. As
a result, users usually attempt to enlarge the memory limit to
resolve the OOM errors. However, it is not a reliable solution
since the enlarged memory space can be filled up again.

To investigate reliable solutions, we summarized the fix
patterns from the users’ fix practice, experts’ fix suggestions,
and our practice in fixing the reproduced OOM errors. In total,

we found 11 fix patterns from 42 OOM errors. Eight pat-
terns are conventional, which try to change memory/dataflow-
related configurations, divide data into small pieces, and
optimize user code logic. We are also surprised to see 3 tricky
patterns, which try to redesign the key, skip the abnormal
data, and change the application-related parameters. Table III
summarizes the common fix patterns for each cause pattern (3
cause patterns lack fix patterns). In this table, the label C and U
denote whether the pattern needs to modify the configurations
(C) and user code (U). Errors(n) represents how many OOM
errors belong to this fix pattern and n errors have been fixed.
Next, we will detail each fix pattern and the related errors.

A. Data storage related fix patterns

There are two fix patterns for reducing the memory usage
of data storage. To perform the two patterns, users only need
to adjust the memory-related configurations.

1) Lower framework buffer size: Lowering framework
buffer size means decreasing the map buffer size or decreasing
the shuffle buffer size. Both of them can directly reduce the
size of buffered data at the expense of more disk I/O.

In total, six OOM errors are fixed by this pattern. Three
errors are fixed by lowering map buffer in Hadoop (e.g.,
changing io.sort.mb from 128MB to 64MB (e35)). Two errors
are fixed by lowering shuffle buffer in Hadoop (e.g., changing
shuffle.input.buffer.percent from 70% to 30%, but it leads to
much longer (2-hour) execution time (e02)). The last error is
fixed by removing the shuffle buffer in Spark (i.e., setting
spark.shuffle.memoryFraction to 0), which results in 20%
longer execution time (e36).

2) Lower the cache threshold: Cache threshold is a con-
figuration that limits the memory space used for data cache.
Lowering cache threshold directly reduces the size of cached
data. However, the expense is that large data block cannot be
cached in memory. To solve this problem, Spark provides a
memory+disk cache mechanism, which has three data storage
levels: memory-only, memory+disk, and disk-only.

Two OOM errors are fixed by this pattern. One error is fixed
by changing cache threshold (spark.storage.memoryFraction)
from 0.66 to 0.1 (e37). The other error is fixed by changing
storage level from memory-only to disk-only, at the expense
of a little slower execution speed (e20).

B. Dataflow related fix patterns

Since large data partition, hotspot key (i.e., large group),
and large single record all can lead to the OOM errors, the
proposed fix patterns are to divide the large runtime data (large
partition, large group, and large record) into small pieces.

1) Change partition number/function: Data partition size
is directly affected by the partition number and partition
function. Increasing partition number is a simple way to reduce
the data partition, though it is not 100% reliable. Another fix
pattern is to try other partition functions, such as range parti-
tion, round-robin partition, or self-designed partition function
to get more balanced partitions.

TABLE III: COMMON FIX PATTERNS

Category Cause patterns Fix patterns C U Errors(n)
Data storage
related fixes

Large data buffered by the framework Lower framework buffer size X 6 (6)
Large data cached in the framework Lower cache threshold, or use disk-based cache X 2 (2)

Datflow
related fixes

Improper data partition Increase partition number, or change partition function X 12 (6)
Hotspot key Redesign the key (e.g., using composite key) X 3 (0)
Large single key/value record Split the large record into multiple small records X 4 (1)

User code
related fixes

Large accumulated results

Change accumulative operator to streaming operators X 2 (2)
Do the accumulative operation in several passes X 3 (1)
Spill partial accumulated results into disk X 3 (1)
Skip the abnormal data X 2 (2)

Large results collected by the driver Use tree aggregation instead of direct collect() X 3 (2)
Adjust application’s parameters X 2 (2)

Total 42 (25)

In 12 OOM errors, users are suggested to use this pattern.
Six errors are fixed by increasing partition number (i.e., reduce
number in Hadoop and spark.default.parallelism in Spark). For
example, after increasing the partition number to 1000, a user
reports that each partition holds far less data and the OOM
problem is solved (e06). One error is partially fixed as the user
reports that “my only solution has been to increase reducer
counts, but that does not seem to be getting me anywhere
reliable”. The expert interprets that increasing partition number
only works when the keys are evenly distributed (e38). In
1 error, the user attempts to adjust the partition function
(choosing custom ranges for a range partitioner) to handle the
unbalanced partitions (e39).

2) Redesign the key: Redesigning the key aims to spread
the key distribution, so that the large (hotspot) group can be
smaller. A simple method is to use composite key instead of a
single key. For example, map() can output a key tuple (k1,k2)
instead of a single key k as follows.

map(k,v)⇒ list((k1,k2),v)

reduce((k1,k2), list(v))⇒ list(v)

As a result, the original large 〈k, list(v)〉 group is divided
into multiple smaller 〈(k1,k2), list(v)〉 groups.

