
Differential Optimization Testing of Gremlin-Based
Graph Database Systems

Yingying Zheng1,2, Wensheng Dou1,2,3,4*, Lei Tang1,2, Ziyu Cui1,2, Jiansen Song1,2, Ziyue Cheng5,

Wei Wang1,2,3,4, Jun Wei1,2,3,4, Hua Zhong1,2, Tao Huang1,2

1State Key Lab of Computer Science at ISCAS, 2University of CAS, Beijing, China
3Nanjing Institute of Software Technology, 4University of CAS, Nanjing, China

5Huazhong University of Science and Technology, Hubei, China
1{zhengyingying14, wsdou, tanglei20, cuiziyu20, songjiansen20, wangwei, wj, zhonghua, tao}@otcaix.iscas.ac.cn

5u202015309@hust.edu.cn

Abstract—Graph database systems (GDBs) allow efficiently
creating, modifying, and retrieving graph data in a graph
database. To accelerate graph queries, GDBs usually adopt
various and complex optimization strategies. However, incorrect
optimizations in GDBs can introduce optimization bugs, which
cause a graph query to compute an incorrect query result, e.g.,
omitting a vertex in a graph database.

In this paper, we propose Differential Optimization Testing
(DOT), an effective and automated approach to detect optimiza-
tion bugs in GDBs that adopt Gremlin as their query language.
The main idea of DOT is that, given a Gremlin query Q, we
execute it on the target GDB with two different optimization
configurations and then verify whether they can compute the
same query results for query Q. Any inconsistency between their
query results indicates an optimization bug in the target GDB. To
improve the efficiency of differential testing in DOT , we further
propose an optimization-guided approach, aiming to explore
more optimization strategies and more graph database features.
We evaluate DOT on six popular and widely-used GDBs, i.e.,
Neo4j, OrientDB, JanusGraph, HugeGraph, TinkerGraph, and
ArcadeDB. In total, we have found 28 unique optimization bugs,
16 of which have been confirmed as previously-unknown bugs.

Index Terms—graph database system, Gremlin, optimization
bug, bug detection

I. INTRODUCTION

Graph database systems (GDBs) (e.g., Neo4j [1], OrientDB

[2], JanusGraph [3], TigerGraph [4], and NebulaGraph [5])

can efficiently store and retrieve graph data, and have played

a significant role in many applications [6]–[9] (e.g., social net-

works [6]). Gremlin [10], as a popular graph query language,

has been supported by about half of the GDBs (e.g., Neo4j,

OrientDB, JanusGraph, and HugeGraph [11]) in DB-Engines

Ranking for GDBs [12]. We refer to these GDBs that adopt

Gremlin as their query language as Gremlin-based GDBs.

Gremlin-based GDBs support various optimization

strategies to accelerate graph queries. For example,

FilterRankingStrategy can reorder filtering operations

in Gremlin queries to query graph data more efficiently, and

CountStrategy can optimize counting operations by

limiting the number of incoming elements. GDB users

can configure their optimization strategies in their Gremlin

*CAS is the abbreviation of Chinese Academy of Sciences. ISCAS is the
abbreviation of Institute of Software Chinese Academy of Sciences.

1 g.withoutStrategies(LazyBarrierStrategy) //off
2 .withoutStrategies(HugeVertexStepStrategy)//off
3 .E().bothV().not(__.in(’acting’))
4 -- v:{1,2,3,4} �
5
6 g.withStrategies(LazyBarrierStrategy) //on
7 .withStrategies(HugeVertexStepStrategy)//on
8 .E().bothV().not(__.in(’acting’))
9 -- v:{1,3,4} �

Fig. 1. An optimization bug HugeGraph#2163 detected by our ap-
proach in HugeGraph [11]. When turning off the optimization strategies
LazyBarrierStrategy and HugeVertexStepStrategy in Huge-
Graph, this query wrongly retrieves all vertices in Fig. 2.

movie

v:2directing

name: James

Cameron

name: Leonardo

DiCaprio

title: Titanic

v:1

director

v:3

actor

v:4

actor
name: Kate

Winslet

e:1

Fig. 2. A labeled property graph. We label each vertex and edge in the graph
with unique IDs, e.g., v:1 represents a vertex with an ID 1.

queries. For example, in Fig. 1, we can execute the query of

Line 3 with LazyBarrierStrategy off (Line 1).

The complexity of these optimization strategies can pose

a major correctness challenge for Gremlin-based GDBs. Es-

pecially, incorrect optimizations in Gremlin-based GDBs can

introduce optimization bugs, which cause GDBs to return

incorrect query results (e.g., omitting a vertex in a graph

database) for a given Gremlin query. Such silent optimization

bugs are likely to go unnoticed by GDB developers.

Fig. 1 shows a real-world optimization bug Huge-

Graph#2163 that we detected in HugeGraph [11]. In this

test case, we execute a Gremlin query of Line 3 (Line

8) with two different optimization configurations to retrieve

the graph data shown in Fig. 2. Specifically, this Gremlin

query first gets all edges (i.e., E()), then retrieves both

incoming and outgoing vertices of each edge (i.e., bothV ()),
and finally removes the incoming vertices of the edges with

25

2024 IEEE Conference on Software Testing, Verification and Validation (ICST)

979-8-3503-0818-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ICST60714.2024.00012

label acting (i.e., not(.in(′acting′))). We execute this

query in HugeGraph with two different optimization configura-

tions, one with both the strategies LazyBarrierStrategy
and HugeVertexStepStrategy off (Line 1-2), and the

other with both the strategies LazyBarrierStrategy and

HugeVertexStepStrategy on (Line 6-7). The correct

result of this query should be v:{1, 3, 4} (Line 9). However,

HugeGraph returns an incorrect result v:{1, 2, 3, 4} (Line

4) with the first optimization configuration (Line 1-2). Huge-

Graph developers explained that they forgot to remove the

dirty edges of the vertices in the cache. HugeGraph developers

have confirmed it as a previously-unknown bug and fixed it.

Recently, several approaches [13]–[16] have been proposed

to find logic bugs in GDBs. Most of these approaches (e.g.,

Grand [13], GDsmith [16], and RD2 [15]) utilize differential

testing to find logic bugs in multiple GDBs. However, they

can miss logic bugs when all target GDBs return incorrect

query results. Many testing approaches [17]–[26] (e.g., TLP

[20], NoREC [21], and DQE [25]) have been proposed to test

relational database systems. Among these approaches, NoREC

[21] can detect optimization bugs in relational database sys-

tems by rewriting an optimized SQL query into a non-

optimizing SQL query. However, a Gremlin query cannot be

rewritten into a non-optimizing Gremlin query by using the

idea in NoREC because the procedural Gremlin queries in

Gremlin-based GDBs adopt different query patterns from that

of the declarative SQL queries in relational database systems.

Thus, we still lack an effective approach to find optimization

bugs in GDBs.

In this paper, we propose Differential Optimization Testing
(DOT), an automated approach to detect optimization bugs

in Gremlin-based GDBs. We first randomly generate a graph

database gdb. Based on the generated graph database gdb,
we further randomly generate valid Gremlin queries. Then,

for a generated Gremlin query Q, we generate candidate

optimization configurations (an optimization configuration is

a sequence of on and off states for optimization strategies

supported by the target GDB), and execute Q on the graph

database gdb with two different optimization configurations.

Any inconsistency of their query results reveals an optimiza-

tion bug in the target GDB.

To effectively detect and diagnose optimization bugs via

DOT , we need to solve the following two technical chal-

lenges. First, randomly generated graph databases and Gremlin

queries can potentially trigger the same optimization strategies,

thus wasting testing efforts. To address this challenge, we

propose an optimization-guided approach to filter out Gremlin

queries that trigger the same optimization strategies, thus

exploring more unique optimization strategies and further

detecting more optimization bugs. Second, an optimization

configuration usually contains optimization strategies that are

not related to an optimization bug. It is time-consuming and

error-prone to manually locate optimization strategies that

cause an optimization bug. To solve this challenge, we provide

an automated approach to locate faulty optimization strategies.

