
1

Finding Bugs in Gremlin-Based Graph Database
Systems via Randomized Differential Testing

Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin,

Lei Tang, Yu Gao, Dong Wang, Wei Wang, Jun Wei

Institute of Software, Chinese Academy of Sciences

University of Chinese Academy of Sciences

31st International Symposium on Software Testing and Analysis

2

Graph Data

 Graph data consists of vertices and edges

 A vertex represents an entity

 An edge describes the relationship between two entities

3

Graph Database Systems (GDBs)

Neo4j has been downloaded 2 million+ times[1].

[1] Neo4j. Retrieved May 23, 2022 from https://neo4j.com/product/neo4j-graph-database/.

 GDBs support efficient storage and queries for graph data

4

Applications of GDBs

Knowledge graphs Social networks

Fraud detection Medical

 GDBs play a significant role in numerous applications

5

Labeled Property Graph Model

 Each vertex and edge has a label name and a set of properties

writes reads

name: Alice

age: 33

name: Nancy

age: 26
title: Family

wordCount: 23400

person

knows

person

book

since: 2020

Label

Property

6

Graph Query Language

Graph Database System Graph Query Language

Neo4j Cypher, Gremlin

Hugegraph Gremlin

JanusGraph Gremlin

TinkerGraph Gremlin

NebulaGraph nGQL

TigerGraph GSQL

… …

66% GDBs support

Gremlin APIs[1]

[1] DB-Engines Ranking of Graph DBMS. Retrieved May 23, 2022 from https://db-engines.com/en/ranking/graph+dbms.

 No standardized way in GDBs to query a graph

7

Gremlin Query Language

g.V().has(‘person’, ‘age’, between(20, 35)).count()

 Gremlin links a sequence of Gremlin API calls for traversing labeled

property graphs

Get all vertices Filter vertices with the condition that

person’s age is between 20 and 35

Count the number

of persons

How many people are

between 20 and 35 years

old?

8

Logic Bug in GDBs

 GDBs suffer from logic bugs, in which a query returns an incorrect

query result without crashing the GDBs

Query A

Query B

11
33

55

99

11
33

55

Expected results Actual results

22
33

44

99 IllegalArgumentException

Omit a vertex

Throw an unexpected error

9

Logic Bugs Cause Severe Consequences

Logic bugs

Error diagnosis in

medical application

Error detection in fraud

detection application

10

A Real Logic Bug

How many people are 20 to 35 years old or under 29?

g.V().has(‘person’, ‘age’, or(between(20, 35), lt(29))).count()

 HugeGraph forgets to deduplicate overlapping values for or() operation

Actual result Expected result

11

Existing Bug Detection Tools and Approaches

 Relational database management systems (RDBMSs)

 Differential testing: RAGS[1], APOLLO[2]

 Fuzzing: SQLSmith[3], AFL[4]

 Metamorphic testing: Non-optimizing reference engine construction[5], Query

partition[6]

 Testing oracle: Pivoted query synthesis[7]

[1] Donald S. Slutz. Massive Stochastic Testing of SQL. VLDB 1998.

[2] Jinho Jung, et. al., APOLLO: Automatic Detection and Diagnosis of Performance Regressions in Database Systems. PVLDB 2019.

[3] SQLsmith. Retrieved August 5, 2021 from https://github.com/anse1/sqlsmith.

[4] AFL. Retrieved September 13, 2021 from https://github.com/google/AFL.

[5] Manuel Rigger and Zhendong Su. Detecting Optimization Bugs in Database Engines via Non-Optimizing Reference Engine Construction. FSE 2020.

[6] Manuel Rigger and Zhendong Su. Finding Bugs in Database Systems via Query Partitioning. OOPSLA 2020.

[7] Manuel Rigger and Zhendong Su. Testing Database Engines via Pivoted Query Synthesis. OSDI 2020.

Cannot be directly applied to GDBs!