In 3 OOM errors, users are suggested to use this pattern.
In 1 error, the key vehicle has a huge amount of values. The
expert suggests the user to use (vehicle,day) as a key, which
can drastically cut down the data associated to a single key
(e40). In another error, the expert suggests the user to sub-
divide very large groups by appending a hashed value in a
small range (e.g., 1-10) to large keys (e11). In the last error,
the expert suggests the user to suffix 1 or 2 to the keys (e26).

3) Split the large single record: This fix pattern aims to
split the large input/output record into small records.

In 4 OOM errors, users are suggested to use this pattern. In
1 error, the user is suggested to break up the 100MB+ record
into smaller records in map(), so that the further reduce() will
receive smaller records (e41). In 1 error, the user is suggested
to write the large record out as multiple strings rather than a
single super giant string (e42). In 1 error, the user is suggested
to use the pos.maxlen interface of the library to split long
sentence (e21). The last error is fixed by partitioning the large

record (posting of the inverted index) into manageable sized
chunks and outputting several records for the same key (e43).

C. User code related fix patterns

The following fix patterns aim to fix the OOM errors in
map() and reduce().

1) Change accumulation to streaming operators: Since ac-
cumulation is a common OOM cause, the experts suggest users
to change the accumulative operators to one-pass streaming
operators.

Two OOM errors are fixed by this pattern. Both errors occur
in the in-memory sort. To sort the list(v) in the 〈k, list(v)〉,
users allocate a List in memory to keep each v. This accumu-
lation leads to the OOM error. The experts suggest users to
utilize framework’s sort mechanism by adding v into the key
as (k,v). So, list(v) in the 〈(k,v), list(v)〉 will be sorted while
the framework is sorting the key. As a result, user code just
needs to read and directly output the sorted list(v) one by one,
which is a one-pass streaming operation (e44).

2) Do the accumulation in several passes: This pat-
tern aims to divide the accumulative operators into several
memory-efficient lightweight operators. Lightweight operator
refers to the operator that performs on partial data or generates
limited accumulated results.

In 3 OOM errors, users are suggested to use this pattern.
In 1 error, the user is suggested to add a combine() (i.e., a
mini reduce()) operator to perform partial aggregation after
map() and before reduce(). As a result, reduce() will receive
smaller data (fewer unique values) (e45). In another error,
the user is suggested to use aggregateByKey() instead of
groupByKey(), because the former can aggregate the records
locally and reduce the shuffling data (e46). The last error (e47)
is fixed, which intends to count the distinct values of column
B (for each distinct value of column A) in a table. The user
first performs groupby(A) and then counts the distinct B in
each group A. However, count(distinct B) runs out of memory
because a group has too many distinct values. The expert
suggests the user to use two groups, which have two steps
of lightweight operators as follows.

The first step performs groupby(A,B) and directly outputs
the keys (i.e., got distinct (A,B)). The second step performs

groupby(A) and directly outputs the values as the final results.

Original : groupby(A) ⇒ count(distinct B)
Optimized : groupby(A,B) ⇒ output(A,B) ⇒ (1)

groupby(A) ⇒ output(B) (2)

3) Spill accumulated results into disk: This fix pattern
does not aim to optimize the code logic, but just spills the
accumulated results into disk before they become too large.

In 3 OOM errors, users are suggested to use this pattern. In
1 fixed error, map() emits the partial results after processing
every n input records (e23). In one Hive error, the user
is suggested to lower the hive.map.aggr.hash.percentmemory
from 0.5 to 0.25, which means that the hash map used in
map-side aggregation will be spilled into disk once it occupies
25% of the memory space (e48). Similarly, in one Pig error,
the expert suggests the user to set pig.cachedbag.memusage to
0.1 or lower, which controls the memory threshold for spilling
Pig’s internal data (i.e., bags) (e25).

4) Skip the abnormal data: In this fix pattern, user code
does not process (just skips) the extremely large record/group.
We are surprised to see that this tricky pattern is used to fix
the OOM error. The reason may be that it is hard to optimize
the user code logic, especially when user code invokes a third-
party library without available source code. This skip action
is also acceptable for the applications that do not need precise
results (e.g., perform statistical analysis on very large data).

Two OOM errors are fixed by this pattern. The first error
occurs in a video recommendation application, while user code
is processing the problematic data (the people who watched
100,000 videos). These people are skipped, because they are
probably bots and the application only needs a hundred recent
views to compute the person’s preferences (e49). In the other
error, the useless but hotspot keys are directly skipped (e38).

D. Driver program related fix patterns

The experts have proposed two fix patterns to reduce the
driver’s memory usage while it is collecting the tasks’ outputs.

1) Use tree aggregation: As the name indicates, tree ag-
gregation aggregates the tasks’ outputs in a multi-level tree
pattern. In the first layer, it aggregates the tasks’ outputs two
by two, resulting in half of the numbers of the outputs. And
then, it continuously does the aggregation layer by layer. The
final aggregation will be done in the driver but at that time,
the numbers of data will be very small.

Two MLlib OOM errors are fixed by this pattern. The users
use tree aggregation to avoid directly collecting too many
vectors (e50) and too many gradients (e51) in the driver.