To the best of our knowledge, DOT is the first approach

to detect optimization bugs in GDBs. We evaluate DOT
on six widely-used Gremlin-based GDBs, i.e., Neo4j [1],

OrientDB [2], JanusGraph [3], HugeGraph [11], TinkerGraph

[27], and ArcadeDB [28]. At the time of writing this paper,

we have found 28 unique optimization bugs in these six target

GDBs. Among these 28 optimization bugs, 16 bugs have been

verified as previously-unknown bugs, 5 out of which have

been fixed by GDB developers. Our experimental results also

show that our optimization-guided approach can detect 1.9x

more bugs and 1.1x more unique bugs using 2.2x fewer test

cases than the random approach, and our automated locating

approach can accurately locate faulty optimization strategies.

Furthermore, we compare DOT with the existing approaches,

i.e., differential testing (i.e., Grand [13]) and query partitioning

(i.e., GDBMeter [14]). For the 28 optimization bugs that DOT
detected, 19 bugs are out of the scope of these approaches’

detection capability, and cannot be detected by them. We have

made DOT available at https://github.com/tcse-iscas/DOT.

To sum up, this paper makes the following contributions.

• We propose DOT for finding optimization bugs in

Gremlin-based GDBs by identifying inconsistencies

among different optimization configurations.

• To improve the efficiency of DOT , we propose an

optimization-guided approach to explore more optimiza-

tion strategies and graph database features.

• We evaluate DOT on six widely-used Gremlin-based

GDBs. In total, we have detected 28 unique optimization

bugs in them, 16 of which have been confirmed as new

bugs.

II. PRELIMINARIES

A. Graph Model and Gremlin Query Language

1) Graph Model: Most GDBs (e.g., Neo4j [1] and Ori-

entDB [2]) are built on the labeled property graph model
[29] to store and retrieve graph data. A labeled property

graph model consists of vertices, their associated edges, and

properties. Vertices and edges can be divided into different

vertex and edge groups by their labels. Properties are used to

describe attributes of different groups of vertices or edges. For

example, in Fig. 2, this labeled property graph consists of four

vertices (i.e., v:1, v:2, v:3, and v:4) and three edges (i.e., e:1,

e:2, and e:3). These four vertices are divided into three groups,

i.e., v:1 with label director, v:2 with label movie, and v:3 and

v:4 with label actor, and have different properties, e.g., v:1

has a property name, while v:2 has a property title. These

three edges are divided into two groups, i.e., e:1 with label

directing, and e:2 and e:3 with label acting.

2) Gremlin Query Language: GDBs can create, modify,

and retrieve graph data in labeled property graphs utilizing

graph query languages, e.g., Gremlin [10], [30] developed

by Apache TinkerPop [31], Cypher [32] developed by Neo4j

[33], GSQL [34] in TigerGraph [35], and nGQL [36] in

NebulaGraph [5], [37]. According to the DB-Engines Ranking

[12], Gremlin, which is supported by about half of GDBs, has

been one of the most popular graph query languages.

26

Fig. 3. Approach overview.

Different from declarative query languages (e.g., SQL in

relational database systems), Gremlin is a procedural query

language and allows developers to traverse labeled property

graphs by linking a sequence of graph traversals (i.e., Gremlin

APIs) after a Gremlin traversal source g. These Gremlin API

calls can return vertices, edges, or properties, and some of

them can act as nested sub-queries within other Gremlin APIs.

For example, the Gremlin query in Fig. 1 consists of four

Gremlin query APIs, i.e., E(), bothV (), not(), and in(). Here,

in() retrieves incoming vertices according to the given edge

labels (e.g., acting), and acts as a nested sub-query in not().
Gremlin also supports a series of update APIs, e.g., adding

vertices (edges) by addV () (addE()) in a graph database,

and dropping vertices (edges) by V ().drop() (E().drop()).
We mainly test Gremlin query APIs in this paper.

B. Optimizations in Gremlin-Based GDBs

Gremlin-based GDBs utilize Gremlin Traversal Machine
(GTM) [30] to process Gremlin queries. To efficiently execute

a Gremlin query, GTM adopts various optimization strategies

provided by Apache TinkerPop [31], and GDB-specific opti-

mization strategies provided by each Gremlin-based GDB to

determine the most optimal traversal execution steps according

to the costs of querying graph data [38]. These optimization

strategies applied to Gremlin-based GDBs should not change

the execution semantics of Gremlin queries.

We obtain these optimization strategies provided by Apache

TinkerPop and Gremlin-based GDBs from their source codes

in GitHub. As far as we know, Apache TinkerPop supports 15

optimization strategies, which can be enabled in all Gremlin-

based GDBs. Besides, Gremlin-based GDBs support their own

strategies to adapt to GDB-specific optimizations. Specifically,

JanusGraph provides 11 strategies. OrientDB and HugeGraph

provide 3 strategies, respectively. TinkerGraph and ArcadeDB

provide 2 strategies, respectively. Neo4j only provides one

strategy. Note that we generate an optimization configuration

including both the common optimization strategies and the

GDB-specific optimization strategies for a GDB. For example,

in TinkerGraph, we consider 17 optimization strategies in total.

GDB users can configure optimization strategies for their

Gremlin queries. Specifically, we can turn on or off an

optimization strategy by adding a withStrategies() or a

wihtoutStrategies() configuration after the Gremlin traversal

source g. For example, for the Gremlin query (Line 6-8) in

Fig. 1, we turn on both strategies LazyBarrierStrategy
and HugeVertexStepStrategy by adding a configura-

tion withStrategies(LazyBarrierStrategy) and a configu-

ration withStrategies(HugeV ertexStepStrategy) after g.

After that, GTM can execute Gremlin queries with these con-

figured optimization strategies. Note that relational database

systems adopt different optimization mechanisms [39]–[42],

which cannot be easily configured by users.

III. APPROACH

In this paper, we propose Differential Optimization Testing
(DOT), an effective and automated approach to reveal op-

timization bugs in Gremlin-based GDBs. Fig. 3 shows an

overview of DOT . Specifically, we first randomly generate a

graph database gdb (e.g., the graph database shown in Fig. 2)

at 1©. Then, we randomly generate a Gremlin query Q (e.g.,

the Gremlin query of Line 3 in Fig. 1) at 2© and execute

Q with an optimization configuration optConf on the target

GDB to retrieve its query result RSQ (e.g., v:{1,3,4}).

After that, we generate candidate optimization configura-

tions (e.g., optConf1, ..., optConfm) by enumerating the used

optimization strategies of Gremlin query Q via combinatorial

testing at 3©. Given a generated optimization configuration

(e.g., optConf1), we execute Gremlin query Q with it on

graph database gdb, and retrieve Q’s query result RS′
Q (e.g.,

v:{1,2,3,4}). At 4©, we compare the query result RSQ with

RS′
Q, and verify whether they are the same. If these two query

results are inconsistent, an optimization bug is revealed. We

then automatically locate the faulty optimization strategies that

trigger this optimization bug at 5©. Note that in an optimization

configuration, the black (gray) box with a number i means that

the i-th optimization strategy (opt for short in Fig. 3) of the

target GDB is used (not used) when executing query Q.

We design an optimization approach to guide DOT to

efficiently expose optimization bugs. Specially, if a generated

Gremlin query Q triggers the same optimization strategies as

some previous Gremlin queries, we re-execute 2© to generate

a new Gremlin query, aiming to explore new optimization

strategies. Furthermore, if no unique optimization strategy is

triggered on a generated graph database gdb for a period of

27

time, we re-execute 1© to generate a new graph database,

assuming that this new generated graph database will subse-

quently lead to trigger new graph database features and unique

optimization strategies, thus detecting new optimization bugs.

