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Abstract. Table layout determines the way how the relational row-
column data values are organized and stored. In recent years, consider-
able candidates have been developed in MapReduce based query systems;
they differ on storage space utilization, data loading time, query perfor-
mance and so on. In most time, users are confronted with the problem
of choosing the comprehensive optimum table layout given the work-
loads and the schema of tables. The straightforward way to run queries
on generated data and compare the results is time consuming, and in-
curs the inaccuracy due to the MapReduce’s nondeterministic execution
runtime. In this paper, we propose a lightweight framework to evalu-
ate table layouts without running the query. The framework adopts the
black box method to test critical metrics, and the query aware strategy
that extracts table-layout-related operations from query. Based on the
metrics and operations, the framework makes suggestions to users. We
conduct extensive experiments to empirically study the popular table
layouts. Through the results illustration, we discover that column pro-
jection and compression are the most two prominent factors for general
cases. Moreover, we discuss optimization chances for the intermediate
tables produced in high level language systems.
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1 Introduction

The MapReduce [6] programming model and its open-source implementation
Hadoop [1] has now become the de facto framework to store and process mas-
sive data. However, it is usually too complicated to express complex analytical
tasks (e.g., the business intelligence) as primitive MapReduce jobs. To enhance
productivity, high level systems, that brings the relational concepts like SQL,
table, row and column, have been built, such as Pig [8] and Hive [7].

In such environment, data is managed as the structured relational table that
consists of rows and columns. Table layout determines the way how the two di-
mensional data values will be organized in the underlying distributed file system.
For example, the one based on Hadoop’s built-in textfile encapsulates table rows



into records; properties, like the field delimiter, need to be explicitly specified to
store and resolve tables. Besides, table layouts with sophisticated mechanisms
have also been proposed, such as Zebra [5], CFile in Llama [10], CIF [11], RCFile
[9], ORCFile [2], Parquet [3], Trevni [4], Trojan [13] and SLC-Store [12].

However, the different table layouts are proposed and implemented inde-
pendently; a comprehensive study to compare them has not been done [14].
In practice, many situations involve evaluation on table layouts for appropriate
choice, for example the following two scenarios. (1)Table Configuration in Design
Phase. It is common for users to configure tables’ layouts under specific work-
loads in the design phase. Migrating tables and queries from relational database
to Hadoop is a representative case. In such case, the schema of tables and the
queries are known, appropriate table layouts can achieve comprehensive advan-
tages on data loading, query performance and storage space. (2)Adaptively Set
Intermediate Table Layout. High level language systems translate queries into
MapReduce job workflows. The temporary intermediate tables produced by the
previous job will be consumed as input by subsequent job in the workflow. For
the performance improvement, can we adaptively set the intermediate tables’
layouts rather than the default setting (for example, the sequencefile in Hive)?
Above all, the problem can be abstracted as: Given workloads and the schema
of tables, make suggestion on appropriate table layout.

The straightforward solution is to run queries on generated or sample data,
and then compare the results. However, it has many defects. To begin with,
the query’s MapReduce runtime in distributed environment is nondeterminis-
tic. Even the time costs on performing the same query with the same configu-
ration twice are always different. This nondeterministic behavior is caused by
many table-layout-independent factors (like scheduling), and incurs the inac-
curacy of evaluating the real performance of table layouts. Moreover, it is too
time-consuming to run all queries; actually, table layouts are aware of only few
operations even in a complex query. Another way for the problem is to estab-
lish fine-grained performance models that cover all factors for each table layout.
The challenges, which will be illustrated later, result that common performance
models are unrealistic to establish.

To address the problem, we propose and implement an evaluation framework.
(1) The framework, from the perspective of a task (stack: ”query → workflow →
job → task”) that directly interacts with table layouts, is lightweight. (2) The
framework evaluates high-level user-oriented metrics, rather than table layouts’s
internal implementation factors, and provides users with comprehensive eval-
uation report. (3) The framework adopts the testing approach which is based
on the black box method and the query aware strategy. Different table layouts
are treated as black boxes with configuration knobs. The query aware strategy
extracts the table-layout-related operations from upper computing layer’s query.