2) Adjust the application’s parameters: To fix the OOM
error, the users/experts even try to adjust the application’s pa-
rameters. In some machine learning applications such as SVD
and ALS, the size of the tasks’ outputs has linear/quadratic
relationship with the applications’ parameters such as SVD’s
k and ALS’s rank. Lowering these parameters means that the
tasks’ outputs will become smaller.

Two OOM errors are fixed by this pattern. The first error is
fixed by lowering SVD’s parameter k to 200 (e52). The second

error is fixed by setting the ALS’s rank value under 40 (e53).

Finding 4: The commonly used OOM fix patterns are
adjusting memory/dataflow-related configurations, divid-
ing runtime data, and optimizing user code logic. We are
also surprised to see that there are tricky fix patterns, such
as redesigning the key and skipping the abnormal data.
Implication: There is not a unified method to fix the OOM
errors. The general fix guide is to limit the data storage,
the runtime data, or the memory usage of user code.

VI. CURRENT AND FUTURE PRACTICE

Since the OOM error cannot be tolerated by current fault-
tolerant techniques, it is critical to design new fault-tolerant
mechanisms and OOM diagnosis tools.

Learnt from the errors and our practice in the OOM diagno-
sis, we found several potential solutions that can facilitate the
cause diagnosis or improve the frameworks’ fault tolerance.

A. Facilitate OOM cause diagnosis

1) Provide statistical dataflow information: Abnormal
dataflow is a common OOM cause, but current frameworks
provide limited runtime dataflow information. For example,
Hadoop only counts the number/size of currently processed
input/output records, while Spark requires users to manually
count how many records have been processed.

If the frameworks can provide statistical dataflow informa-
tion, OOM error diagnosis will become easier. The statistical
information should contain the statistics (e.g., min, average,
median, and max number/size) of the input/output records in
each group and in each data partition. Based on this informa-
tion, the frameworks can perform some anomaly detection on
the dataflow, such as detecting the unbalancedness of the data
partition using statistical methods. We have implemented this
feature in our enhanced Hadoop-1.2, and this feature helps
us identify the root causes of our reproduced OOM errors,
including improper data partition (1 error), hotspot key (6
errors), and large single record (1 error).

B. Improve frameworks’ fault tolerance

1) Enable dynamic memory management: From the cause
patterns, we can see that 12% OOM errors are caused by the
large data stored in the frameworks. This indicates that it is
hard for users to configure the right memory quota to balance
the memory usage of the framework and user code.

Dynamic memory management aims to automatically bal-
ance the memory usage of the framework and user code at
runtime. Although it is hard to estimate the memory usage of
user code, the framework can constantly monitor the memory
usage of the buffered/cached data (du) and the total memory
usage (total). The memory usage of user code can be roughly
computed by total-du. When the total memory usage achieves
a threshold, the framework can pause the user code, spill the
cached/buffered data into disk, and then resume the user code.
In contrast, the spilled cached data can be read back when the
memory usage of user code is lower.

2) Provide memory+disk data structures: In-memory data
structures are frequently used in user code for accumulating
〈k,v〉 records or intermediate results. However, they are error-
prone and we found 18 OOM errors (15%) that occur in the
data structures: List/ArrayList (9 errors), Map/HashMap (5
errors), Set/HashSet (3 errors), and PriorityQueue (1 error).

An ideal solution is to provide users with commonly used
memory+disk data structures for accumulation/aggregation.
The new data structures can have the same/similar APIs with
Java Collections and C++ STL. The difference is that the new
data structures can automatically swap between memory and
disk depending on the available memory.

Spark has implemented a HashMap-like memory+disk data
structure named ExternalAppendOnlyMap, in which the keys
cannot be removed but the value for each key can be changed.
However, this data structure cannot be directly used by users
(internally used by the framework in some aggregative opera-
tors such as reduceByKey()). Other open-source projects, such
as STXXL [20] and TPIE [21], have implemented disk-based
containers and algorithms, which can process large volumes
of data that only fit on disks. We can optimize them for
aggregating records and incorporate them into the frameworks.

Finding 5: Current data-parallel frameworks provide lim-
ited support for OOM error diagnosis and tolerance.
Implication: There are several potential solutions to im-
prove frameworks’ fault tolerance and the error diag-
nosis, such as providing statistical dataflow information,
enabling dynamic memory management, and providing
memory+disk data structures for aggregation.

VII. DISCUSSION

Although our study is conducted on Apache Hadoop and
Apache Spark, most of our results can be generalized to other
MapReduce-like frameworks such as Dryad [2], Naiad [22],
Map-Reduce-Merge [23], and the under-developing Apache
Flink [24]. These frameworks share the same programming
model and data-parallel mechanisms.

Currently, we only studied the OOM errors in MapReduce-
like applications. They are representative and have covered
many data-intensive applications, such as text processing, SQL
processing, machine learning, and graph processing. However,
there are some non-MapReduce frameworks designed for
special data-intensive applications. For example, Pregel [25]
and Powergraph [26] are designed to process large graph,
while Apache Storm [27] is designed for stream processing.
We leave the investigation on OOM errors in these non-
MapReduce applications as our future work.