A. Generating Graph Databases and Gremlin Queries

Our graph database and Gremlin query generation are

developed based on Grand [13]. Here, we only briefly explain

how we generate them for completeness.

1) Generating Graph Databases: To generate a graph

database, we first randomly generate its graph schema, i.e.,

vertex and edge types. Each vertex type consists of a vertex

label name and a set of properties. Each edge type consists

of an edge label name, an incoming vertex type, an outgoing

vertex type and a set of properties. Each property type contains

a property name and a data type.

We then randomly generate a number of detailed vertices

and edges based on the generated graph schema. To generate

a vertex, we randomly select a vertex type, and randomly

generate its property values with the given data types, and

then insert it into a graph database by executing Gremlin’s

update statement g.addV (label).property(name, value). To

generate an edge, we randomly select an edge type, two

generated vertices according to its incoming and outgo-

ing vertex types, and randomly generate its property val-

ues with the given data types. Then we insert the gen-

erated edge instance into a graph database by executing

g.addE(label).from(v1).to(v2).property(name, value).
We further randomly create some graph indexes for the

properties of vertices and edges in the generated graph

database. Specifically, for a randomly chosen property prop,

we create graph indexes for property prop using the specific

syntaxes and index mechanisms of the target GDB.

2) Generating Gremlin Queries: We generate Gremlin

queries guided by the Gremlin traversal model proposed in

[13]. This traversal model defines graph traversal (i.e., Gremlin

API) types and GDB users can link graph traversals correctly

according to their output types. Given a maximum length

maxL of graph traversals, we first randomly select a traversal

type and then randomly select the detailed graph traversal

based on the traversal model, until the length maxL is reached

or a graph traversal that returns property values is selected. To

generate query parameters, we select label and property names

from the generated graph database, and select property values

from the generated graph database or a random function.

Note that the generated database size and the maximum

query length maxL are configurable. In our experiment, we

generate a graph database with 100 vertices and 200 edges, and

set maxL to 10, which we determine to work well empirically.

B. Generating Optimization Configurations

A target GDB includes a sequence of optimization strategies

opt =< o1, o2, ..., on >, in which oi represents the i-th
optimization strategy and n is the number of the optimiza-

tion strategies supported by the target GDB. Note that each

optimization strategy has two states, i.e., on and off. Thus,

for each optimization strategy in opt, we can turn it on or

off to generate an optimization configuration optConf =<
s1, s2, ..., sn >, in which si represents the state of oi. We set

si to 1 (0) to turn oi on (off).

We suffer from the following two issues when generating

optimization configurations. First, testing a Gremlin query

with all combinations of optimization strategies would lead

to a huge testing space. Although the number of optimization

strategies in a target GDB is typically not large, e.g., 17

in TinkerGraph, we still need to generate 217 optimization

configurations to test all optimization strategies in Tinker-

Graph. Second, a completely random generation of optimiza-

tion configurations can cause many useless configurations

because different optimization strategies might be correlated

with certain characteristics of the given Gremlin queries. These

two issues can significantly affect the effectiveness of DOT .

To address the above two issues, we first analyze the

correlations between a given query Q and certain optimization

strategies in the target GDB. Our intuition is that an opti-

mization strategy is worthy testing only if it is turned on and

actually used in the execution of a query Q (used optimization

strategies for short). Then, we utilize combinatorial testing

[43] to enumerate the used optimization strategies of query

Q and further generate candidate optimization configurations.

Note that in our experiment, most optimization bugs can be

triggered by only one optimization strategy. Therefore, we can

adequately test optimization strategies using 2-wise combi-

natorial testing, i.e., for each pair of optimization strategies

triggered by Q, we test all possible combinations of them.

Specifically, we first obtain the used optimization strategies

by retrieving query Q’s traversal explanation (see more in

Section IV). Then, we generate pairwise combinations of the

used optimization strategy by using the following algorithm

[44]. (1) We generate all combinations for the used opti-

mization strategies of query Q through Cartesian product,

and store them in a candidate set candidateSet. (2) For

each combination in candidateSet, we check whether all

pairs of optimization strategies appear in other combinations

of candidateSet. If yes, we discard it and continue the

process. Following the above steps, we can obtain the pairwise

combinations for query Q’s used optimization strategies in

candidateSet.
For example, to generate candidate optimization configura-

tions for a Gremlin query Q in Fig. 3, we first obtain its used

optimization strategies, e.g., o1, o3, and o4. We then compute

pairwise combinations of these optimization strategies, i.e.,

< 1, 1, 1 >, < 1, 0, 0 >, < 0, 1, 0 >, and < 0, 0, 1 >.

Here, 1 (0) represents turning on (off) a strategy. Thus, the

combination < 1, 0, 0 > represents turning on a strategy o1.

After that, we can generate candidate optimization con-

figurations with combinations in candidateSet. Specifically,

given a combination optCom in candidateSet, for each used

optimization strategy of query Q, we set its state to its cor-

responding value in optCom. For those unused optimization

strategies of query Q, we set their states to 0. Thus, we can

generate an optimization configuration with the combination

28

Fig. 4. Locate faulty optimization strategies in Fig. 3.

optCom, e.g., optConf1 =< 1, 0, 0, 0, 0, ..., 0 > in Fig. 3.

For a strategy oi in a generated optimization configuration, we

append a withStrategies(oi) (withoutStrategies(oi)) after

the Gremlin traversal source g when its state value si is 1 (0).

To perform differential testing for a given Gremlin query Q,

we need to choose two different optimization configurations

each time. In our implementation, we choose the optimization

configuration that turning on all used optimization strategies as

the original configuration optConf in Fig. 3, and choose the

other optimization configuration optConfi (e.g., optConf1)

from the generated candidate optimization configurations. We

then execute query Q with optConf and optConfi to retrieve

its query result RSQ and RS′
Q, respectively, and compare

RS′
Q with RSQ in Section III-C.

C. Comparing Query Results

For a Gremlin query Q, we compare its query result

RSQ under the optimization configuration optConf with the

query result RS′
Q under a generated optimization configuration

optConfi. Specifically, if both RSQ and RS′
Q contain excep-

tion messages, we compare their reduced error messages (e.g.,

a substring of exception stack trace). If they belong to different

error types, we consider that an optimization bug is detected.

If one of RSQ or RS′
Q contains an exception message, we

also report it as an optimization bug. If none of RSQ and RS′
Q

contain exception messages, we first sort elements in them and

then compare their elements one by one. Any inconsistency

reveals an optimization bug. For example, in Fig. 3, we can

report an optimization bug because the elements in RSQ (i.e.,

v:{1,3,4}) are different from those in RS′
Q (i.e., v:{1,2,3,4}).

D. Locating Faulty Optimization Strategies

For each reported optimization bug, we locate the optimiza-

tion strategies that trigger it. Algorithm 1 illustrates how we

locate faulty optimization strategies for a given Gremlin query

Q. Given the original optimization configuration optConf
and a new generated optimization configuration optConfi
that triggers an optimization bug, we first obtain a sequence

of optimization strategies diff with different states between

optConf and optConfi (Line 1), e.g., diff =< o3, o4 > in

Fig. 4. After that, we iteratively enumerate optimization strate-

gies in diff , generate new configurations by changing the

states of the enumerated optimization strategies in optConf ,

and verify whether we can retrieve the same query result RS′
Q

as RSQ (Line 2-9). If not, we locate the minimum change of

optConf , and then stop this process (Line 5-7).