Contributions. We identify three high-level user-oriented metrics of table
layouts. Based on the black box method and query aware strategy, we design
and implement a practical lightweight framework to evaluate different table lay-
outs. From the perspective of a task, the framework avoids the nondeterminis-



tic behavior and the time cost of running the query. It automatically extracts
table-layout-related operations from queries and rapidly evaluates the metrics.
Moreover, we conduct extensive experimental studies to make empirical anal-
ysis on representative table layouts and discuss the optimizations chances for
intermediate tables.

The reminder of this paper is organized as follows. In section 2, we introduce
the related works. Section 3 presents the black box method and the query aware
strategy. In section 4, we describe the evaluation framework. Section 5 conducts
experimental study and makes discussion. We conclude our work in section 6.

2 Related Work

As early as the development era of relational database systems, table layouts
had been widely studied. For example the row-oriented store [15], the column-
oriented store [16,17,18] and the hybrid PAX store [19]. The weaknesses and
advantages for each table layout were intensively investigated. In [18], D.J. Abadi
et al makes an in-depth discussion among them.

In Hadoop’s distributed environment, table layout has also attracted a wide
range of interests in both academia and industry. However, these table layouts are
proposed and implemented independently or even for specific workloads. Most
recently, Yin Huai et al. [14] makes a comprehensive and systematic experimental
study; they define three core operations to abstract table layouts’ behaviors and
evaluate key factors: (1) table’s horizontal logical subset size, (2) the function
of mapping columns to column groups, and (3) the function of packing columns
or column groups in a row group into physical blocks. Based on the evaluation,
practical actions to optimize read performance are suggested. Our work differs
from it as follows. To begin with, we argue that the abstraction of three core
operations to describe the table layouts has its limitations. It is difficult to unify
all table layouts and the three factors are not common. For example, CIF has no
concept of row group and column group. Our work covers both the read and write
performance. Moreover, we consider computing layer’s queries and implement a
lightweight evaluation framework for practical use.

Related works for query optimization are usually conducted from two layer-
s: the translator and the MapReduce computing primitive. In the MapReduce
primitive layer, the study focuses on MapReduce’s performance models and some
common optimization techniques. For example, H. Herodotou [20] proposes cost
models to analyze and optimize MapReduce programs. MRShare [21] investi-
gates opportunities to reduce the number of MapReduce jobs, i.e., the so-called
"vertical packing"; while Stubby [22] further covers "horizontal packing" op-
portunities between two MapReduce job workflows. Particularly, optimizing the
SQL-to-MapReduce translator also gains broad attentions and several rule-based
translators has emerged in recent years, such as YSmart [23]. It applies a set of
rules to use the minimal number of MapReduce jobs to execute multiple corre-
lated operations in a complex query.



3 Black Box Method and Query Aware Strategy

3.1 Table Layout Insight

We take four representative table layouts as examples: TextFile, SequenceFile,
RCFile and ORCFile, which include both unstructured and structured layouts
and cover various performance-related factors.

– TextFile. The ASCII encoded text based file format in HDFS. The MapRe-
duce job reads one line at a time and returns the byte offset as the key and
the line of text as the value, with encapsulating a table row.

– SequenceFile. SequenceFile provides a persistent append-only data struc-
ture for binary key-value pairs. For table layout, the key is null and the value
encapsulates a table row.

– RCFile. RCFile stores columns of a table in a record columnar way. It first
partitions rows horizontally into row splits, and then vertically partitions
each row split in a columnar way.

– ORCFile. The optimized version of RCFile. Compared with RCFile, it pro-
vides mechanisms such as fine-grained column encoding schemes, predicate
push down an so on.
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Fig. 1. Common Procedures for Writing

Fig.1 demonstrates four optional consecutive phases (i.e., decomposition,
buffer phase, compression and serialization) for writing a tuple into the file sys-
tem (the case of ORCFile is similar to that of RCFile). Correspondingly, the
common phases for reading records are reversed, i.e., deserialization, decom-
pression, buffer phase and reconstruction. For simplified presentation, we only
illustrate the writing behaviors here.

Tuple decomposition is the first phase for those none row-oriented table lay-
out. In this phase, the tuple will be decomposed as different concepts like column-
s, column groups and so on. Before flushed to disk, data will be first managed
in the buffer. The buffer not only stores data, but also maintains the metadata



for data. The metadata stores the information such as column data size, col-
umn type and even statistics (like max, min and etc.) in sophisticated table
layouts. When the data reaches the configured capacity, it will be written out
to the disk. The compression phase consists of two levels, the column encoding
schemes and the generic compression algorithms. The column encoding scheme
adopts fine-grained algorithms for different column types, for example, the run
length encoded algorithm for integers and the dictionary for strings. The generic
compression algorithms take table as common binary files using algorithms like
gzip, zlib and so on. Compression results in lower IO cost at the expense of high-
er CPU computing. Serialization converts in-memory data structures into bytes
that can be transmitted over the network or flushed to the disk. The serialization
phase is common with all table layouts.