We also found many OOM errors in Hadoop/Spark appli-
cations in Alibaba and Tencent. These OOM errors (e.g., [28]
in Tencent) have the same causes and fix patterns with our
studied errors (e.g., e47).

VIII. RELATED WORK

Failure study on big data applications Many researchers
have studied the failures in big data applications/systems. Li et

al. [4] studied 250 failures in SCOPE jobs and found the root
causes are undefined columns, wrong schemas, incorrect row
format, etc. They also found 3 OOM errors that are caused
by accumulating large data (e.g, all input rows) in memory.
The 3 errors can be classified to the large accumulated results
pattern in our study. Kavulya et al. [5] analyzed 4100 failed
Hadoop jobs, and found 36% failures are Array indexing errors
and 23% failures are IOExceptions. Xiao et al. [29] studied
the correctness of MapReduce programs. They summarized
5 patterns of non-commutative reduce functions, which will
generate inconsistent results if re-executed. Zhou et al. [30]
studied the quality issues of big data platform in Microsoft.
They found 36% issues are caused by system side defects and
2 issues (1%) are memory issues. Gunawi et al. [6] studied
3655 development and deployment issues in cloud systems
such as Hadoop and HBase [7]. They reported 1 OOM error
in HBase (users submit queries on large data sets) and 1 OOM
error in Hadoop File System (users create thousands of small
files in parallel). Different from the above studies, our work
focuses on analyzing the root causes and fixes of OOM errors.

Optimize frameworks’ memory management FACADE
[31] proposes a compiler and runtime to separate data storage
from data manipulation: data are stored in the unbounded
off-heap, while heap objects are created as memory-bounded
facades for function calls. InterruptibleTask [32] presents a
new type of data-parallel tasks, which can be interrupted upon
memory pressure (excessive GC effort or OOM errors) and
execute interrupt handling logics specified by users. The tasks
can reclaim part or all of its consumed memory when memory
pressure comes, and re-activate when the pressure goes away.

Memory leak analysis Memory leaks can cause OOM
errors, so researchers proposed many memory leak detectors,
including static detectors [33], [34] and dynamic detectors
[35], [36]. Memory leak means that users forget to release the
useless objects. In our study, we have not found memory leaks.
One reason is that user code is written by GC-based languages
(Java/Scala) in our studied applications. The other reason is
that it is hard for us to judge whether the large data/results in
user code are necessarily or unnecessarily persisted.

IX. CONCLUSION

The paper presents the first comprehensive study on 123
OOM errors in distributed data-parallel applications. We found
that the OOM root causes are memory-consuming user code,
abnormal dataflow, and large buffered/cached data. We also
summarized the common fix patterns for most OOM root
causes. Our findings inspire us to propose potential solutions
to improve frameworks’ fault tolerance and facilitate the OOM
cause diagnosis. We believe our results can help both users and
the framework designers to handle OOM errors properly.

X. ACKNOWLEDGEMENTS

We thank the anonymous reviewers, Hucheng Zhou, Zhenyu
Guo, and Sa Wang, for their valuable comments and sugges-
tions. This work is supported by the National Natural Science
Foundation of China (61202065, U1435220).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in 6th Symposium on Operating System Design and
Implementation (OSDI), 2004, pp. 137–150.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2007 EuroSys Conference (EuroSys), 2007, pp. 59–
72.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012, pp. 15–28.

[4] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin, and T. Xie, “A
characteristic study on failures of production distributed data-parallel
programs,” in 35th International Conference on Software Engineering
(ICSE), 2013, pp. 963–972.

[5] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces
from a production mapreduce cluster,” in 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp.
94–103.

[6] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria, “What bugs live in the cloud?: A study of 3000+ issues
in cloud systems,” in Proceedings of the ACM Symposium on Cloud
Computing, Seattle (SoCC), 2014, pp. 7:1–7:14.

[7] “Apache HBase.” [Online]. Available: http://hbase.apache.org/
[8] “Hadoop mailing list.” [Online]. Available: http://hadoop-common.

472056.n3.nabble.com/Users-f17301.html
[9] “Spark mailing list.” [Online]. Available: http://apache-spark-user-list.

1001560.n3.nabble.com/
[10] “Apache Pig.” [Online]. Available: http://pig.apache.org
[11] “Apache Hive.” [Online]. Available: https://hive.apache.org/
[12] “MLlib: Apache Spark’s scalable machine learning library.” [Online].

Available: https://spark.apache.org/mllib/
[13] “Real-world OOM Errors in Distributed Data-parallel Applications.”

[Online]. Available: https://github.com/JerryLead/MyPaper/blob/master/
OOM-Study.pdf

[14] D. Miner and A. Shook, MapReduce Design Patterns: Building Effective
Algorithms and Analytics for Hadoop and Other Systems. O’Reilly
Media, Inc., 2012.