Algorithm 1: Locate Faulty Optimization Strategies

Input: Q (A Gremlin query);
optConf (The original optimization configuration);
optConfi (A new generated optimization configuration that
triggers an optimization bug);
RSQ (The query result of executing Q with optConf)
Output: faultOpts (Faulty optimization strategies)

1 diff ← getDifferentOpts(optConf, optConfi)
2 for t← 1; t ≤ diff.size; t++ do
3 foreach opts ∈ enumDiff(diff, t) do
4 RS′

Q ← applyDiff(Q, opts)
5 if RSQ �= RS′

Q then
6 return opts
7 end
8 end

Specifically, as shown in Fig. 4 (b-d), we first iteratively

enumerate one optimization strategy in diff (e.g., < o3 >
and < o4 >), and apply its state on optConf . If we retrieve

a different query result from RSQ in an iteration, we locate

the faulty optimization strategy and stop the process. If not,

we continue to enumerate two optimization strategies in diff
(e.g., < o3, o4 >) and generate a new configuration by apply-

ing these two states of optimization strategies on optConf . If

we retrieve a different query result with the new configuration,

we locate the faulty optimization strategies, e.g., < o3, o4 > in

Fig. 4, and stop the process. If not, we continue to enumerate

three and more optimization strategies until we find the faulty

optimization strategies.

E. Optimizing Differential Testing

We optimize our differential testing by focusing on ex-

ploring new optimization strategies and new graph database

features, thus exposing more optimization bugs.

1) Exploring New Optimization Strategies: In a generated

graph database gdb, if a Gremlin query can trigger the same

optimization strategies as some previously tested Gremlin

queries, they are more likely to trigger the same optimization

bugs. Therefore, we need to filter it out and generate a new

Gremlin query to explore more unique optimization strategies.

Specifically, for a Gremlin query Q, we first obtain its used

optimization strategies usedOpts. Then, we check whether

the combination of these strategies in usedOpts exists in the

optimization set optSet. If yes, we think a similar Gremlin

query has been tested, then discard query Q and generate a

new one. Otherwise, we insert the combination of strategies

in usedOpts into the optimization set optSet and generate

candidate configurations for Q and test them.

29

1 g.addV(’vL’).property(’vp’, 11) // v1
2 g.addV(’vL’).property(’vp’, 21) // v2
3 g.addV(’vL’).property(’vp’, 31) // v3
4 g.addE(’eL’).from(v1).to(v2) // e1
5 g.addE(’eL’).from(v2).to(v3) // e2
6 g.addE(’eL’).from(v1).to(v3) // e3
7
8 g.withStrategies(LazyBarrierStrategy) // on
9 .V().in().has(’vp’, gt(10)) // -- v:{1,1,3}

10 .range(0,2) -- v:{1,1}
11
12 g.withoutStrategies(LazyBarrierStrategy) // off
13 .V().in().has(’vp’, gt(10)) // -- v:{1,3,1}
14 .range(0,2) -- v:{1,3}

Fig. 5. A corner case TinkerGraph#2933.

2) Exploring New Graph Databases: For a generated graph

database gdb, if no unique optimization strategy is triggered

for a period of time, then we can hardly detect new optimiza-

tion bugs in gdb as it has been adequately tested. Therefore,

we need to generate a new graph database, aiming to trigger

new graph database features (e.g., new data type).

Specifically, for a Gremlin query Q, we first retrieve its

used optimization strategies usedOpts and then insert each of

them into a unique set uniqueSet, in which we store unique

optimization strategies. Given a used optimization strategy

of query Q, we check whether it exists in uniqueSet, and

insert it if not. If no new optimization strategy is inserted into

uniqueSet for a fixed number of queries, we consider that

this graph database has been tested stressfully and invoke 1©
to generate a new graph database. Otherwise, we continue to

test the target GDB using the same graph database gdb.
Note that this fixed query number is configurable. A higher

query number means that we test a GDB using more Gremlin

queries on a single graph database, while a lower query

number indicates that we test a GDB using more graph

databases. In our experiment, we set it to 1, 000.

F. Corner Cases

Theoretically, our approach can test all optimization strate-

gies supported by target GDBs because optimization strategies

should not change the query results of Gremlin queries.

However, there are two corner cases that we cannot test.

LazyBarrierStrategy in Apache TinkerPop is de-

signed to optimize aggregated operations, e.g., order() and

count(). However, we find that this strategy sometimes can

change the output order of graph data. As a result, Gremlin

queries containing range operations, e.g., range(), may return

different query results with LazyBarrierStrategy on

and off. In Fig. 5, we create three vertices and three edges

(Line 1-6), and query incoming vertices whose value of vp
is greater than 10 (Line 9, 13). We obtain a query result

v:{1, 1, 3} with LazyBarrierStrategy on (Line 9), and

a query result v:{1, 3, 1} with LazyBarrierStrategy off

(Line 13). Therefore, when we output the first two elements

of these two query results using range(0, 2), we retrieve two

different results, i.e., v:{1, 1} (Line 10) and v:{1, 3} (Line 14).

1 g.addV().property(’vp1’, 11) // v1
2 g.addV().property(’vp2’, ’hello’) // v2
3
4 g.withoutStrategies(ProductiveByStrategy) //off
5 .V().order().by(’vp1’) -- v:{1}
6
7 g.withStrategies(ProductiveByStrategy) //on
8 .V().order().by(’vp1’) -- v:{1,2}

Fig. 6. A corner case TinkerGraph#2900.

g.V().out ().count().explain()
// Strategy [Category] [Traversal Steps]

…

PathRetractionStrategy [O] [GraphStep(vertex, []), VertexStep(OUT, vertex), CountGlobalStep]

CountStrategy [O] [GraphStep(vertex, []), VertexStep(OUT, vertex), CountGlobalStep]

AdjacentToIncidentStrategy [O] [GraphStep(vertex, []), VertexStep(OUT, edge), CountGlobalStep]

EarlyLimitStrategy [O] [GraphStep(vertex, []), VertexStep(OUT, edge), CountGlobalStep]

…

Fig. 7. Partial traversal explanation of a Gremlin query in TinkerGraph.

ProductiveByStrategy in Apache TinkerPop is de-

signed to optimize order().by(prop) that sorts vertices or

edges by the given property name prop. This strategy

forces a Null value to be returned when the property

prop is absent. Therefore, it affects the query results when

there are some vertices or edges without prop. For ex-

ample, in Fig. 6, we sort vertices by property vp1 with

ProductiveByStrategy off (Line 4) and on (Line 7).

However, we obtain two different query results v:{1} and

v:{1,2}, because a Null value is automatically generated for

vp1 of v:2 with ProductiveByStrategy on.

IV. IMPLEMENTATIONS

We implement DOT on Grand [13]. In detail, we imple-

ment our method in around 900 lines of Java code, and adapt

GDB-specific features in additional 300 lines of Java code,

e.g., creating indexes.

Retrieving the used optimization strategies. For a given

Gremlin query Q, we can obtain its used optimization strate-

gies from Q’s traversal explanation, which records the ac-

tual traversal steps performed by Q under each optimization

strategy in a GDB. We fetch Q’s traversal explanation by

appending explain() after it. As shown in Fig. 7, each line of

the traversal explanation consists of three parts, i.e., strategy,

category (e.g., optimization strategy [O] and GDB-specific

optimization strategy [P]), and traversal steps.

Note that the traversal steps of a used optimization strat-

egy are different from that of its previous optimization

strategy. Therefore, we can obtain the used optimization

strategies by iteratively comparing the traversal steps of

neighboring strategies in query Q’s traversal explanation. In

Fig. 7, AdjacentToIncidentStrategy has a traversal

step VertexStep(OUT,edge), which is different from

the traversal step VertexStep(OUT,vertex) of its pre-

vious strategy CountStrategy. Thus, in this traversal

explanation, a used optimization strategy of query Q is

AdjacentToIncidentStrategy.