12

Goal: Finding Bugs in Gremlin-Based GDBs

13

Grand: Randomized Differential Testing

RS1

RS2

RS3

Gremlin

Queries

RS1 = RS2 = RS3

 Construct semantically equivalent databases for multiple GDBs, and

then compare the results of a Gremlin query on these databases

14

Overview of Grand

Step 1

Graph Database

Generation

Gremlin Query

Generation
Differential Testing

Step 2 Step 3

GDB2GDB1 GDBn

…

g.V()

…

GDB2GDB1 GDBn

…

checker

Traversal

model

Mapping

table

discrepancies

analysis

bug reports

15

Step 1: Graph Database Generation

Step 1

Graph Database

Generation

Gremlin Query

Generation
Differential Testing

Step 2 Step 3

GDB2GDB1 GDBn

…

g.V()

…

GDB2GDB1 GDBn

…

checker

Traversal

model

Mapping

table

discrepancies

analysis

bug reports

16

Graph Schema Generation

 Randomly generate vertex types and edge types

person

name: String

age: Integer

book

title: String

wordCount: Integer

Vertex Type

software

name: String

language: String

17

Graph Schema Generation

 Randomly generate vertex types and edge types

person book

Vertex Type

Edge Type read

since: Integer

person

name: String

age: Integer

book

title: String

wordCount: Integer

software

name: String

language: String

18

Graph Data Generation

 Based on the generated graph schema, Grand randomly generates a

set of vertices and edges

name: String

age: Integer

person

name: Nancy

age: 26

person

name: Bob

age: 16

title: String

wordCount: Integer

book

title: World

person

book

19

Graph Data Generation

 Based on the generated graph schema, Grand generates vertices and

edges

person

name: Nancy

age: 26

book

title: World

read

since: 2020

person book
read

since: Integer

20

Step 2: Gremlin Query Generation

Step 1

Graph Database

Generation

Gremlin Query

Generation
Differential Testing

Step 2 Step 3

GDB2GDB1 GDBn

…

g.V()

…

GDB2GDB1 GDBn

…

checker

Traversal

model

Mapping

table

discrepancies

analysis

bug reports

21

Existing Generation Tools are Unusable

 Gremlin has different syntax and query patterns from SQL

SELECT name
FROM t0
WHERE (t0.age < 30) AND

(t0.name != ‘Tom’)

g.V()
.has(‘person’, ‘age’, lt(30))
.has(‘person’, ‘name’, neq(‘Tom’))
.values(‘name’)

And

< !=

age 30 name Tom

Abstract Syntax Tree

22

Random Gremlin Query Generation

 Generate some grammatically correct but meaningless queries and

ignore the semantics of Gremlin APIs

V() has() out()

V() V() V()

g

g

These meaningless

queries can greatly

affect the effectiveness

of GDB testing.

Gremlin APIs

V()

E()

has()

where()

not()

and()

or()

lt()

out()

outV()

We construct a model to guide us in generating

syntactically correct and valid Gremlin queries.

23

Insight

g.V().outE()

g.E().outE()

The input type of a Gremlin API in a query should

match the output type of its previous Gremlin API.

person book
read

outE()

24

Traversal Model for Gremlin

 We abstract three entities, i.e., vertex, edge and value

 We construct a traversal model to describe the legal operations and

semantics in these entities

v1 v2

e1 vp1 : 2

ep1 : 4

Vertex

Edge

vp1 : 1

Property key : Value

25

Traversal Model - Vertex

v1

v2

v3

Filter v1 by the given conditions

e1

e2

Traverse v1 from vertices

 Legal operations on a vertex

Traverse v1 from edges

out()

vp1 : 1

vp1 : 2

vk2 : 3

v1

v2

v3

e1

e2

inV()

vp1 : 1

vp1 : 2

vk2 : 3

v1

v2

v3

e1

e2

has(vp1)

vp1 : 1

vp1 : 2

vk2 : 3

26

Traversal Model - Edge

Traverse e1 from vertices Filter e1 by the given conditions

 Legal operations on an edge

has(ep1, gt(3))

v1

v2

v3

e1

e2

inE() ep1 : 4

ep1 : 2

v1

v2

v3

e1

e2

ep1 : 4

ep1 : 2

27

Traversal Model - Value

values(ep1)

 Legal operations on values

Retrieve property values from

vertices or edges

Aggregate property values

values(vp1).sum()

v1 v2

e1
vp1 : 2

ep1 : 4

vp1 : 1

v1 v2

e1 vp1 : 2

ep1 : 4

vp1 : 1

values(vp1)

28

Model-based Query Generation

entry Map Filter

1 2

g

V() Has(key, Predicate)