[15] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce,
ser. Synthesis Lectures on Human Language Technologies. Morgan &
Claypool Publishers, 2010. [Online]. Available: https://lintool.github.io/
MapReduceAlgorithms/MapReduce-book-final.pdf

[16] “Apache Mahout.” [Online]. Available: https://mahout.apache.org
[17] “Cloud9: A Hadoop toolkit for working with big data.” [Online].

Available: http://lintool.github.io/Cloud9/
[18] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,

and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2014, pp. 599–613.

[19] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2009, pp. 165–178.

[20] “STXXL: Standard Template Library for Extra Large Data Sets.”
[Online]. Available: http://stxxl.sourceforge.net/

[21] “TPIE - The Templated Portable I/O Environment.” [Online]. Available:
http://madalgo.au.dk/tpie/

[22] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in ACM SIGOPS 24th
Symposium on Operating Systems Principles (SOSP), 2013, pp. 439–
455.

[23] H. Yang, A. Dasdan, R. Hsiao, and D. S. P. Jr., “Map-reduce-merge:
simplified relational data processing on large clusters,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2007, pp. 1029–1040.

[24] “Apache Flink.” [Online]. Available: https://flink.apache.org/
[25] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 2010, pp. 135–146.

[26] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
graph: Distributed graph-parallel computation on natural graphs,” in 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2012, pp. 17–30.

[27] “Apache Storm.” [Online]. Available: https://storm.apache.org/
[28] “The OOM error in Count(distinct) in Tencent.” [Online]. Available:

http://download.csdn.net/detail/happytofly/8637461
[29] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen, and

L. Zhou, “Nondeterminism in mapreduce considered harmful? an empir-
ical study on non-commutative aggregators in mapreduce programs,” in
36th International Conference on Software Engineering (ICSE), 2014,
pp. 44–53.

[30] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin, “An
empirical study on quality issues of production big data platform,” in
37th International Conference on Software Engineering (ICSE), 2015.

[31] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu, “FACADE: A
compiler and runtime for (almost) object-bounded big data applications,”
in Proceedings of the Twentieth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015, pp. 675–690.

[32] L. Fang, K. Nguyen, G. H. Xu, B. Demsky, and S. Lu, “Interruptible
tasks: Treating memory pressure as interrupts for highly scalable data-
parallel programs,” in ACM SIGOPS 25th Symposium on Operating
Systems Principles (SOSP), 2015.

[33] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak
detection using guarded value-flow analysis,” in Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation (PLDI), 2007, pp. 480–491.

[34] Y. Xie and A. Aiken, “Context- and path-sensitive memory leak detec-
tion,” in Proceedings of the 10th European Software Engineering Con-
ference held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), 2005, pp. 115–125.

[35] M. Jump and K. S. McKinley, “Cork: dynamic memory leak de-
tection for garbage-collected languages,” in Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2007, pp. 31–38.

[36] G. H. Xu and A. Rountev, “Precise memory leak detection for java
software using container profiling,” in 30th International Conference on
Software Engineering (ICSE), 2008, pp. 151–160.

http://hbase.apache.org/
http://hadoop-common.472056.n3.nabble.com/Users-f17301.html
http://hadoop-common.472056.n3.nabble.com/Users-f17301.html
http://apache-spark-user-list.1001560.n3.nabble.com/
http://apache-spark-user-list.1001560.n3.nabble.com/
http://pig.apache.org
https://hive.apache.org/
https://spark.apache.org/mllib/
https://github.com/JerryLead/MyPaper/blob/master/OOM-Study.pdf
https://github.com/JerryLead/MyPaper/blob/master/OOM-Study.pdf
https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://mahout.apache.org
http://lintool.github.io/Cloud9/
http://stxxl.sourceforge.net/
http://madalgo.au.dk/tpie/
https://flink.apache.org/
https://storm.apache.org/
http://download.csdn.net/detail/happytofly/8637461