30

TABLE I
TARGET GDBS AND OPTIMIZATION BUGS DETECTED BY DOT

Detected Optimization BugsGDB Ranking GitHub
Stars Detected Fixed Verified Duplicate False Positives Unconfirmed

Neo4j 1 11.4k 2 0 0 2 0 0
OrientDB 5 4.6k 2 0 1 0 1 0
JanusGraph 7 4.8k 5 0 2 0 0 3
HugeGraph 24 2.3k 15 3 7 0 1 4
TinkerGraph 25 1.8k 3 2 0 1 0 0
ArcadeDB 28 309 1 0 1 0 0 0
Total - - 28 5 11 3 2 7

V. EVALUATION

To demonstrate the effectiveness of DOT , we evaluate

DOT on six popular Gremlin-based GDBs, and try to answer

the following three research questions:

• RQ1: How effective is DOT in detecting optimization

bugs in real-world Gremlin-based GDBs?

• RQ2: Can DOT find optimization bugs more efficiently

with our optimization-guided testing approach?

• RQ3: How does DOT perform compared with existing

state-of-the-art approaches?

A. Experimental Setup

1) Target GDBs: We evaluate DOT on six widely-used

Gremlin-based GDBs, i.e., Neo4j [1], OrientDB [2], Janus-

Graph [3], HugeGraph [11], TinkerGraph [27], and ArcadeDB

[28]. The second and third columns in Table I show their

DB-Engines Ranking for GDBs [12] and GitHub stars. We

can see that these GDBs are all important and popular GDBs.

Specifically, JanusGraph, HugeGraph, and TinkerGraph sup-

port graph model and can utilize Gremlin natively. Ori-

entDB and ArcadeDB support multiple data models, including

graph model, document, and key-value stores, etc, and imple-

ment their own TinkerPop [31] interfaces. We access graph

databases in Neo4j through the Neo4j-Gremlin plugin [45],

which is developed by Apache TinkerPop. In summary, the

six target GDBs used in our experiment cover different kinds

of GDBs and are representative.

We test the latest release versions of these target GDBs

when we start this work, i.e., Neo4j-Gremlin 3.6.2 (with Neo4j

3.4.11), OrientDB 3.2.16, JanusGraph 0.6.3, HugeGraph 1.0.0,

TinkerGraph 3.6.2, and ArcadeDB 23.2.1. Note that Neo4j

3.4.11 is not the latest version of Neo4j, but is the version

used in the latest Neo4j-Gremlin plugin.

2) Experimental Infrastructure: We conduct all experi-

ments on a machine with an Intel(R) Core(TM) i9-9900

processor, which has 16 physical and 32 logical cores clocked

at 3.10GHz. Our test machine uses a 64-bit CentOS Linux

release 7.7.1908 system with 8 GB RAM.

B. Detected Bugs

1) Testing Methodology: We run DOT on the six target

GDBs. In each testing round, we run DOT to test a target

GDB (e.g., TinkerGraph) within a time budget (e.g., five min-

utes in our experiment), and then manually analyze, reproduce,

and filter out duplicate optimization bugs for the optimization

bugs reported by DOT . After that, we continue to test this

target GDB aiming to find more optimization bugs. We have

tested each target GDB in 10 testing rounds in our experiment.

Specially, for a reported optimization bug, we manually

reduce the Gremlin query and the graph database to a smaller

one. Then, to distinguish unique bugs, we check whether the

query patterns of the reduced Gremlin query are similar or

exception messages are similar to the previously found bugs.

If yes, we filter it out. Otherwise, we consider it as unique.

Note that for the strategies LazyBarrierStrategy and

ProductiveByStrategy that affect the results of Gremlin

queries, we do not test them in subsequent testing. However,

for the strategies that trigger a true bug, we continue to test

them because they may trigger different optimization bugs.

2) Bug Overview: In our experiment, DOT reports 18,481

bug reports in the six target GDBs. It is time-consuming to

investigate all these bug reports. Therefore, we take a stratified

random sample approach to sample a subset of representative

bug reports for each faulty optimization strategy to identify

unique optimization bugs. In each testing round, we first

locate the faulty optimization strategies for each bug report

by using the approach in Section III-D, and then randomly

sample 50 bug reports for each located faulty optimization

strategy combination in each GDB. If a located optimization

strategy combination contains less than 50 bug reports, we

keep all of them. We finally sample 2,549 bug reports for

further investigation in 10 testing rounds. We investigate these

bug reports and remove duplicate ones from these 2,549 bug

reports. Finally, we obtain 28 unique optimization bugs in

the six target GDBs, and submit them to their corresponding

communities and wait for feedbacks from GDB developers.

Table I shows the overall bug statistics for the 28 unique

optimization bugs. Out of the 28 optimization bugs, 16 bugs

have been confirmed as new bugs, 5 of which have been

fixed by GDB developers. For the remaining bugs, 3 bugs

are considered duplicates to existing bug reports, 2 bugs are

considered as false positives by GDB developers, and 7 bugs

have not received any feedbacks from GDB developers yet.

False positives. Two bugs are considered as not bugs

by GDB developers. In OrientDB#9885, OrientDB forgets

to throw an exception when sorting vertices and edges for

a non-existent property. OrientDB developers explained that

OrientDB allows to access a non-existent property and just

31

2

1

1

2

3

1

1

6

3

2

2 3 1

HugeGraph+Vertex+Count

HugeVertex+LazyBarrier

HugeVertexStepStrategy

HugeGraphStepStrategy

JanusGraphStepStrategy

FilterRankingStrategy

CountStrategy

Neo4j

OrientDB

JanusGraph

HugeGraph

TinkerGraph

ArcadeDB

Fig. 8. The statistics of faulty optimization strategies.

returns a Null value. However, OrientDB actually sometimes

throws an exception, but sometimes returns a Null value.

Therefore, we still believe that OrientDB incorrectly handles

order() operation. In HugeGraph#1966, HugeGraph returns

an incorrect result when querying vertices or edges by filtering

properties using not(eq()). HugeGraph developers explained

that HugeGraph now does not support not(eq()) with a graph

index and they plan to support it in the future.

RQ1: DOT is effective in finding optimization bugs. We
have detected 28 unique optimization bugs, 16 of which
are previously-unknown bugs.

3) Optimization Bug Analysis: For each optimization bug,

we locate its faulty optimization strategies. We further analyze

the 28 optimization bugs, and obtain the statistics about their

faulty optimization strategies.

The involved faulty optimization strategies. As shown

in Fig. 8, the majority of (26 out of 28) optimization bugs

are triggered by only one optimization strategy. That is,

most optimization strategies are independent. Specifically,

among these 26 bugs, 15 bugs are triggered by the common

optimization strategies provided by Apache TinkerPop, e.g.,

CountStrategy and FilterRankingStrategy. The

remaining 11 bugs are triggered by the GDB-specific opti-

mization strategies provided by target GDBs, 9 bugs of which

occur in HugeGraph and the other 2 bugs in JanusGraph.

The remaining two bugs are triggered by more than

one optimization strategies. One bug (Fig. 1) is trig-

gered by turning off HugeVertexStepStrategy and

LazyBarrierStrategy (HugeVertex+LazyBarrier
for short). In this bug, HugeVertexStepStrategy and

LazyBarrierStrategy affect each other, and cause

HugeGraph to return an incorrect query result. Another bug is

triggered by turning off three optimization strategies provided

by HugeGraph (HugeGraph+Vertex+Count for short).

The states of faulty optimization strategies. As shown

in Fig. 9, we count the states (on or off) of faulty opti-

mization strategies. Surprisingly, more than half (16) of these

28 unique bugs are triggered by turning off optimization

strategies. Among these 16 bugs, besides three bugs triggered

by the common strategy FilterRankingStrategy, 13

bugs are caused by incorrect GDB-specific optimizations.

2 1

1

3

2

2

13

3 1on

off

Neo4j OrientDB JanusGraph

HugeGraph TinkerGraph ArcadeDB

Fig. 9. The states of faulty optimization strategies.

