
X.S. Wang et al. (Eds.): WISE 2012, LNCS 7651, pp. 783–788, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Fast and High Throughput

SQL Query System for Big Data

Feng Zhu, Jie Liu, and Lijie Xu

Technology Center of Software Engineering,
Institute of Software, Chinese Academy of Sciences, Beijing, China 100190

{zhufeng10,ljie,xulijie09}@otcaix.iscas.ac.cn

Abstract. Relational data query always plays an important role in data analysis.
But how to scale out the traditional SQL query system is a challenging problem.
In this paper, we introduce a fast, high throughput and scalable system to per-
form read-only SQL well with the advantage of NoSQL’s distributed architec-
ture. We adopt HBase as the storage layer and design a distributed query engine
(DQE) collaborating with it to perform SQL queries. Our system also contains
distinctive index and cache mechanisms to accelerate query processing. Finally,
we evaluate our system with real-world big data crawled from Sina Weibo and
it achieves good performance under nineteen representative SQL queries.

Keywords: Big Data, Query Processing, NoSQL, HBase, MapReduce.

1 Introduction

Many analytical tasks perform on ever growing massive data. As before, structured
data storage and query still play an important role in the big data analysis. But for
plenty of online Internet services, relational data queries require high performance,
including scalability, low-latency and high-throughput. However, commonly used
software is facing too many difficulties to store, manage and process big data, not to
mention achieving these three criteria simultaneously.

We analyze the Internet service SQL logic and find that most SQL are read-only
(i.e., no insert, update and delete). At the same time, NoSQL systems provide hori-
zontally scalable storage and high-performance “get(key)” operations even under
heavy read/write workloads. So our idea is to store the structured data in terms of
Key-Value and convert SQL into a series of imperative operations written against
distributed Key-Value stores. This is called denormalization. In this way, queries
which need to scan large ranges of records or entire tables can be divided into
lightweight distributed operations.

Based on the above discussion, we finally choose HBase [1] as our storage layer.
There are some reasons: first, it is a distributed architecture and we only need to add
servers to increase its scalability; second, the large table is automatically split into
small regions. HBase itself can manage the metadata of these regions; third, its data
model supports a flexible schema design. We can conveniently add some attributes to

784 F. Zhu, J. Liu, and L. Xu

the schema; the most important and the last one, HBase is built on top of Hadoop and
provides a simple interface. We can process the data very expediently. However,
HBase’s simple key-value data model cannot satisfy various types of complex que-
ries. So we add a distributed query engine integrated with HBase. The query engine is
responsible for collecting and merging query results to clients.

This rest of the paper is organized as follows. Section 2 introduces our data model-
ing and denormalization method. Section 3 describes our detailed architecture and key
technologies. The experiment is illustrated in section 4. Section 5 concludes the paper.

2 Data Modeling

Since NoSQL’s data model is flexible and related to specific queries, we should first
investigate the contest given SQLs. We find three significant features from them that
strengthen our belief on NoSQL solution: (1) read-only queries, no write or update (2)
fixed structured data without modification (3) query type is known beforehand with
limited variable parameters. Based on these features, we can convert the relational
data into Key-Value records and modify SQL into a series of “get(key)” operations.
The main problem is that NoSQL does not support JOIN operation natively. We need
to handle it at design time by applying “JOIN-free” technique. In other words, we
create and partition joined table in advance, so subsequent queries can be done by just
looking up the result table. This idea is simple but can dramatically reduce the query
latency. Other complex and time-cost queries can be done in the same way.

Formally, this method can be defined as “Denormalization”. In opposite to norma-
lization in relational algebra, “Denormalization” encourages to store data in a query-
friendly form to simplify query processing. Here, we not only tackle with JOIN, but
also let structured data fit Key-Value pattern for scalability and high performance.
Note that denormalization may increase our total data volume because of the different
forms of duplicated data.

Now, we take the first contest query as an example to illustrate how denormaliza-
tion works. The first query is to find the Top N suggested followees for user A. User
A’s followees are users who were followed by A. User A’s r-friends are users who
followed A and were followed by A. The recommendation algorithm is that: get all r-
friends of A’s r-friends, filter A’s r-friends, order them by the number of people in
A’s r-friends list connecting to them, and then select the top N of them.