APPENDIX
TABLE IV: LINKS OF REAL-WORLD OOM ERRORS REFERRED IN THIS PAPER

ID The real-world OOM errors referred in this paper Version Info URL
e01 Out of heap space errors on TTs Hadoop 0.20.2 http://tinyurl.com/p9prayt
e02 pig join gets OutOfMemoryError in reducer when mapred.job.shuffle.input.buffer.percent=0.70 Pig http://tinyurl.com/kb4zmot
e03 Kyro serialization slow and runs OOM Spark http://tinyurl.com/qbchkfp
e04 [Graphx] some problem about using SVDPlusPlus GraphX http://tinyurl.com/pb6857w
e05 Problems with broadcast large datastructure Spark http://tinyurl.com/osvc2dg
e06 Why does Spark RDD partition has 2GB limit for HDFS Spark http://tinyurl.com/qcugugs
e07 RDD Blocks skewing to just few executors Spark http://tinyurl.com/pzp4l3u
e08 Building Inverted Index exceed the Java Heap Size Hadoop http://tinyurl.com/ojf9npb
e09 memoryjava.lang.OutOfMemoryError related with number of reducer? Hadoop http://tinyurl.com/q6jomja
e10 OutOfMemory in “cogroup” Spark http://tinyurl.com/qaofbsc
e11 Understanding RDD.GroupBy OutOfMemory Exceptions Spark 1.1 http://tinyurl.com/os6hbgo
e12 Hadoop Streaming Memory Usage Hadoop http://tinyurl.com/orfv3n3
e13 Hadoop Pipes: how to pass large data records to map/reduce tasks Hadoop http://tinyurl.com/phwdob4
e14 Hadoop Error: Java heap space Hadoop 2.2 http://tinyurl.com/qy6wyj9
e15 OutOfMemory Error when running the wikipedia bayes example on mahout Mahout http://tinyurl.com/p3cj4ve
e16 Mahout on Elastic MapReduce: Java Heap Space Mahout 0.6 http://tinyurl.com/na5wodj
e17 Hive: Whenever it fires a map reduce it gives me this error Hive 0.10 http://tinyurl.com/p32aqfd
e18 OutOfMemoryError of PIG job (UDF loads big file) Pig http://tinyurl.com/ne6o6z3
e19 Writing a Hadoop Reducer which writes to a Stream Hadoop http://tinyurl.com/p46zupz
e20 MLLib ALS question Spark 1.1 http://tinyurl.com/oa5eotk
e21 java.lang.OutOfMemoryError on running Hadoop job Hadoop 0.18.0 http://tinyurl.com/odydwfx
e22 Why does the last reducer stop with java heap error during merge step Hadoop http://tinyurl.com/crbd6q8
e23 MapReduce Algorithm - in Map Combining Hadoop http://tinyurl.com/ohcue2r
e24 how to solve reducer memory problem? Hadoop http://tinyurl.com/okq74kp
e25 java.lang.OutOfMemoryError while running Pig Job Pig http://tinyurl.com/ovpo8th
e26 A join operation using Hadoop MapReduce Hadoop http://tinyurl.com/b5m72hv
e27 Set number Reducer per machines Cloud9 http://tinyurl.com/m4fo6wr
e28 trouble with broadcast variables on pyspark Spark http://tinyurl.com/nktoyp4
e29 driver memory Spark http://tinyurl.com/oa6bn5f
e30 RowMatrix PCA out of heap space error MLlib 1.1.0 http://tinyurl.com/p382x4k
e31 Running out of memory Naive Bayes MLlib 1.0 http://tinyurl.com/nwzq4sr
e32 GraphX does not work with relatively big graphs GraphX http://tinyurl.com/qj4fst5
e33 something about rdd.collect Spark http://tinyurl.com/ok2zkjn
e34 How to efficiently join this two complicated rdds Spark 0.9 http://tinyurl.com/ppa9suv
e35 CDH 4.1: Error running child: java.lang.OutOfMemoryError: Java heap space Cloudera 4.1 http://tinyurl.com/oggnsg3
e36 org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 0 Spark http://tinyurl.com/pu3nfzc
e37 [0.9.0] MEMORY AND DISK SER not falling back to disk Spark 0.9.0 http://tinyurl.com/nbajgc3
e38 Reducer’s Heap out of memory Pig 0.8.1 http://tinyurl.com/mftlvvv
e39 OOM writing out sorted RDD Spark http://tinyurl.com/oe9dj78
e40 Lag function equivalent in an RDD Spark http://tinyurl.com/ng23nl6
e41 Hadoop Pipes: how to pass large data records to map/reduce tasks Hadoop http://tinyurl.com/phwdob4
e42 OOM with groupBy + saveAsTextFile Spark 1.1.0 http://tinyurl.com/pa7ells
e43 Efficient Sharded Positional Indexer Hadoop http://tinyurl.com/pdbcp7y
e44 OutOfMemory during Plain Java MapReduce Hadoop http://tinyurl.com/otq9ucs
e45 Hadoop UniqValueCount Map and Aggregate Reducer for Large Dataset (1 billion records) Hadoop http://tinyurl.com/q6vglsu
e46 spark aggregatebykey with collection as zerovalue Spark http://tinyurl.com/qh6nacx
e47 ORDER ... LIMIT failing on large data Pig http://tinyurl.com/q3ef6ak
e48 Out of memory due to hash maps used in map-side aggregation Hive http://tinyurl.com/qyeg9zc
e49 Reducers fail with OutOfMemoryError while copying Map outputs MapR 3.0.1 http://tinyurl.com/ozavd4q
e50 news20-binary classification with LogisticRegressionWithSGD MLlib 1.0.0 http://tinyurl.com/p8kw3pd
e51 fail to run LBFS in 5G KDD data in spark 1.0.1? MLlib 1.0.1 http://tinyurl.com/newu7d7
e52 java.lang.OutOfMemoryError while running SVD MLLib example MLlib 1.1.0 http://tinyurl.com/pb8lg2b
e53 MLLib/ALS: java.lang.OutOfMemoryError: Java heap space MLlib http://tinyurl.com/oxmjugf