TABLE II
COMPARISON BETWEEN DOT AND DOT rand

All bugs Unique bugs Test queriesGDB
DOT DOT rand DOT DOT rand DOT DOT rand

Neo4j 272 119 2 2 1,248 4,000
OrientDB 398 180 2 2 1,608 4,317
JanusGraph 327 173 5 5 1,444 2,797
HugeGraph 215 238 11 8 598 1,000
TinkerGraph 439 134 3 3 2,012 4,208
ArcadeDB 191 125 1 1 1,927 3,140
Total 1,842 969 24 21 8,837 19,462

For example, in Fig. 13, when we turn off the strategy

HugeVertexStepStrategy, HugeGraph omits vertices in

the graph database and returns an incorrect result. These bugs

indicate that GDB developers have performed adequate testing

when turning on these optimization strategies, but they neglect

to test GDBs when these optimization strategies are turned off.

The remaining 12 optimization bugs are triggered by turning

on certain optimization strategies. For example, in Fig. 12,

CountStrategy computes a wrong result when the filter

condition in a predicate is abnormal.

Most optimization bugs are caused by independent opti-
mization strategies. Both turning on and off optimization
strategies can effectively expose optimization bugs.

C. Efficiency of Optimization-Guided Testing Approach

To evaluate the efficiency of our optimization-guided ap-

proach in DOT , we construct a variant of DOT , i.e.,

DOT rand, which removes the optimization approach from

DOT . We evaluate whether DOT can find optimization bugs

faster than DOT rand. To fairly compare them, for each gen-

erated graph database, we randomly generate a fixed number

(e.g., 1,000 in our experiment) of queries in DOT rand.

To this end, we run DOT and DOT rand to test each

target GDB within a time budget (e.g., five minutes in our

experiment). For all reported optimization bugs, we distinguish

unique bugs by checking whether the query patterns or excep-

tion messages are similar to the previously found bugs.

Table II shows the experimental comparison results between

DOT and DOT rand. Overall, DOT can find 1.9x more

bugs and 1.1x more unique bugs with 2.2x fewer test queries

than DOT rand. It is not surprising that DOT and DOT rand

can find all optimization bugs in most target GDBs except

HugeGraph because optimization bugs detected in these GDBs

do not require complex query patterns or complex graph

databases. However, in HugeGraph, some optimization bugs

require special query patterns (e.g., comparing a String value

using gte()) or special graph database features (e.g., graph

32

Fig. 10. The number of unique optimization combinations within 5 minutes
(300 seconds in the x axis) running of DOT and DOT rand.

data contains a Double value Infinity). DOT can easily and

quickly expose these bugs because it can explore more unique

optimization strategies and more graph database features.

Further, we count the number of unique combinations of

optimization strategies within five minutes running of DOT
and DOT rand. As shown in Fig. 10, DOT can explore

1.3x more unique optimization combinations than DOT rand,

demonstrating the contribution of our optimization-guided

approach. These results further illustrate that optimization bugs

can be more efficiently detected by exploring more unique

optimization strategies.

RQ2: DOT can explore more unique optimization strate-
gies, thus exposing more optimization bugs than DOT rand.

D. Comparison with Existing Approaches

To the best of our knowledge, four existing approaches [13]–

[16] can detect logic bugs in GDBs. Specifically, three (i.e.,

Grand [13], GDsmith [16], and RD2 [15]) use differential test-

ing on multiple GDBs, and the remaining one (i.e., GDBMeter
[14]) uses query partitioning. Therefore, we compare DOT
with differential testing and query partitioning.

Comparison with differential testing. Grand applies dif-

ferential testing to detect logic bugs in GDBs. It generates the

same graph database and executes the same Gremlin queries

in multiple target GDBs to verify whether they can return the

same results. Any discrepancy reveals a logic bug. To compare

DOT with differential testing (e.g., Grand), for each test case

in the 28 optimization bug reports, we run it on our six target

GDBs and verify whether their query results are the same.

Any discrepancy will be considered as an optimization bug

detected by Grand. As a result, among the 28 optimization

bugs, Grand can detect 9 bugs. In summary, Grand cannot

detect the remaining 19 optimization bugs that DOT detected.

Comparison with query partitioning. GDBMeter applies

query partitioning [20] to test GDBs. Specifically, it partitions

a query into three disjoint queries in which a predicate is

evaluated to true, false and null, respectively. Since we

1 v1 = g.addV(’vL’); // v1
2 v2 = g.addV(’vL’); // v2
3
4 g.withStrategies(CountStrategy) // on
5 .V().where(__.in().count().is(eq(-3)));
6 -- {Not a legal range: [0, -2]} �
7
8 g.withoutStrategies(CountStrategy) // off
9 .V().where(__.in().count().is(eq(-3)));

10 -- {} �

Fig. 11. A test case that triggers bug TinkerGraph#2891.

cannot successfully run GDBMeter in practice and GDBMeter
only supports testing one Gremlin-based GDB (i.e., Janus-

Graph), we compare DOT with GDBMeter by applying query

partitioning to each test case in the 28 bug reports. Specifically,

we try to generate a has(key) or revise a has() operation

in the original query, and then generate a predicate p to

construct three disjoint sub-queries has(key, p), has(key,¬p)
and hasNot(key). We then check whether the union of the

query results computed by these three disjoint sub-queries is

the same as the result of the original query. If not, then we

consider that this bug can be detected by GDBMeter. As a

result, among the 28 optimization bugs, only 2 bugs can be

found by GDBMeter, which can also be detected by Grand.

RQ3: DOT can detect new optimization bugs that existing
approaches cannot find. Specifically, 19 out of 28 optimiza-
tion bugs cannot be detected by existing approaches.

E. Interesting Bugs

We have explained HugeGraph#2163 in Fig. 1. We further

explain more newly detected optimization bugs in detail.

TinkerGraph#2891. Fig. 11 shows an optimization bug

detected in TinkerGraph. The graph database consists of two

vertices, i.e., v:1 and v:2 (Line 1-2). We retrieve vertices

whose incoming vertex number is equal to a negative value

-3 with CountStrategy on (Line 4-5). We expect Tinker-

Graph to return an empty set since the number of incoming

vertex should be greater than or equal to zero. However, an un-

expected exception is thrown (Line 6). We can get the correct

result with CountStrategy off (Line 8-10). TinkerGraph

developers explained that CountStrategy cannot correctly

compare negative values with counted number and fixed it.

TinkerGraph#2893. Fig. 12 shows an optimization bug in

TinkerGraph. The graph database consists of two vertices,

i.e., v:1 and v:2, and one edge e:1 (Line 1-3). We first get

all vertices, and then retrieve vertices whose outgoing vertex

number is less than 1 or greater than 0. TinkerGraph returns

an incorrect result v:{2} with CountStrategy on (Line

5-7). However, we can retrieve the correct result v:{1, 2}
when we turn off the strategy CountStrategy (Line 9-11).

TinkerGraph developers explained that the boundary values

need to be better checked in CountStrategy and fixed it.

HugeGraph#2121. Fig. 13 shows an optimization bug

detected in HugeGraph. In this test case, the graph database

33

1 v1 = g.addV(’vL’); // v1
2 v2 = g.addV(’vL’); // v2
3 e1 = g.addE(’eL’).from(v1).to(v2) // e1
4
5 g.withStrategies(CountStrategy) // on
6 .V().where(__.out().count().is(outside(1,0)))
7 -- v:{2} �
8
9 g.withoutStrategies(CountStrategy) // off

10 .V().where(__.out().count().is(outside(1,0)))
11 -- v:{1,2} �

Fig. 12. A test case that triggers bug TinkerGraph#2893.