The above insights reveal difficulties to establish fine-grained performance
models for table layouts. (1) It is too complex for the models that covers all fac-
tors and table layout’s configuration parameters, resulting that models are hard
to be accurate. (2) Fine-grained models are difficult to validate and more im-
portantly, the internal factors are meaningless to users and the computing layer.
(3) The performance of table layout is closely related with implementations. In
such case, comparisons among them are apple to an orange.

3.2 Black Box Method

Throughout this paper, we adopt the testing approach based on the black box
method to evaluate the table layouts. As depicted in the left part of Fig.2, the
computing layer of MapReduce based systems write and read data row by row,
respectively through the unified write() and read() interfaces.

tuple = read()write(tuple)
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Fig. 2. Black Box Method and Query Aware Strategy

The black box method treats different table layouts as different boxes with
knobs that can be adjusted by users to define configuration parameters. The
knobs for writing are key/value pairs (i.e., buffer size, row group size and etc)
stored in the conf. Based on these specified settings, the layout determines how
the record data will be organized. The knobs for records reading are projection
and predicate, with which the IO cost can be reduced by pushing down the



operations into the storage layer. However, the two knobs are optionally im-
plemented and not exposed by all table layouts; for example, the RCFile only
supports projection.

3.3 Query Aware Strategy

It is unnecessary to evaluate a table layout through executing the query. Actually,
table layouts are aware of only few operations even in a complex query; the
most query execution time is spent on in-memory computations. Rather than
executing the query, the query aware strategy only extracts the table-layout-
related operations.

Table-layout-related operations extraction. Given a specific query, the
strategy translates it into abstract syntax tree (AST ) and then analyzes AST to
extract the operations that can be pushed down to table layouts. In MapReduce
based query systems, only the operations of column projection and predicate
push down can be exploited by the computing layer. The process of extracting
these two operations from AST is straightforward, the algorithm searches the
tree in a depth-first behaviour and gets the operations in the nodes with the
corresponding keywords (e.g, the TOK_SELECT, TOK_WHERE and so on).

As demonstrated in the right part of Fig.2, the column projection ("A,D")
and the predicate ("D < 133") are extracted from the query. Assume query Q
has m times scans on table T , we denote the operations as the set of projection
and predicate tuples, OP (Q,T ) = {< projectioni, predicatei > |1 ≤ i ≤ m}; for
the example query, the result is OP (Query, T ) = {< (A,D), (D < 133) >}.

4 TLEF: Table Layout Evaluation Framework

4.1 Design Methodology and Evaluation Metrics

The task (i.e., mapper and reducer), which directly interacts with table layout, is
the bottom unit of the stack ”query → workflow → job→ task”. We advocate
"see big things through small ones", and propose TLEF to evaluate the critical
metrics of table layout from the perspective of a task.

Rather than table layouts’ detailed implementation factors, TLEF evaluates
three high-level user-oriented metrics, 〈cr, ws, rs〉. Under the specific configu-
ration conf , we get the compression rate (short as cr), average writing speed
(short as ws), average reading speed (short as rs). As the data may be stored
in different node as the node of computing task, rs consists of the local reading
speed rslocal and remote reading speed rsremote.

4.2 Framework Architecture

The architecture of TLEF is demonstrated in Fig.3. Users can input the work-
loads (expressed as HiveQL language), table layout configuration to be override
and table specifications (including the schema of tables and other configurations
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Fig. 3. The Architecture of Table Layouts Evaluation Framework.

like the range of a string column’s length) through TLEF’s user interface. The
core of TLEF is the evaluation manager, which generates the evaluation plan
and calls the evaluator to generate the read/write workloads.