The most time-consuming part arises from the table JOIN operation. To avoid it,
we need to pre-create and partition A’s r-friend table. If A’s r-friend table is available,
our query engine selects out all r-friends of A’s r-friends, filtering A’s r-friends and
count the number of each user’s connection with them; then the query engine returns
the top-x user ids to the client.

Furthermore, the nineteen queries can be divided into two types: (1) Queries need
no denormalization. These queries do no need join operation or index. (2) Queries
need denormalization. These queries always contain complex operations. Several
approaches such as building a secondary index, pre-joining tables and so on can be
used to reduce their time cost.

 A Fast and High Throughput SQL Query System for Big Data 785

3 System Architecture

Figure 1 shows the main components of our query system. The underlying file system
is Hadoop Distributed File System (HDFS) [2, 3]. HDFS creates multiple replicas of
data blocks and distributes them to different nodes. Based on HDFS, HBase plays the
role of the database. We store all the preprocessed tables into HBase. Apart from the
operations of “Query by key” and “Filter” provided by HBase, we also use coproces-
sor in HBase for complex queries.

Fig. 1. System architecture

The upper layer is the distributed query engine (DQE). It is a logical processing
component of this query system. To achieve high concurrency, we hold the principle
of distributing the workloads to multiple nodes. Therefore, the DQE, as a middleware
between the client and storage layer, adopts the master-slave structure. The master
node is responsible for load balancing, aggregation, top-k selection and so on. Task
Scheduler is responsible for distributing the query requests to various slave nodes.

Our system also contains distinctive index and cache mechanisms to accelerate
query processing. Because the variables of nineteen queries in this contest are selected
from specific collections, the results of these queries are limited. The cache may
achieve 100% hit rate. To test the real performance of our underlying system, we
get the experiment data without cache system.

Next, we list some key technologies while implementing the 19 query interfaces.

• Data Load

How to rapidly load the Big Data to the storage system is a basic problem before data
query. With the help of Hadoop interfaces, we first upload all the data files to HDFS.
Then, we use MapReduce [4] jobs to generate desirable tables. According to the logic
of queries, we decide whether to store the generated tables in HDFS for other Ma-
pReduce jobs or in HBase for direct queries.

786 F. Zhu, J. Liu, and L. Xu

• Row key design

As a column-oriented database, HBase stores the data with row key in a lexicographic
ascending order. Therefore, it supports not only single key query but also range query.
To make the best use of this feature, designing a well-suited row key is very impor-
tant. Like multi-dimension index, we sometimes combine several attributes as a com-
posite row key. With the composite key, the value can be fetched effectively. Here we
take several typical queries as examples to show this skill.

Among these nineteen queries, it is common to get the data in a time range. To
avoid scanning a whole table, we put the time attribute into the row key. For example,
after de-normalization in query 11, we get a table containing three items: (uid1, time,
uid2), which means user uid1 is re-tweeted by the user uid2 at time. In this case, the
row key can be designed as uid1+time+uid2. The corresponding range is use-
rID+timestamp+uidx to userID+(timestamp+timespan)+uidy. So we just need to
scan this range to extract the total uid2 set.

• Key-list data model

Most data relationship can be modeled as key-list model. For example, a tag may
correspond to a large number of microblog and even more users.

Formally, we define key-list data model as “k-v1(attri1), v2(attri2), v3(attri3)…”.Item
vj(attrij) implies that the j-th value belongs to attribute attrij. Then the problem can be
defined as: given an attribute set SA and a key k, we need to retrieve the correspond-
ing value set SV from k’s values. SV= {vj | attrij∈SA && vj∈value list (k)}.

To make the best use of HBase’s data model feature. We first consider and evaluate
several table schemas below.

─ Link the values together as a single value V, V= v1 (attri1) +v2 (attri2) +v3 (attri3)…
and the row key is designed as k.