http://hadoop-common.472056.n3.nabble.com/Out-of-heap-space-errors-on-TTs-td3348456.html
http://tinyurl.com/p9prayt
http://stackoverflow.com/questions/17162679/pig-join-gets-outofmemoryerror-in-reducer-when-mapred-job-shuffle-input-buffer-p
http://tinyurl.com/kb4zmot
http://apache-spark-user-list.1001560.n3.nabble.com/Kyro-serialization-slow-and-runs-OOM-td1073.html
http://tinyurl.com/qbchkfp
http://apache-spark-developers-list.1001551.n3.nabble.com/Graphx-some-problem-about-using-SVDPlusPlus-td7896.html
http://tinyurl.com/pb6857w
http://apache-spark-user-list.1001560.n3.nabble.com/Problems-with-broadcast-large-datastructure-td331.html
http://tinyurl.com/osvc2dg
http://stackoverflow.com/questions/29689719/why-does-spark-rdd-partition-has-2gb-limit-for-hdfs
http://tinyurl.com/qcugugs
http://apache-spark-user-list.1001560.n3.nabble.com/RDD-Blocks-skewing-to-just-few-executors-td19112.html
http://tinyurl.com/pzp4l3u
http://stackoverflow.com/questions/17980491/building-inverted-index-exceed-the-java-heap-size
http://tinyurl.com/ojf9npb
http://hadoop-common.472056.n3.nabble.com/memoryjava-lang-OutOfMemoryError-related-with-number-of-reducer-td4038743.html
http://tinyurl.com/q6jomja
http://apache-spark-user-list.1001560.n3.nabble.com/OutOfMemory-in-quot-cogroup-quot-td17349.html
http://tinyurl.com/qaofbsc
http://apache-spark-user-list.1001560.n3.nabble.com/Understanding-RDD-GroupBy-OutOfMemory-Exceptions-td11427.html
http://tinyurl.com/os6hbgo
http://stackoverflow.com/questions/17975335/hadoop-streaming-memory-usage
http://tinyurl.com/orfv3n3
http://stackoverflow.com/questions/4021828/hadoop-pipes-how-to-pass-large-data-records-to-map-reduce-tasks
http://tinyurl.com/phwdob4
http://stackoverflow.com/questions/23521149/hadoop-error-java-heap-space
http://tinyurl.com/qy6wyj9
http://stackoverflow.com/questions/10080800/outofmemory-error-when-running-the-wikipedia-bayes-example-on-mahout
http://tinyurl.com/p3cj4ve
http://stackoverflow.com/questions/10376171/mahout-on-elastic-mapreduce-java-heap-space
http://tinyurl.com/na5wodj
http://stackoverflow.com/questions/24564357/hive-whenever-it-fires-a-map-reduce-it-gives-me-this-error-can-not-create-a-pa
http://tinyurl.com/p32aqfd
http://hadoop-common.472056.n3.nabble.com/OutOfMemoryError-of-PIG-job-UDF-loads-big-file-td327956.html
http://tinyurl.com/ne6o6z3
http://stackoverflow.com/questions/25767022/writing-a-hadoop-reducer-which-writes-to-a-stream
http://tinyurl.com/p46zupz
http://apache-spark-user-list.1001560.n3.nabble.com/MLLib-ALS-question-td15420.html
http://tinyurl.com/oa5eotk
http://stackoverflow.com/questions/20247185/java-lang-outofmemoryerror-on-running-hadoop-job
http://tinyurl.com/odydwfx
http://stackoverflow.com/questions/15541900/why-does-the-last-reducer-stop-with-java-heap-error-during-merge-step
http://tinyurl.com/crbd6q8
http://puffsun.iteye.com/blog/1902837
http://tinyurl.com/ohcue2r
http://hadoop-common.472056.n3.nabble.com/how-to-solve-reducer-memory-problem-td4037710.html
http://tinyurl.com/okq74kp
https://mail-archives.apache.org/mod_mbox/pig-user/201105.mbox/%3CBANLkTikCyLB5GUu=OjYY9LSABLy-9VCbpw@mail.gmail.com%3E
http://tinyurl.com/ovpo8th
http://stackoverflow.com/questions/16633250/a-join-operation-using-hadoop-mapreduce
http://tinyurl.com/b5m72hv
http://mail-archives.apache.org/mod_mbox/hadoop-common-user/201010.mbox/%3CAANLkTi=aNjiUezv-a9yFZpbXXWFsbjeKKyd2KmqCUAWc@mail.gmail.com%3E
http://tinyurl.com/m4fo6wr
http://apache-spark-user-list.1001560.n3.nabble.com/trouble-with-broadcast-variables-on-pyspark-td1301.html
http://tinyurl.com/nktoyp4
http://apache-spark-user-list.1001560.n3.nabble.com/driver-memory-td10486.html
http://tinyurl.com/oa6bn5f
http://apache-spark-user-list.1001560.n3.nabble.com/RowMatrix-PCA-out-of-heap-space-error-td16305.html
http://tinyurl.com/p382x4k
http://apache-spark-user-list.1001560.n3.nabble.com/Running-out-of-memory-Naive-Bayes-td4866.html
http://tinyurl.com/nwzq4sr
http://stackoverflow.com/questions/29050904/graphx-does-not-work-with-relatively-big-graphs
http://tinyurl.com/qj4fst5
http://apache-spark-user-list.1001560.n3.nabble.com/something-about-rdd-collect-td16451.html
http://tinyurl.com/ok2zkjn
http://apache-spark-user-list.1001560.n3.nabble.com/How-to-efficiently-join-this-two-complicated-rdds-td1665.html
http://tinyurl.com/ppa9suv
http://stackoverflow.com/questions/13674190/cdh-4-1-error-running-child-java-lang-outofmemoryerror-java-heap-space
http://tinyurl.com/oggnsg3
http://stackoverflow.com/questions/28901123/org-apache-spark-shuffle-metadatafetchfailedexception-missing-an-output-locatio
http://tinyurl.com/pu3nfzc
http://apache-spark-user-list.1001560.n3.nabble.com/0-9-0-MEMORY-AND-DISK-SER-not-falling-back-to-disk-td1278.html
http://tinyurl.com/nbajgc3
http://stackoverflow.com/questions/8705911/reducers-heap-out-of-memory
http://tinyurl.com/mftlvvv
http://apache-spark-user-list.1001560.n3.nabble.com/OOM-writing-out-sorted-RDD-td11828.html
http://tinyurl.com/oe9dj78
http://apache-spark-user-list.1001560.n3.nabble.com/Lag-function-equivalent-in-an-RDD-td16448.html
http://tinyurl.com/ng23nl6
http://stackoverflow.com/questions/4021828/hadoop-pipes-how-to-pass-large-data-records-to-map-reduce-tasks
http://tinyurl.com/phwdob4
http://apache-spark-user-list.1001560.n3.nabble.com/OOM-with-groupBy-saveAsTextFile-td17891.html
http://tinyurl.com/pa7ells
http://www.cs.cmu.edu/~lezhao/TA/2010/HW2/
http://tinyurl.com/pdbcp7y
http://hadoop-common.472056.n3.nabble.com/OutOfMemory-during-Plain-Java-MapReduce-td4010736.html
http://tinyurl.com/otq9ucs
http://stackoverflow.com/questions/14404263/hadoop-uniqvaluecount-map-and-aggregate-reducer-for-large-dataset-1-billion-rec
http://tinyurl.com/q6vglsu
http://stackoverflow.com/questions/29011117/spark-aggregatebykey-with-collection-as-zerovalue
http://tinyurl.com/qh6nacx
https://mail-archives.apache.org/mod_mbox/pig-user/201201.mbox/%3CD570DEB688737C44A53497A16D0A7CAC0789B0@EAGF-ERFPMBX42.ERF.thomson.com%3E
http://tinyurl.com/q3ef6ak
http://stackoverflow.com/questions/16684712/out-of-memory-due-to-hash-maps-used-in-map-side-aggregation
http://tinyurl.com/qyeg9zc
http://answers.mapr.com/questions/8886/reducers-fail-with-outofmemoryerror-while-copying-map-outputs.html
http://tinyurl.com/ozavd4q
http://apache-spark-user-list.1001560.n3.nabble.com/news20-binary-classification-with-LogisticRegressionWithSGD-td7725.html
http://tinyurl.com/p8kw3pd
http://mail-archives.apache.org/mod_mbox/spark-user/201408.mbox/%3C49229E870391FC49BBBED818C268753D70587CCC@SZXEMA501-MBX.china.huawei.com%3E
http://tinyurl.com/newu7d7
http://apache-spark-user-list.1001560.n3.nabble.com/java-lang-OutOfMemoryError-while-running-SVD-MLLib-example-td14972.html
http://tinyurl.com/pb8lg2b
http://apache-spark-user-list.1001560.n3.nabble.com/MLLib-ALS-java-lang-OutOfMemoryError-Java-heap-space-td20584.html
http://tinyurl.com/oxmjugf