The Basic Environment Inspector inspects the environment-specific configu-
rations, such as the cluster’s node number, the block size in HDFS and so on.
The Operator Analyzer parses the query and extracts the table-layout-related
operations (including projection and predicates) that can be pushed down to
the storage layer. For the general cases, the Table Generator randomly gener-
ates the tables according to the table specifications. The Table Layout Lib not
only contains built-in table layouts, but also exposes the unified interfaces. De-
velopers can implement the interfaces for the upcoming new table layouts. The
Result Reporter produces the evaluation metrics, based on which TLEF will
make suggestions on table layout.

4.3 Configuration Space Exploration

There are a large number of variables that can be specified by users in table
layout configuration and the default configuration may not be expected to be the
most efficient. A straightforward exploration approach is to apply enumeration
and search techniques to the full space of parameter settings. Some parameters
have small and finite domains, e.g., compression type, while the domain of some
parameters is unbounded. In TLEF, each implemented table layout enumerates
the domains in Econf for individual configuration parameters. The exploration
of our evaluation framework is as follows: (1) Evaluate individual parameters.
For each parameter, set other parameters as default value, test the table layout
with the parameter setting in Econf to get the metrics. (2) Heuristic search with
user defined algorithm. TLEF exposes the algorithm interface for user.

4.4 Evaluation Report: Extending to Distributed Environment

Instead of solely making the choice, TLEF generates the evaluation report to
users, including the contents of three respects: the high level user-oriented met-
rics, table layout suggestion for each query and the comprehensive analysis.



Assume the table has n rows, the row size can be estimated as rsz according
to the schema; then the table size is ts = cr× n× rsz. We note the MapReduce
split size as splitsize and the total mapper slots number asmsn. Then the length
of mapper round can be calculated as dts/(splitszie × msn)e. For example,
there are d1204/(64 × 16)e = 2 rounds of mappers for a 1GB table with the
configuration of 64MB split size and 12 mapper slots.

Table layout suggestion for each query. TLEF lists the table-layout-related
operations and calculates the new average read speed under column projec-
tion, rsnew = rs × projectedSize/rowSize. During the query execution, the
results produced by each reducer are certain and irrelevant to the table lay-
outs; hence the write performance is determined by the metric ws. For ex-
ample, when the query is data loading, table layout with better ws is pre-
ferred. As for the read performance, TLEF suggests the candidate with effi-
cient rsnew × dts/(splitszie × msn)e. In the distributed environment, the IO
read performance may be disturbed by many factors. For the local and remote
cases, we respectively define the perturbation functions ωl and ωr. Then the
upper bound and lower bound can be estimated as the following expressions.
dts/(splitszie×msn)e × ωl(rslocal) and dts/(splitszie×msn)e × ωr(rsremote).

Comprehensive analysis. It is straightforward for users to make choice accord-
ing to the table layout suggestions for each query. Generally, there is a tradeoff
of storage space utilization and query performance, which depend on user’s pref-
erence. If the previous case is the main consideration, table layout with efficient
cr metric is preferred. For the latter one, it depends on different queries’ weights
(e.g., the one with the largest proportion or the one for the most frequent query,
and etc.); we discuss some cases here. When the workload only includes data
loading, table layout with better ws is preferred. However, write-once-read-more
is frequent and query performance is usually the focus in MapReduce based
query systems. For the extreme case of no extracted operation, a row-oriented
table layout is appropriate for all column scans. For the general case with many
table-layout-related operations, a table layout supporting them is important.

5 Experimental Study

In this section, we conduct experimental study from two dimensions. First, we
empirically evaluate the popular table layouts from the perspective of a single
task; we then extend the results to the distributed environment. Next we make
discussion on the intermediate table layout strategy for query optimization.

Out experimental study is conducted on a local cluster of 10 DELL OptiPlex-
990 nodes connected by a 1GB ethernet switch. Each node is equipped with four
Intel i7-2600 3.4GHz cores, 16GB RAM and 2TB hard disk drives. Operating
system is Ubuntu-11.04 x86_64. Hadoop 1.2.0 and Hive 0.12.0 are used. One
node is reserved for Hadoop JobTracker and the NameNode. The other 9 nodes
are used for HDFS DataNode and MapReduce TaskTracker. The HDFS block
size is 256MB and each file has 2 replications. In fact, these settings can be
automatically detected by basic environment inspector.



5.1 Empirical Performance Analysis

We use a synthetic relational table generated by TLEF table generator as fol-
lows: each record consists of an incremental integer ID, 6 string columns and
6 integer columns. The integers are randomly assigned values between 0 and
100000; random strings of length between 10 and 40 are generated over readable
ASCII characters, similar to the schema defined in [11].