1 v1=g.addV(’vL’); // v1
2 v2=g.addV(’vL’); // v2
3 v3=g.addV(’vL’); // v3
4 e1=g.V(v2).addE(’eL1’).to(v1).property(’p’, 3);
5 e2=g.V(v3).addE(’eL2’).to(v1).property(’p’, 2);
6
7 g.withoutStrategies(HugeVertexStepStrategy)//off
8 .E().inV().inE(’eL2’);
9 -- {} �

10
11 g.withStrategies(HugeVertexStepStrategy) // on
12 .E().inV().inE(’eL2’)
13 -- e:{2,2} �

Fig. 13. A test case that triggers bug HugeGraph#2121.

consists of three vertices (i.e., v:1, v:2, and v:3) and

two edges (i.e., e:1 and e:2) (Line 1-5). We first re-

trieve incoming vertices of all edges (i.e., E().inV ())
and then retrieve these vertices’ incoming edges with an

edge label eL2 (i.e., inE(′eL2′)) (Line 8). We obtain

an incorrect result, i.e., an empty set, when we turn

off the strategy HugeVertexStepStrategy (Line 7-

9). However, we can obtain a correct result e:{2, 2} with

HugeVertexStepStrategy on (Line 11-13). HugeGraph

developers have confirmed it and try to fix it.

VI. DISCUSSION

Threats to validity. First, we evaluate DOT on six target

GDBs. These GDBs are all well maintained and rank on the

top of GDB popularity. Thus, we believe our target GDBs

are representative. Second, manually filtering out duplicate

optimization bugs may introduce human errors and omit

real optimization bugs. To mitigate this threat, three authors

carefully study the sampled bug reports and reach a consensus

for them. Third, we may introduce threats when comparing

DOT with existing approaches. To mitigate this threat, we

run the available tool and make a careful manual analysis for

them in order to compare them as fairly as possible.

Limitations. First, DOT can effectively detect optimization

bugs caused by incorrect implementations of optimization

strategies, but cannot test other logic bugs that are not related

to optimization strategies. Second, DOT cannot test some op-

timization strategies (e.g., ProductiveByStrategy) that

can affect the query results when turing them on or off. Third,

DOT cannot automatically remove duplicate bugs because the

manifestations of bugs for the same root cause are diverse and

complex, which poses a challenge for automatically removing

duplicate bugs. We will address this limitation in the future.

VII. RELATED WORK

Testing graph database systems (GDBs). Recently, many

works [13]–[16] have been proposed to test the correctness of

GDBs. Grand [13], RD2 [15], and GDsmith [16] detect logic

bugs in multiple GDBs by utilizing differential testing [46]–

[48], while GDBMeter [14] utilize metamorphic testing [49]

to find logic bugs in an individual GDB. These works cannot

effectively detect optimization bugs in GDBs.

Testing relational database systems (DBMSs). Re-

searchers have developed various testing approaches on re-

lational DBMSs [17]–[25], [50]–[56]. Some approaches [18],

[19], [23], [50] (e.g., RAGS [18]) applied differential testing to

test relational DBMSs. Some approaches [20], [21], [25] (e.g.,

NoREC [21]) utilizes metamorphic testing for finding logic

bugs in relational DBMSs. Query generation [17], [54] (e.g.,

SQLsmith [17]) and generic fuzzing approaches (e.g., AFL

[53]) can also be used to detect bugs in relational DBMSs.

All the above testing approaches target relational DBMSs

with declarative query language (i.e., SQL), which has totally

different query patterns and syntaxes from the procedural
Gremlin query language. Therefore, they cannot be applied

to find optimization bugs in GDBs.

Compiler optimization testing. In compiler testing [57],

many approaches [58]–[65] have been proposed to test com-

piler optimizers. Some works (e.g., [59], [64]) randomly

generate compiler test cases to detect optimization bugs in

compilers. Some works (e.g., [61], [63]) test compiler opti-

mizers by generating equivalent programs. COTest [60] boosts

compiler testing by exploring more optimizations. However,

these approaches cannot be applied to test optimization bugs in

GDBs, because they target totally different objects and goals.

VIII. CONCLUSION

Graph database systems suffer from optimization bugs

caused by incorrect optimizations. In this paper, we propose

DOT , an automated testing approach for finding optimization

bugs via identifying inconsistencies between two different

optimization configurations in a Gremlin-based graph database

system. We further propose an optimization-guided approach

to expose more optimization bugs quickly. We evaluate DOT
on six representative Gremlin-based graph database systems,

and have detected 28 unique optimization bugs, 16 of which

have been verified as new bugs by GDB developers. We expect

that the effectiveness of our approach can greatly improve the

robustness of graph database systems.

ACKNOWLEDGMENT

This work was partially supported by National Natural

Science Foundation of China (62072444), Major Project of

ISCAS (ISCAS-ZD-202302), and Youth Innovation Promotion

Association at Chinese Academy of Sciences (Y2022044).

Wensheng Dou is the corresponding author.

34

REFERENCES

[1] “Neo4j,” https://neo4j.com/, 2023.
[2] “Orientdb,” https://orientdb.org, 2023.
[3] “Janusgraph,” https://janusgraph.org, 2023.
[4] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee, “Aggregation support

for modern graph analytics in TigerGraph,” in Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2020, pp. 377–392.

[5] “Open source, distributed, scalable, lightning fast,” https://nebula-
graph.io/, 2023.

[6] O. Erling, A. Averbuch, J. L. Larriba-Pey, H. Chafi, A. Gubichev,
A. Prat-Pérez, M. Pham, and P. A. Boncz, “The LDBC social network
benchmark: Interactive workload,” in Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2015,
pp. 619–630.

[7] Y. Ren, H. Zhu, J. Zhang, P. Dai, and L. Bo, “EnsemFDet: An ensemble
approach to fraud detection based on bipartite graph,” in Proceedings
of International Conference on Data Engineering (ICDE), 2021, pp.
2039–2044.

[8] B. Liu, X. Wang, P. Liu, S. Li, Q. Fu, and Y. Chai, “Unikg: A unified
interoperable knowledge graph database system,” in Proceedings of
IEEE International Conference on Data Engineering (ICDE), 2021, pp.
2681–2684.

[9] M. Arenas, C. Gutiérrez, and J. F. Sequeda, “Querying in the age
of graph databases and knowledge graphs,” in Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2021, pp. 2821–2828.

[10] “Gremlin query language,” https://tinkerpop.apache.org/gremlin.html,
2023.

[11] “Hugegraph,” https://hugegraph.github.io/hugegraph-doc/, 2023.
[12] “Db-engines ranking of graph dbms,” https://db-

engines.com/en/ranking/graph+dbms, 2023.
[13] Y. Zheng, W. Dou, Y. Wang, Z. Qin, L. Tang, Y. Gao, D. Wang,

W. Wang, and J. Wei, “Finding bugs in Gremlin-based graph database
systems via randomized differential testing,” in Proceedings of Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2022, pp.
302–313.

[14] M. Kamm, M. Rigger, C. Zhang, and Z. Su, “Testing graph database
engines via query partitioning,” in Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2023.

[15] R. Yang, Y. Zheng, L. Tang, W. Dou, W. Wang, and J. Wei, “Random-
ized differential testing of RDF stores,” in Proceedings of IEEE/ACM
International Conference on Software Engineering (ICSE Demo), 2023,
pp. 136–140.

[16] Z. Hua, W. Lin, L. Ren, Z. Li, L. Zhang, and T. Xie, “GDsmith:
Detecting bugs in cypher graph database engines,” in Proceedings of
International Symposium on Software Testing and Analysis (ISSTA),
2023, pp. 163–174.

[17] “Sqlsmith,” https://github.com/anse1/sqlsmith, 2023.
[18] D. S. Slutz, “Massive stochastic testing of SQL,” in Proceedings of

International Conference on Very Large Data Bases (VLDB), 1998, pp.
618–622.

[19] J. Jung, H. Hu, J. Arulraj, T. Kim, and W. Kang, “APOLLO: Automatic
detection and diagnosis of performance regressions in database systems,”
Proceedings of the VLDB Endowment (VLDB), vol. 13, no. 1, pp. 57–70,
2019.

[20] M. Rigger and Z. Su, “Finding bugs in database systems via query
partitioning,” in Proceedings of ACM Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), 2020, pp. 211:1–30.