	Introduction
	Background
	Programming model and user code
	Dataflow
	Configurations

	Methodology
	Subjects
	Root cause and fix pattern identification
	OOM error reproduction
	Threats to validity
	Representativeness of applications
	Pattern completeness
	Bias in our judgment

	Cause Patterns of OOM Errors
	Large data stored in the framework
	Large data buffered by the framework
	Large data cached in the framework for reuse

	Abnormal dataflow
	Improper data partition
	Hotspot key
	Large single key/value record

	Memory-consuming user code
	Large external data loaded in the user code
	Large intermediate results
	Large accumulated results
	Large data generated/collected by the driver

	Common Fix Patterns for OOM Errors
	Data storage related fix patterns
	Lower framework buffer size
	Lower the cache threshold

	Dataflow related fix patterns
	Change partition number/function
	Redesign the key
	Split the large single record

	User code related fix patterns
	Change accumulation to streaming operators
	Do the accumulation in several passes
	Spill accumulated results into disk
	Skip the abnormal data

	Driver program related fix patterns
	Use tree aggregation
	Adjust the application's parameters

	Current and Future Practice
	Facilitate OOM cause diagnosis
	Provide statistical dataflow information

	Improve frameworks' fault tolerance
	Enable dynamic memory management
	Provide memory+disk data structures

	Discussion
	Related work
	Conclusion
	Acknowledgements
	References