Metrics with Default Configuration. In practice, table layouts are often
adopted with the default configuration, especially for the none-expert users.
As the default configuration indicates the most common usage case, we first
conduct experiments to study the general performance for table layouts. Table
sizes are respectively 242.5MB, 263.9MB, 184.2MB and 169.7MB for TextFile,
SequenceFile, RCFile and ORCFile. We write and read whole column set without
the upper layer’s query semantics and the results are shown in Fig.4. It can be
seen that, fine-grained column encoding schemes gain significant compression
rate and row-oriented table layouts, without extra metadata maintenance and
row reconstruction, outperform others for data loading and row scanning.
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Fig. 4. Table Layout IO Performance with Default Configuration.

Configuration Space Exploration.We take two configuration parameters
for ORCFile, compression-kind with the finite domain {None, Zlib, Snappy}
and the strip-size with the infinite domain, to show the exploration process.
The strip size varies with the values in geometrical sequences {256MB, 64MB,
16MB, 4MB, 1MB}, which is automatically generated by TLEF according to the
properties defined in table layout lib. As depicted in Fig.5, the evaluated metrics
varies according to different configurations. But these differences are not very
significant, diversed in the same order of magnitude.

Query Aware. As only ORCFile supports both column projection and pred-
icate pushdown, we take it as the example to demonstrate how the query seman-
tics can be leveraged. The client respectively reads 1400000 rows in the local
mode with 2 integer column, 1 integer column and 1 string column, and all
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Fig. 5. Configuration Space Exploration Example: Compression and Strip Size.

columns. The left and middle graphics in Fig.6 respectively show the read time
costs and the data sizes in different cases. The results indicate the effectiveness
of column projection for filtering unnecessary columns.

For the predicate pushdown, ORCFile will check the statistics every config-
ured number and the rows will be skipped if it doesn’t satisfied the predicates. As
the default index-strip is 10000 (maintaining column statistics, like max and min,
every 10000 rows to skip rows), we evaluate the predicates σ1 =′ id < 140000′,
σ2 =′ 140000 < id < 830000′ and σ3 =′ id > 139999′. It can be seen from the
right graphic of Fig.6 that the effectiveness of predicate push down is heavily
relied on the predicate’s selectivity on data.
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Distributed Environment. We generate the table with 56 millions rows
(about 9.2GB) stored as textfile. The benchmark query is "select count(*) from
T", which will be translated into one MapReduce job with 39 mappers and 1
reducer in our environment. Fig.7 demonstrates the runtime of query’s execution.
It can be seen that the performance of task with local data is stable, while those
with the remote data differ greatly.
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5.2 Intermediate Table Layout for High Level Query Systems

Assume the producer query Q1 has n columns WC = {WCi|1 ≤ i ≤ n} and the
consumer query Q2 will read m columns RC = {RCi|1 ≤ i ≤ m}. To investigate
whether the intermediate table layout can be adaptively set based on the Q1 and
Q2, we discuss the characters of column projection and predicate push down.

Column projection. Generally, the column pruning (called "cp") is adopted in
high level language systems’ query optimizers. With this optimization, Q2 reads
all columns produced by Q1, i.e., m = n and WC = RC. Hence, Table layouts
that support column projection can not exploit the advantage.

Predicate push down. Similarly, predicate push down (called "ppd") is also
supported in query optimizers. Assume the predicate is for one column WCk

in Q2, if and only if the WCk is a dynamically new column generated by Q1

(i.e., the aggregated column, calculated by user-defined functions and etc.), the
predicate push down can be exploited. For instance, Q1 is "select col1, sum(c2)
as col2 group by col1" and Q2 is "select co1, col2 where col2>2".

In addition, the intermediate table size can only be determined after the
execution of Q1. Optimizing the intermediate table layout consequently brings
not too much improvement on performance. Considering Q2 scans all columns,
setting the intermediate table layout as a row-oriented one (for example, the
default sequencefile setting in Hive) is reasonable for most cases.

6 Conclusion

In this paper, we propose the testing approach based on black box method and
the query aware strategy to evaluate the table layouts in MapReduce based
environment. To assist users make the appropriate choice under specific work-
loads, we develop a lightweight evaluation framework. It automatically extracts
table-layout-related operations from queries and rapidly evaluates the metrics.
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