[21] ——, “Detecting optimization bugs in database engines via non-
optimizing reference engine construction,” in Proceedings of ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 1140–
1152.

[22] ——, “Testing database engines via pivoted query synthesis,” in Pro-
ceedings of USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020, pp. 667–682.

[23] Z. Cui, W. Dou, Q. Dai, J. Song, W. Wang, J. Wei, and D. Ye, “Differ-
entially testing database transactions for fun and profit,” in Proceedings
of International Conference on Automated Software Engineering (ASE),
2022, pp. 35:1–35:12.

[24] J. Ba and M. Rigger, “Testing database engines via query plan guidance,”
in Proceedings of International Conference on Software Engineering
(ICSE), 2023, pp. 2060–2071.

[25] J. Song, W. Dou, Z. Cui, Q. Dai, W. Wang, J. Wei, H. Zhong, and
T. Huang, “Testing database systems via differential query execution,”
in Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE), 2023, pp. 2072–2084.

[26] W. Dou, Z. Cui, Q. Dai, J. Song, D. Wang, Y. Gao, W. Wang, J. Wei,
L. Chen, H. Wang, H. Zhong, and T. Huang, “Detecting isolation bugs
via transaction oracle construction,” in Proceedings of International
Conference on Software Engineering (ICSE), 2023, pp. 1123–1135.

[27] “Tinkergraph,” https://github.com/tinkerpop/blueprints/wiki/tinkergraph,
2023.

[28] “The next generation multi-model database supporting graphs key/value,
documents and time-series,” https://arcadedb.com/, 2023.

[29] R. Wang, Z. Yang, W. Zhang, and X. Lin, “An empirical study on recent
graph database systems,” in Proceedings of International Conference on
Knowledge Science, Engineering and Management (KSEM), 2020, pp.
328–340.

[30] M. A. Rodriguez, “The gremlin graph traversal machine and language
(invited talk),” in Proceedings of the Symposium on Database Program-
ming Languages, 2015, pp. 1–10.

[31] “Tinkerpop,” https://tinkerpop.apache.org/, 2023.
[32] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,

V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An evolving query language for property graphs,” in Pro-
ceedings of ACM SIGMOD International Conference on Management
of Data (SIGMOD), 2018, pp. 1433–1445.

[33] Z. He, J. Yu, and B. Guo, “Execution time prediction for Cypher queries
in the Neo4j database using a learning approach,” Symmetry, vol. 14,
no. 1, p. 55, 2022.

[34] A. Deutsch, “Querying graph databases with the GSQL query language,”
in Proceedings of Simpósio Brasileiro de Banco de Dados (SBBD), 2018,
p. 313.

[35] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee, “Aggregation support
for modern graph analytics in TigerGraph,” in Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2020, pp. 377–392.

[36] “Nebula graph query language (nGQL),” https://docs.nebula-
graph.io/2.0.1/3.ngql-guide/1.nGQL-overview/1.overview/, 2023.

[37] M. Wu, X. Yi, H. Yu, Y. Liu, and Y. Wang, “Nebula graph: An open
source distributed graph database,” CoRR, vol. abs/2206.07278, 2022.

[38] “Gremlin traversal strategy,” https://tinkerpop.apache.org/docs/3.5.2/,
2023.

[39] B. Ding, S. Das, W. Wu, S. Chaudhuri, and V. R. Narasayya, “Plan
stitch: Harnessing the best of many plans,” Proceedings of the VLDB
Endowment (VLDB), vol. 11, no. 10, pp. 1123–1136, 2018.

[40] T. Neumann and B. Radke, “Adaptive optimization of very large join
queries,” in Proceedings of ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2018, pp. 677–692.

[41] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and S. Rao,
“Towards a learning optimizer for shared clouds,” Proceedings of the
VLDB Endowment (VLDB), vol. 12, no. 3, pp. 210–222, 2018.

[42] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, “Neo: A learned query optimizer,”
Proceedings of the VLDB Endowment (VLDB), vol. 12, no. 11, pp. 1705–
1718, 2019.

[43] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[44] K. Tai and Y. Lei, “A test generation strategy for pairwise testing,” IEEE
Transactions on Software Engineering (TSE), vol. 28, no. 1, pp. 109–
111, 2002.

[45] “Neo4j-gremlin,” https://github.com/thinkaurelius/neo4j-gremlin-plugin,
2023.

[46] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[47] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of International Conference on
Programming Language Design and Implementation (PLDI), 2011, pp.
283–294.

[48] S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson,
and C. Csallner, “Automatically finding bugs in a commercial cyber-
physical system development tool chain with SLforge,” in Proceedings
of International Conference on Software Engineering (ICSE), 2018, pp.
981–992.

35

[49] M. N. Mansur, M. Christakis, and V. Wüstholz, “Metamorphic testing
of Datalog engines,” in Proceedings of Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2021, pp. 639–650.

[50] X. Liu, Q. Zhou, J. Arulraj, and A. Orso, “Automatic detection of
performance bugs in database systems using equivalent queries,” in Pro-
ceedings of International Conference on Software Engineering (ICSE),
2022, pp. 225–236.

[51] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-
aware test generation using a relational constraint solver,” in Proceedings
of IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), 2008, pp. 238–247.

[52] S. A. Khalek and S. Khurshid, “Automated SQL query generation for
systematic testing of database engines,” in Proceedings of Automated
Software Engineering (ASE), 2010, pp. 329–332.

[53] “Afl,” https://github.com/google/AFL, 2023.
[54] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “SQUIR-

REL: Testing database management systems with language validity and
coverage feedback,” in Proceedings of Computer and Communications
Security (CCS), 2020, pp. 58–71.

[55] Z. Hao, Q. Huang, C. Wang, J. Wang, Y. Zhang, R. Wu, and C. Zhang,
“Pinolo: Detecting logical bugs in database management systems with
approximate query synthesis,” in Proceedings of USENIX Annual Tech-
nical Conference (USENIX ATC), 2023, pp. 345–358.

[56] Z. Cui, W. Dou, Y. Gao, D. Wang, J. Song, Y. Zheng, T. Wang, R. Yang,
K. Xu, Y. Hu, J. Wei, and T. Huang, “Understanding transaction bugs
in database systems,” in Proceedings of International Conference on
Software Engineering (ICSE), 2024.

[57] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,

“A survey of compiler testing,” ACM Computing Surveys, vol. 53, no. 1,
pp. 4:1–4:36, 2021.

[58] J. M. Caron and P. A. Darnell, “Bugfind: A tool for debugging
optimizing compilers,” ACM SIGPLAN Notices, vol. 25, no. 1, pp. 17–
22, 1990.

[59] C. J. Burgess and M. Saidi, “The automatic generation of test cases
for optimizing fortran compilers,” Information and Software Technology
(IST), vol. 38, no. 2, pp. 111–119, 1996.

[60] J. Chen and C. Suo, “Boosting compiler testing via compiler opti-
mization exploration,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 4, pp. 72:1–72:33, 2022.

[61] M. Sassa and D. Sudosa, “Experience in testing compiler optimizers
using comparison checking,” in Proceedings of Software Engineering
Research and Practice & Conference on Programming Languages and
Compilers (SERP), vol. 2, 2006, pp. 837–843.

[62] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of Symposium on Software Testing and
Analysis (ISSTA), 2015, pp. 327–337.

[63] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of Programming Language Design and
Implementation (PLDI). ACM, 2014, pp. 216–226.

[64] A. Hashimoto and N. Ishiura, “Detecting arithmetic optimization oppor-
tunities for C compilers by randomly generated equivalent programs,”
IPSJ Transactions on System and LSI Design Methodology, vol. 9, pp.
21–29, 2016.

[65] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of Object-Oriented Pro-
gramming, Systems, Languages, and Applications, (OOPSLA), 2015, pp.
386–399.

36