Vertex
Property

Vertex

4 values(Vertex.propertyName)

Predicate

3 eq (Value)Vertex.propertyName

Select a vertex type

Graph traversal

source

Select a filter type Select a value type

Select a predicate type

 Randomly select Gremlin APIs until the maximum query length is

reached or exit condition is satisfied

29

Parameters in Gremlin Query

 Completely random parameter generation returns lots of empty

results, which can greatly affect the effectiveness of GDB testing

entry Map Filter

1 2

g

V(

)

Has(key, Predicate)

Vertex
Property

Vertex

4

3 eq (Value)Vertex.propertyName

values(Vertex.propertyName)

No results!

How can we check

results in these

GDBs?

30

Parameter Values Generation

entry Map Filter

1 2

g

V(

)

Has(key, Predicate)

Vertex
Property

Vertex

4 values(vp1)

3 eq (5)vp1

 Randomly select a value from the generated graph database

 Randomly generate a value

Select from

graph database

Select from

graph database

Randomly generate a value

31

Step 3: Differential Testing in GDBs

Step 1

Graph Database

Generation

Gremlin Query

Generation
Differential Testing

Step 2 Step 3

GDB2GDB1 GDBn

…

g.V()

…

GDB2GDB1 GDBn

…

checker

Traversal

model

Mapping

table

discrepancies

analysis

bug reports

32

Differential Testing

check discrepancy

v: 1605, 1606, 1610

v: 49599408,

49599320, 49599360

v: 4152, 4136, 4216

RS1

RS2

RS3

The result formats (e.g., id

and property) are different.

 Execute Gremlin queries on target GDBs and compare the return results

We convert the query results from different GDBs into a

unified format.

33

Query Result Mapping

v1

v2

v3

uID

nv1

nv2

nv3

actualID

uID nID

v1 nv1

v2 nv2

v3 nv3

uID nID

e1 ne1

e2 ne2

Mapping Table

 Record the mapping relations between 𝑢𝐼𝐷 and 𝑎𝑐𝑡𝑢𝑎𝑙𝐼𝐷 in all GDBs

34

Differential Results Verification

Discrepancy

v: 1605, 1606, 1610

v: 49599408,

49599320, 49599360,

49599408, 49599320,

v: 4152, 4136, 4216

RS1

RS2

RS3

uID nID

1 1605

2 1606

3 1610

hID jID

49599408 4152

49599320 4136

49599360 4216

v: 1, 2, 3

v: 1, 2, 3, 1, 2

v: 1, 2, 3

 Verify the unified query results of all target GDBs

4 1618 49599390 4256

35

Evaluation

Target GDBs

 6 widely-used graph database systems

GDB Rank* GitHub Star Initial Release

Neo4j 1 9.2k 2007

OrientDB 5 4.4k 2010

JanusGraph 8 4.1k 2017

HugeGraph 22 1.7k 2018

TinkerGraph 23 1.4k 2009

ArcadeDB 27 119 2021

* There are total 36 GDBs in DB-Engines Ranking of Graph DBMS.

36

Evaluation

Testing methodology

 Run 15 times and 1000 random queries in each time

 Manually reproduce and analyze the reported discrepancies

Simplify the

reported query to

a simple one

Identify which

GDBs are buggy

Filter out

duplicated bugs

Analyzing 709 discrepancies and obtaining 21 logic bugs

37

Bug Overview

 21 bugs have been found in six widely-used GDBs

GDB Detected Confirmed Fixed

Neo4j 3 2 1

OrientDB 1 0 0

JanusGraph 3 3 2

HugeGraph 9 9 3

TinkerGraph 3 3 1

ArcadeDB 2 1 0

Total 21 18 7

38

Instruction Coverage

 Achieve coverage from 32% to 61% for query engines and 16% to

42% for target GDBs

35%

18%

42%

34%

24%

16%

38%

32%

61%
56%

37%

43%

0%

10%

20%

30%

40%

50%

60%

70%

Neo4j OrientDB Janusgraph Hugegraph Tinkegraph ArcadeDB

GDB Query engine

39

Conclusion

https://github.com/tcse-iscas/Grand.

Goal: Find logic bugs in GDBs Model-based query generation

Evaluation: 21 bugs in six GDBs Differential results verification

40

THANK YOU!

40