Row key Column family
k v1 (attri1) +v2 (attri2) +v3 (attri3)…

─ Consider various values as different columns, then the schema can be designed as:

Row key Column family
k v1 (attri1) v2 (attri2) v3 (attri3) …

─ Huge number of columns has negative affection on HBase. Considering putting the
values into row key and the corresponding column is the attribute. Then the sche-
ma can be designed as:

Row key Column family
k+ vj attrij

─ With the previous three designed schemas, we need to scan the whole value set for
selecting SV. However, when the attribute set SA satisfies the sort condition, for
example the datetime, row key can be designed with the attribute.

 A Fast and High Throughput SQL Query System for Big Data 787

Row key Column family
k+ attrij+ vj …

The different schemas design fit for different cases, a comprehensive consideration
is necessary.

• Coprocessor Endpoint

For those queries need to scan a wide range of the table or even the whole table,
HBase coprocessor is a good choice. Resembling stored procedures in RDBS, copro-
cessor endpoint is powerful. A table stored in HBase is split into various regions. In
the DQE, we invoke the coprocessor endpoint implementation for a table. It will ex-
ecute in parallel on each region and returns the partial results to the DQE.

For coprocessor endpoint, there is also a tradeoff between the degree of parallelism
and network traffic. More regions means less time for scanning a region, but it will
cost more memory or even may block the network IO. Therefore, we should carefully
set a proper region number.

4 Experimental Evaluation

This contest released a sample of structured big data from microblog. The dataset
contains two parts: the first one is “Followship network” of 12.8GB and the second
one is “Tweets” of 61.7GB. Through denormalization, we create about 30 tables and
the total volume of data is over 300GB. Our query system is deployed on a cluster
with 10 nodes. The configuration of each node is: CPU: Intel(R) Core™ i7-2600
3.4GHz; CPU cores: 4; Memory: 4 * 4GB DDR3; Hard Disk Capacity: 2 * 1TB; OS:
Ubuntu-11.04 x86_64; Network: 1Gb/s.

Query 1

Thread Number

0 200 400 600 800 1000 1200

R
e

sp
o

ns
e

T
im

e
 (m

s)

0

200

400

600

800

1000

1200

1400

Fig. 2. Response time with different thread
number

Query 8

Return Count
0 20 40 60 80 100 120

R
e

sp
o

ns
e

Ti
m

e
 (m

s)

200

400

600

800

1000

1200

Fig. 3. Response time with different return
count

Thread number, return count and time range are three main factors that affect the
performance dramatically. Because there are so many experiments, here we just
present a sample of the results and analyze the influence of each factor on response
time. (1) Figure-2 shows the relation between response time and thread number of
query 1. The return count is 50. (2) Figure-3 shows the influence of return count.

788 F. Zhu, J. Liu, and L. Xu

Query 7

Time Range

hour day week year

R
es

po
ns

e
Ti

m
e

(m
s)

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Fig. 4. Response time with different time range

The thread number of query 8 is 10. (3) Figure-4 shows the time range’s influence on
the scan rate. The thread number is of query 7 is 1.

Above figures just describe three main factors’ general influence on performance.
Our system actually performs well under different experiment configurations. The
results show it is scalable. However, there may be data skew problem. For example,
the number of user’s followees may vary from one to thousands, which leads to the
unpredictable results. Detailed results are available in separate files generated by
BSMA tool.

5 Conclusion

In this paper, we first propose a denormalization method. This method is to store the
structured data in terms of Key-Value and convert SQL into a series of operations
written against distributed Key-Value stores. Then we present a query system based
on HBase. Experiment shows the system can support high throughput query request
with low latency. In the future, we will research how to support complex queries.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China (61170074), the National Grand Fundamental Research
973 Program of China (2009CB320704), the National Key Technology R&D Pro-
gram (2012BAH05F02), National Core-High-Base Major Project of China
(2010ZX01042-001-001-05).

References

1. Apache HBase, http://hbase.apache.org/
2. Apache Hadoop, http://hadoop.apache.org/
3. HDFS, http://hadoop.apache.org/hdfs/
4. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

OSDI 2004 (2004)

	A Fast and High Throughput SQL Query System for Big Data
	Introduction
	Data Modeling
	System Architecture
	Experimental Evaluation
	Conclusion
	References

